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Abstract

This thesis investigates how transactional memory can be applied to con-
current datastructure design, specifically, how it can provide a clean and ac-
cessible interface replacing locks and built on top of lock-free primitives for
concurrent algorithms. Two of such datastructures have been implemented,
a transactional Red-Black Tree and a Skiplist, with underlying encounter-
order and commit-time transactions taking care of concurrent insertions.
Encounter-order transactions lock transactional objects as they are encoun-
tered, permitting only a single transaction modifying the object, whereas
commit-time transactions lock objects only at commit-time, i.e. when the
transaction tries to make its modifications atomically visible. Results show
that word-based commit-time transactions, in which locks are associated with
memory addresses, cannot be successfully applied to Red-Black Trees with-
out imposing an unnatural design on the datastructure due to the fact that
the commit-time transaction’s write-list consists of (address, value) 2-tuples
that are oblivious to the chain of dependencies between the writes. For
Skiplists, no such restrictions exist, with both encounter-order and commit-
time transactions exhibiting optimal scaling properties. As opposed to find-
ings of other papers like [1, 2], which promote the use of the commit-time
mechanism for high-contention, this paper finds that due to a large number
of aborting transactions, which are expected in case of high contention, and
the more expensive commit-time API operations, the encounter-order lock-
ing mechanism outperforms commit-time locking on all metrics with a factor
of two. Furthermore, it can be empirically concluded that the use of the
transactional algorithm design is much less error-prone than its lock-based
counterpart, without further restrictions on its structure posed by lock-free
primitives. While performance-wise, hand-crafted concurrent datastructures
might prove to be more effective, the transactional design can open up the
process to a wider range of programmers by providing a straightforward ab-
straction for concurrency.

Keywords— transactional memory, concurrent datastructures, parallelization
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1. Introduction

”He who controls the spice controls the universe.”

—Frank Herbert, Dune

1.1 Background

In the era of multi- and many-core systems, achieving parallelisation to a
sufficiently high degree is of great importance. Speeding up sequential ap-
plications by parallelising them or consciously designing highly concurrent
programs has been a goal in computing for some time now to fully utilise the
available machine architectures and infrastructure. However, this attempt
comes with a catch. In the 1960s, Gene Amdahl presented a theoretical up-
per bound [3] on the speedup of parallelised programs. It roughly states that
even if a small amount of the program remains sequential (i.e. cannot be
parallelised), the maximum achievable speedup will be rather limited. As an
example, consider a program of which 75% can be fully parallelised and de-
note this fraction with p, and let s = 1−p be the remaining sequential work.
The theoretical speedup S(n), where n is the number of cores available, will
then be no bigger than S(n) ≤ limn→∞ 1/(s + p/n) = 4. With p = 0.9, the
theoretical speedup bound is still only 10, even if we have an infinite number
of processing cores available. In real-world applications, the implications of
Amdahl’s Law are not as daunting as it may first seem. Firstly, it assumes
that the application operates on a fixed problem size. However, today’s
massively concurrent machines allow computations on much larger datasets
in the same amount of time. The argument that parallelisation is not just
about speeding up programs but enabling them to deal with larger datasets
is captured by Gustafson’s Law [4]. Both Amdahl’s Law and Gustafson’s
Law, however, fail to take communication into consideration. As systems
get more and more complicated, so does the inherent complexity of com-
munication between them; therefore, both laws paint a somewhat simplistic
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INTRODUCTION

picture. Still, the main implication of both is that there are inherent limi-
tations to parallelisation and that introducing n more computing cores does
not immediately result in n-fold speedup.

Another problem involving concurrent programming is achieving synchroni-
sation. Synchronisation refers to how separate concurrent threads manage
and operate on shared data, i.e. ideally want maximum performance while
ensuring that no concurrent operations overwrite each other or see inconsis-
tent states. One of the more simple ways to achieve this is by using locks.
Consider for example the simple spinlock with two operations: lock() and
unlock(). Spinlocks (or locks in general) can be thought of as some global
variable that threads acquire before executing operations on shared data.
Those operations are said to reside in the critical section. If one thread
wants to operate on a shared datastructure, it must first acquire the lock,
perform the operations and then release the lock. In the meanwhile, other
threads wishing to perform their work on the shared datastructure spin, until
they can acquire the lock. One problem (of many) with this simple way of
achieving synchronisation, often referred to as coarse-grained locking, is that
it is slow and does not scale well to highly concurrent applications. When
the computation runs on many threads, even if they want to modify com-
pletely disjoint parts of a potentially large datastructure, they must wait in
line to perform their actions. Therefore, computation is still sequential, even
though many computing cores are available. A possible alternative is to use
fine-grained locking by associating certain parts of the datastructure with
their own locks. That way, more concurrent threads can operate on different
parts of the data. This can be further enhanced by using readers-writers
locks, i.e. when each locked part of the datastructure is associated with two
locks; one must be acquired for reading the object while the other must be
acquired for writing the object.

The above description about locks, by no means complete, is already quite
complex and is still far from the whole picture. Mainly, it does not take
into account how threads are scheduled by the operating system. Scheduling
algorithms are non-deterministic, which, when applied to algorithms, gener-
ally means that given the same input, the algorithm might produce different
outputs. Therefore, we cannot make any assumptions on how a thread is
scheduled or when it is preempted or descheduled. This creates a problem
for locking: priority-inversion happens when a lower-priority thread is pre-
empted while holding onto a lock that a higher-priority thread needs. This
means that the higher-priority thread needs to wait for the lower-priority one
to be rescheduled and release the lock. Moreover, in datastructures where
locks must be acquired one-after-another (also called hand-over-hand lock-
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INTRODUCTION

ing) to reach a certain part of the structure, convoying can occur, which
means that if a thread further down the chain is delayed, all other threads
behind it need to wait as well. Deadlock occurs when threads try to acquire
the same locks in a different order and execution grinds to a halt.

A possible way to move away from locks is to use lock-free primitives, some
of which are also detailed in Section 2.2. Hardware operations like Compare-
and-Swap work by only allowing operations on shared data to succeed if the
current value that a thread reads matches the actual value of the object (i.e.
no other thread modified it in the meanwhile). These primitives, however,
still have limitations and problems. Firstly, they usually operate on a single
word in memory; therefore, only one location can be modified atomically
(i.e. inseparably). Moreover, by this limitation, more complex lock-free
algorithms tend to have a very unnatural structure.

What might be a solution to the problems described above? On the one
hand, locks are performant; however, there are inherent problems with them.
Apart from priority-inversion, convoying, and deadlocks, generally speaking,
programming with locks is hard as complex situations can arise that are
difficult to debug. Lock-free primitives propose an alternative; however, more
complex algorithms tend to have an unnatural structure to them due to the
limitations of the primitives.

A potential solution is Transactional Memory, a concept introduced by Her-
lihy and Moss in 1993 [5]. Transactions, which are already an established
phenomenon in databases, are a set of instructions operating on some shared
data which have the properties that they are serializable and atomic. Serializ-
ability means that transactions appear to execute one after another and never
seem to interleave. Atomicity indicates that transactions make speculative
changes to memory which they only make atomically visible by committing
if no inconsistencies are found (i.e. no other transaction modified the shared
data that the transaction accessed in the meanwhile). Suppose there is a
conflict, then the transaction aborts and can retry executing its operations.
This provides a nice abstraction away from the ”dirty details” of concurrent
algorithms, as it is the transactional runtime system that takes care of the
hard work. Wrapping instructions in transactions that modify a shared data-
structure and retrying them until they are able to commit also provides a
sufficiently straightforward interface, without the need to worry about lock-
ing, priority-inversion or unnaturally structured complex algorithms.
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INTRODUCTION

1.2 Goals

The goals of the paper are to compare the different variants of Software
Transactional Memory and, specifically, how they can be applied to con-
current datastructure design. Designing concurrent datastructures usually
involves hand-crafting them to certain use cases, and the process involved
is very demanding – often best left to experts. Using the transactional ap-
proach, however, this thesis would like to show that designing transactional
datastructures is not much different from designing sequential ones. In cases
when the application performance isn’t critical, the transactional interface
can offer a very accessible approach to dealing with concurrency. The thesis
proposes two of such transactional datastructures that will be detailed in
Section 4.2 and 4.3. Finally, an experiment is described in Chapter 5 to in-
vestigate the performance of certain Software Transactional Memory variants
underlying the datastructures and answer the research questions outlined be-
low.

1.3 Research Questions

In order to realise the goals of the thesis, the following research questions are
explored related to transactional datastructure design:

1. How does the locking scheme of lock-based STM implementations affect
the insertion performance of concurrent Red-Black Trees and Skiplists?

2. How well suited is transactional programming for concurrent datastruc-
tures in terms of ease-of-design?

Research Question 1 is explored thoroughly in Chapter 5, where the proposed
STM implementations are tested on two transactional datastructures: a Red-
Black Tree and a Skiplist.

Research Question 2 is a follow-up and a minor one, where based on the re-
sults described in Section 5.2 further conclusions on the ease of transactional
design can be drawn.

1.4 Organisation

The rest of the paper is organised as follows: Chapter 2 introduces com-
mon concepts and terminology regarding progress conditions and synchro-
nisation primitives. Chapter 3 gives an overview of Transactional Memory
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INTRODUCTION

both in hardware and software by presenting a handful of papers and their
approaches. Chapter 4 details the implementation of two different STM vari-
ants, one using encounter-order, the other using commit-time locking, sim-
ilar in nature to what is described in [1, 2, 6]. Moreover, two transactional
datastructures, a Red-Black Tree and a Skiplist, are described. Chapter 5
describes the evaluation of the implementations and presents and discusses
the results. Finally, Chapter 6 gives the concluding remarks of the paper
with possible future directions to explore.
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2. Terminology

This section aims to give an overview of the terminology used throughout
the thesis. Firstly, progress conditions are detailed, i.e. different implemen-
tation strategies concerning concurrent methods of an object. Then, the idea
behind the two most common lock-free hardware synchronisation primitives
is described.

2.1 Progress Conditions

Progress conditions describe different ways an object’s method implementa-
tion can act on concurrent pending invocations. A method implementation is
said to be non-blocking if threads are able to make progress even when one
thread is delayed [7]. An implementation is blocking if delaying one thread
can prevent others from making progress [7]. Non-blocking algorithms utilise
lock-free primitves, two of which (Compare-and-Swap and Load-link/Store-
conditional) are detailed in the next section, whereas blocking algorithms
utilise locks to ensure consistency and proper synchronisation.

2.1.1 Non-Blocking Progress Conditions

A method implementation is wait-free if a thread with a pending invocation
to such a method keeps taking steps, it will finish in a finite number of steps.
This guarantees that every thread makes progress if it takes steps [7]. In
practice, this is often inefficient and wait-freedom can be relaxed in multiple
ways.

One such way is to settle for lock-free methods which require that only some
threads make progress that have a pending invocation to a lock-free method
of an object. This guarantees that the whole system makes progress, even
though some thread might be delayed.
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TERMINOLOGY

Another way to relax the wait-free condition is to guarantee progress under
certain assumptions on how the threads are scheduled. A method imple-
mentation is obstruction-free if it is guaranteed that a thread finishes in a
finite number of steps after any point it executes in isolation, i.e. in a period
when no other threads take steps.

2.1.2 Blocking Progress Conditions

When relaxing the non-blocking property, the following grouping can be
made. A method implementation is starvation-free if a thread is guar-
anteed to complete in a finite number of steps when all other threads with
pending invocations are making progress.

Finally, a method implementation is deadlock-free, whenever there is an
invocation to that method and all threads with invocations are making
progress, some will finish in a finite number of steps [7].

2.2 Hardware Synchronisation

To achieve synchronisation, most modern processor architectures provide one
of the two following primitives: the Compare-and-Swap or Load-link/Store-
conditional instructions.

2.2.1 Compare-and-Swap

Compare-and-Swap (or CAS for short), shown in Algorithm 1, is an instruc-
tion that takes three parameters: an address A in memory, and expected
value E and an new value V for for that address. Compare-and-Swap exe-
cutes atomically the following actions: in case address A contains E , A is
updated to V and true is returned. Else, nothing is changed and false is
returned.

Algorithm 1 boolean atomically CAS(A, E ,V)

1: if *A = E then
2: *A ← V
3: else
4: return false
5: end if
6: return true
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TERMINOLOGY

An interesting inherent problem of this approach, known as the ABA prob-
lem, occurs when two concurrently executing threads try to modify the same
location. Consider the scenario when thread T1 reads location L and sees
that its current value is A. Thread T1 is preempted and thread T2 is allowed
to execute. Thread T2 reads location L, modifies its value to B, and then
back to A after doing some work. When thread T1 is scheduled back, it sees
that the value of location L has not changed and continues executing. The
execution scenario can prove to be incorrect, since thread T1 is unaware of
the undetected change of values to B (and potentially other side effects of
that action) at location L.

2.2.2 Load-link/Store-conditional

Another way to achieve synchronisation, which does not pose ABA-like is-
sues, is with a pair of instructions Load-link LL and Store-conditional SC.
The LL instruction loads the value stored in address A. A subsequent SC

call to that address with a new value V succeeds only if the value of A has
not changed since the corresponding LL call. The SC instruction fails if the
value at A has changed since the LL call; therefore, also detecting the ABA
problem.

8



3. Literature Review

This section gives an overview of the history of Transactional Memory, start-
ing from Herlihy and Moss’ 1993 paper, in which the term was coined [5].
Following it, Software Transactional Memory is presented through multiple
proposed versions like the original non-blocking implementation of Shavit
and Touitou [8], Herlihy’s DSTM [9] and Fraser’s OSTM [10, 11]. Finally,
the proposed blocking implementations are detailed with attention to Ennals’
STM [6], but also the Transactional Locking I & II algorithms proposed by
Shavit et al. [1, 2].

3.1 Hardware Transactional Memory

Transactional Memory was introduced to the distributed computing world
by Herlihy and Moss in 1993 [5]. In their paper, the authors detailed a
new multi-processor architecture providing lock-free synchronization, which
would enable programmers to specify read-modify-write operations on sev-
eral words in memory, via transactions. It is implemented as an extension to
already existing cache-coherence protocols, and requires specialised hardware
support in terms of instructions such as LT ”Load-transactional”, ST ”Store-
transactional”, etc [5]. Their proof of concept describes transactions as a
serializable and atomic finite sequence of instructions. Serializability refers
to the fact that transactions appear to happen one after another and they
never appear to interleave. Atomicity indicates that transactions make ten-
tative changes to shared memory and either commit, by making its changes
atomically visible to other transactions, or abort, by discarding its changes
[5].

9
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3.2 Non-Blocking Software Transactional

Memory

3.2.1 STM of Shavit et al.

In 1996, Shavit and Touitou proposed an alternative transactional memory
design which is implemented entirely in software, called Software Transac-
tional Memory [8] (or STM for short). Their design builds on top of that of
Herlihy and Moss, however, it can also be implemented on existing machines
with Load-link/Store-conditional operations [8]. The paper focuses on im-
plementing static transactions, where the data set is known in advance, and
therefore, each transaction can be viewed as an atomic procedure storing the
given new values [8]. Their STM implementation is also non-blocking, which
means that a thread is guaranteed to make progress even when other threads
are suspended.

Implementation wise, the original STM approach was as follow. Two shared
datastructures coordinate the processes and their transactions: a vector
Memory of size M which contains every transactional memory block, and a
vector Ownership of the same size pointing to records that determine which
transaction owns a certain block of memory. Records are shared structures
that store information about the current transaction its corresponding pro-
cess started.

When executing a transaction, a process’s record is initialised and its sta-
tus set to stable. Afterwards, ownership for all involved locations of the
dataset needs to be acquired in some increasing order. If that succeeds, the
transaction writes the old values to the locations’ records, calculates the new
values and writes them to the memory locations, and finally, sets its status
to success. If the ownerships cannot all be acquired, the transaction sets its
status to failure, failadd where failadd is the address for which the ownership
couldn’t be acquired [8]. In case of a failed transaction, the algorithm utilises
a cooperative method to help the other transaction holding ownership of the
location needed for the failed transaction. This is done as follows: if the failed
transaction is not already a helping transaction, it first releases all ownerships
that it previously acquired and helps the transaction that holds ownership
to the location which failed by becoming a helper for that transaction [8].

10
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3.2.2 Herlihy’s DSTM

Whereas the original STM algorithm of Shavit and Touitou was static, where
the transactions and memory usage is known in advance [8], the first dynamic
Software Transactional Memory implementation was proposed by Herlihy et
al. in 2003, known as DSTM [9]. The algorithm allows dynamic creation of
transactions and transactional objects. Moreover, transactions can determine
their course of action based on previously read (transactional) values, which
makes it suitable to operate on dynamic datastructures [9]. It inherits the
non-blocking and lock-free properties, i.e. a suspended thread will not prevent
others from advancing.

The algorithm described in the paper is originally implemented in Java and
its workings can be described as follows. The DSTM algorithm operates on
transactional objects which are accessed by transactions. These transactional
objects are a wrapper around conventional objects, which can be modified
by first opening the transactional objects and modifying their contents [9].
These changes are only speculative, i.e. they have no observable effect until
the transaction commits. The interface the authors provided consists of
the following: firstly, the TMThread class represents transactional threads,
which is implemented as a wrapper around Java’s thread class. The thread
class holds a status field which can either be ACTIVE, COMMITTED or ABORTED.
Secondly, the TMObject class represents transactional objects accessed by the
threads, which can be opened in READ or WRITE modes. Each transactional
type must have the TMCloneable interface implemented which provides a
clone() method used for speculative modification [9].

After a transaction begins, it must call open() with an appropriate mode
on the transactional objects it wishes to change. This creates a working
copy of the object (using the before-mentioned clone() method) which the
transaction can safely modify, called the version of the object. Each thread
maintains a read-table of opened objects. The version of an object is deter-
mined by the status of the transaction that last opened it in WRITE mode.
The TMObject class holds a reference to a Locator object, which in turn
holds two versions of each object and a reference to the transaction that
last opened it in WRITE mode. If that transaction commits, the new version
of the object becomes valid, else the old version. The level of indirection
by introducing the Locator object in between an object’s metadata and its
contents is necessary to be able to atomically change the three fields of the
Locator, and therefore, the TMObject itself. This is performed by swinging
the reference in the TMObject class to a new Locator [9]. After each open
call, the transaction is validated, to ensure that the accessed object’s version
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is not outdated yet, i.e. another transaction hasn’t committed and modified
the object in the meanwhile. This is performed by checking each entry in the
read-only table and confirming that the local version of an object is still the
latest committed version of the object and that the transaction is still active
and has not been aborted [9]. Committing a transaction involves validating
its read-table and using a Compare-and-Swap operation to change its status
from ACTIVE to COMMITTED [9].

3.2.3 Fraser’s OSTM

The STM implementation proposed by Fraser in [10] and summarised by
Fraser and Harris in [11] titled OSTM for object-based STM, shares some of
the key elements of Herlihy et al.’s DSTM [9].

The algorithm is obstruction-free and operates on objects as the unit of con-
currency, which contain references that can be opened for transactional ac-
cess [10]. Each transaction maintains read-only and read-write linked-lists
of object handles which point to object-headers. These headers are used to
point to the most recent version of an object that is accessed by a trans-
action. When an object of opened from write access, a shadow copy of the
object is created. The shadow copy is used to make tentative changes to an
object, which will become visible to the application upon successful commit
[10].

Transactional commits contain two phases: the acquire and release phases.
In the acquire phase, each opened object’s header must be acquired in some
efficient order, by replacing the object handles with the transactions descrip-
tor. If a header is already acquired by another transaction, that transaction
is aided to finish [10]. After the acquire phases, based on its outcome, the
transaction’s status is changed atomically to either successful or aborted. On
success, in the release phase, each object has its header swinged to its shadow
copy by a Compare-and-Swap operation [10].

Three issues are mentioned by the authors with the current design. Firstly,
in order to avoid a performance bottleneck when opening objects for read
access on datastructures where there is a single entry point, the algorithm
only acquires headers for objects in the read-write list which is followed by
a read phase. In the read phase, the algorithm checks whether the version
of an object in its read-only list matches that of the object when it was first
opened. In case they do, the algorithm can commit, else it must abort [10].

Secondly, in some cases, an object may be updated after the read phase, but
before the transaction status is updated and its changes are visible. To avoid
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this, transactions report a new status read-checking in their read phase and
ensuring that the transaction is such a phase atomically commit or abort.
This is done by helping a transaction in its read phase reach its decision
point, i.e. when its accessed objects modifications become visible to others,
or the transaction aborts [10].

Thirdly, in the case of a cycle of transmissions wishing to read an object
owned by the next transaction, to avoid deadlock, the transactions can abort
others. To avoid livelock, not every transaction should be aborted, therefore,
only the transaction with the lowest descriptor address can make progress.
This ensures that such cycles are broken and the implementation remains
obstruction-free [10].

3.3 Blocking Software Transactional Memory

3.3.1 Ennals’ STM

While non-blocking STM implementations were gaining momentum, in 2006,
Robert Ennals suggested that the non-blocking property is actually detrimen-
tal to performance. He showed that by not guaranteeing the transactions to
be obstruction-free, the performance of STMs can be increased significantly
[6]. The arguments for this proposal stem from the fact that while the non-
blocking property is essential in distributed computing, this is less so in
non-distributed STM [6]. Ennals argues that porting multi-threaded pro-
grams to STM will be done by converting atomic blocks to transactions. In
this case, a transaction blocking a lower or same priority one is acceptable
since the same behaviour would be observed in the non-parallelised version
of the program [6].

The paper then argues for the unnecessity of obstruction-freedom, which
boils down to refuting three claims. The first claim is that long-running
transactions cannot block other transactions. This is refuted by the fact
that obstruction-freedom only guarantees progress for nonconflicting trans-
actions, and therefore, long-running transactions either have to be able to
block conflicting transactions or have to be preempted [6]. The second ar-
gument for obstruction-freedom tells that the OS might halt if a task is
switched out that holds critical resources. The author identifies that these
context-switches are rare and not of great importance since a proper runtime
system should identify and adapt the number of tasks to the number of cores
available. Therefore, temporary switches that cause the system to block are
acceptable and have an overall slight effect [6]. The third and last claim
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proposed by those in favour of obstruction-freedom states that the OS might
halt if a thread fails. This is rebutted by the fact that, either in the case
of a software failure or in the case of a hardware failure, non-blocking STM
would fail as well [6].

The author points out two optimizations that cannot be applied when obstruction-
freedom is a goal:

1. Storing object metadata inline, making extra cache misses unlikely

2. Bounding the number of active cores by the number of active transac-
tions, to avoid unnecessary conflicts

The first optimization is necessary since previously described non-blocking
STM implementations [10, 9] require multiple lookups to find the current
version of the object from the metadata, which leads to a performance
loss. Moreover, obstruction-freedom does not permit storing metadata in-
line. Consider the scenario when transaction A has started writing an ob-
ject and is preempted, while transaction B wishes to access the same object.
Transaction B can either wait for transaction A to finish or abort transaction
A, however, neither options could be performed while ensuring obstruction-
freedom. If transaction B would choose to start working on the object, then
the execution would not be safe [6]. Therefore, in order to be able to store
metadata inline, the underlying implementation must be blocking, i.e. a
transaction waiting to access an object must block until an other transaction
finishes writing to it. The rationale behind the second optimization is that
a non-blocking STM implementation does not wait to start a new transac-
tion when all cores of a machine already execute a transaction. This creates
a bottleneck, as the number of concurrent transactions is directly propor-
tional to the number of conflicts among them, which then decreases overall
performance [6].

Implementation-wise, Ennals’ STM includes two main points. Firstly, it uses
encounter-order locking on objects that a transaction wishes to write. This
entails holding onto locks until the transaction either commits or aborts [6].
Secondly, the author utilises optimistic control over reads, which involves
not locking objects when reading them, but recording the object’s current
version number. If that number remains the same throughout the execution
of the transaction, or it only changes by the actions of the transaction itself,
the transaction can safely commit, else it must abort.
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3.3.2 TL

The claims of Ennals were endorsed by Dice and Shavit in a follow-up paper,
in which they detail a new STM algorithm titled Transactional Locking [1],
that outperforms the proposed blocking algorithm of Ennals [6]. In their pa-
per, the authors argue that lock-based STM implementations outperformed
their non-blocking counterparts on a variety of use-cases [1]. They point out
that while the STM of Ennals [6] uses encounter-order locking, this mech-
anism only performs well on uncontended datastructures. The algorithm
proposed by the paper [1] uses commit-time locking, which, according to the
authors, fits well into the memory model of languages like C and C++ [1].
Moreover, as their results suggest, the approach taken by the TL algorithm
scales better on contention ranges and even when encounter-order locking
does perform better, it is small enough to be insignificant [1].

The transactional locking algorithm involves two modes: encounter mode
and commit mode. In both modes, all transactional memory locations are
associated with a versioned-write-lock, which uses a Compare-and-Swap op-
eration to acquire it and a store operation to release it. A single bit of the
lock indicates whether the lock is taken and the rest of the bits are reserved
for the version of the location, which is incremented on every lock release.

In commit mode, all transactions maintain read and write sets. A transac-
tional read first checks whether the address it wishes to access appears in the
write-set using a Bloom filter 1, and if so, it loads the current value written
to that address. If the write-set does not include the address at hand, the
associated lock is fetched and its version is saved in the read-set. If the lock is
taken, the transaction may either spin or abort [1]. Transactional stores are
performed such that the address and value of the location are saved in the
write-set. Periodically, the read-set is validated to ensure consistent states,
and upon encountering inconsistent states, the transaction is aborted [1].
When committing, the locks are acquired for each store location (as given by
the commit-time locking mechanism). The acquire step is performed with a
single Compare-and-Swap operation, which acquires the lock and validates
the current version of the location [1]. After this step, all locks associated
with read locations are validated. If the versions matched, the transaction
is considered to be committed. Otherwise, all locks are released and the
transaction is aborted [1]. Finally, all locks associated with write locations
are released by incrementing the corresponding version numbers and clearing
the lock bits using a store operation [1].

1Bloom filters are probabilistic datastructures that permit testing for membership in
O(1) time, but they might give rise to false positives
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Encounter mode operates similarly to the algorithm described by Ennals [6].
Here, read- and write-sets are also maintained, however, locks are acquired
for the write locations at the point when they are encountered, after which
the address and value of the location are saved in the write-set. For trans-
actional loads, the behaviour depends on the associated lock. If the lock is
found to be unlocked or held by the transaction itself, the location is sim-
ply read. Otherwise, the transaction spins on the location [1]. Similar to
commit mode, the read-set is periodically validated to avoid observing incon-
sistent states, and if such inconsistency is found, the transaction is aborted
[1]. When trying to commit, all locks are acquired corresponding to write
locations, which involves a Compare-and-Swap operation that increments the
version number as well. Following, the read-set is revalidated. If an inconsis-
tency is found, the transaction is rolled back and may be retried. Otherwise,
the transaction is considered to be committed. Finally, all locks associated
with write locations are released by incrementing the corresponding version
numbers and clearing the lock bits [1].

3.3.3 TL2

Later in the same year, Shavit et al. proposed a refinement on the TL algo-
rithm, titled Transactional Locking II or TL2. The authors point out that
two limitations of earlier STM implementations remain that prevent them
from being deployed. Firstly, non-blocking STM implementations require
closed memory systems, and their blocking counterparts either require the
same, or need specialized allocators in terms of malloc() and free() imple-
mentations [2]. Secondly, in order to ensure that transactions only operate on
safe data, specialised runtime environments are employed that could contain
such irregularities [2].

The algorithm overcomes the potential problems with earlier non-blocking
and blocking STM implementations in the following ways. Firstly, it does
not require specialised malloc() or free() implementations, as they fit into
the memory model of low-level languages by operating on an open memory
system. This is achieved by using the associated lock of an object which
ensures that a freed location cannot be written by a transaction [1]. Secondly,
the algorithm only operates on consistent memory states, which removes the
need for specialised runtime environments [2].

The TL2 algorithm can be described as a variant of the TL algorithm of
Dice and Shavit [1] equipped with a global version-clock. The algorithm uses
commit-time locking and a version-clock per application, implemented as a
counter which is atomically incremented by every store transaction using
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Compare-and-Swap, and is read by every load transaction [2]. Much like
the TL algorithm, each transactional location is associated with a versioned
write-lock, a spinlock that is acquired by a Compare-and-Swap operation
and is released by a store. A single bit is reserved to indicate whether the
lock is taken, whereas the rest is reserved for the objects version, which is
advanced upon each successful write [2]. The algorithm considers two types
of transactions: write transactions and low-cost read transactions [2].

The execution of write transactions can be summarised as follows. First, the
global version-clock is saved in a thread-local variable, which will later be
used to validate the version field of an accessed object. Then, the transac-
tion is executed speculatively while maintaining local read- and write-sets.
A transactional load, much like the TL algorithm [1], first checks using a
Bloom filter whether the accessed location appears in its write-set, and if
so, it loads the last version of the object. A notable difference compared
to the TL algorithm is the use of pre- and post-validation of the accessed
object’s lock, which checks whether the versioned lock is free and has not
changed. Moreover, the version of the object is compared to the sampled
global version-clock. If it is found that the version of the objects is larger
than the global version-clock, indicating that the object has been written
to by another transaction, the transaction is aborted [2]. Following, the
locks for the addresses in the write-set are acquired. If this succeeds, the
global version-clock is advanced using a Compare-and-Swap operation and
the returned value is saved again in a thread-local variable; otherwise, the
transaction is stopped [2]. Then, the read-set is revalidated using the same
approach described above. This ensures that the locations are not written
to by other transactions while the locks of the write-set are acquired and the
global version-clock is advanced. Finally, the transaction commits and its
held locks are released using a store [2].

Read-only transactions do not validate the read-set and therefore can be
executed efficiently [2]. Deciding whether a transaction is read-only can be
done at compile-time, or can be checked by first running each transaction as
read-only and when detecting a transactional write, roll back and retry as
a writing transaction [2]. Read transactions’ execution contains two steps.
First, the global version-clock is sampled and saved in a thread-local variable.
Then, the transaction is executed speculatively, while post-validating each
load by checking whether the accessed version number is less or equal to the
sampled clock. If not, the transaction aborts, else it commits [2].
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This section details the implementation1 studied in the thesis. This includes
two Software Transactional Memory versions and transactional Red-Black
Tree and Skiplist datastructures, which are used to benchmark and eval-
uate the performance of said STMs; moreover, they demonstrate the ease
of designing transactional algorithms. The Software Transactional Mem-
ory implementations, similar in nature to what is described in [1, 2, 6],
utilise encounter-order and commit-time locking mechanisms. Encounter-
order transactions acquire locks as they are encountered, whereas commit-
time transaction defer this to commit-time; therefore, they make tentative
changes to memory while the transaction runs.

4.1 Software Transactional Memory

The lock-based Software Transactional Memory variants are implemented
in C++ and they have the following interface which can be seen in Fig-
ure 4.1, that all implementations override. Upon creating a transaction
Tx, Tx.begin() takes care of initialising its internal state. Tx.commit()

attempts to commit the transaction and returns true if it succeeded and
throws an AbortException() if it didn’t. In the latter case, the transac-
tion can be retried. Tx.abort() resets the transaction, clears its logs and,
in case of an encounter-order transaction, rolls all writes back. Tx.read(T

*addr) transactionally reads the value of the pointer addr and returns it,
while Tx.write(T *addr, T val) transactionally writes in place of addr

the value val.

In pseudocode, statements that need to execute atomically are usually de-
noted with an atomic {...} block wrapping the instructions. Provided that

1The full implementation is available and hosted on Github at:
https://github.com/koeves/stm-ds
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1 template<class T>
2 struct Transact ion {
3 virtual void begin ( ) = 0 ;
4 virtual void wr i t e (T ∗ , T) = 0 ;
5 virtual T read (T ∗) = 0 ;
6 virtual bool commit ( ) = 0 ;
7 virtual void abort ( ) = 0 ;
8 } ;

Figure 4.1: Transactional interface

compiler support exists for such a block, it could be parsed the following
way: each read operation in the form int a = *b; is replaced by int a =

Tx.read(b); and each write operation in the form int b = 42; is replaced
by Tx.write(&a, 42);. Moreover, the atomic block needs to be able to re-
peat itself after seeing an inconsistent state and aborting. This is facilitated
by a try-catch block nested inside a while loop. This code structure can
be seen in Figure 4.2.

1 Transact ion Tx ;
2 bool done = fa l se ;
3 while ( ! done ) {
4 try {
5 Tx . begin ( ) ;
6

7 /∗ atomic b l o c k ∗/
8

9 done = Tx . commit ( ) ;
10 }
11 catch ( AbortException&) {
12 Tx . abort ( ) ;
13 done = fa l se ;
14 }
15 }

Figure 4.2: Transactional code structure

The rest of this subsection details how transactions maintain consistent states
through ownership records. Afterwards, the two proposed approaches to
performing transactions are presented, which differ in terms of their lock-
acquisition approach: one performs encounter-order, while the other per-
forms commit-time locking. The implementations and their details are pre-
sented through how the algorithms override the Transaction<T> interface

19



IMPLEMENTATION

in Figure 4.1.

4.1.1 Ownership Records

When a transaction wishes to access a location for reading or writing, it
first fetches the location’s ownership record (orec) or versioned write-lock, as
described in [1, 2, 7]. An ownership record is a word in memory, which has
two distinct states. When unlocked, the ownership record’s lowermost bit is
0, and the rest of the bits represent the version of the object it references.
Before writing an object, each transaction must acquire the record while
ensuring that the object’s version didn’t change in the meantime. This can
be achieved by an atomic Compare-and-Swap. When locked, the ownership
record’s lowermost bit is 1, while the rest of the bits represent the ID of
the transaction. To unlock the record, its lowermost bit is cleared, while
the rest of the bits store an increment of its previous version. Since every
location in memory cannot be associated with a unique ownership record
(since there would be too many), a many-to-one mapping is utilised to fetch
the corresponding record. This is also called lock-striping [1, 2].

a

b

c

d

000000000010

000000000011

000000000100

000000001011

Address Orec

Figure 4.3: Addresses in memory with their associated orec. Address a is
unlocked with version 1, Address b is locked by Transaction nr. 1, Address c
is unlocked with version 2, and Address d is locked by Transaction nr. 5

4.1.2 Encounter-Order Transactions

Encounter-order or direct-update transactions modify transactionally accessed
memory directly. Between the transaction begins and tries to commit, all
reads and writes are performed while keeping transaction-local read-, and
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undo-sets. The read-set is used to validate during the execution of the trans-
action that each read-only location’s current version matches with the ver-
sion recorded in the read-set. The undo is used to roll back the writes upon
aborting and restore the original values.

When encountering a transactional read, the location’s ownership record is
fetched. The transaction needs to first check whether it already holds the
lock, and in that case, the location’s value can be atomically loaded, while
the current version of the object is stored in the transaction’s read-set. In
case the transaction does not hold the associated lock, it checks whether some
other transaction does. If it finds the location to be locked, it can either spin
or abort and retry. If the location is not locked, the value can be atomically
loaded, while the current version of the object is stored in the transaction’s
read-set.

In the case of a transactional write, firstly, the ownership record associated
with the address is fetched. The transaction then must acquire the record in
order to ensure that only a single transaction can write to the same location.
If the lock could not be acquired (because another transaction successfully
acquired it in the meanwhile), the transaction aborts. If the transaction
acquired the lock, or it already holds the record, the address’ current value
is saved in the transaction’s undo set, and the new value is atomically stored
at the address.

During the execution of the transaction, the read-set must be validated to
ensure that the recorded versions match the objects’ current versions. If a
mismatch is found, there is a read-write conflict between two transactions.
In that case, another transaction modified the object that the transaction
previously read; therefore, the transaction with the invalid read-set must
abort.

When committing, the transaction revalidates its read-set, and if it is found
to be valid, releases all locks and returns. The transaction is now considered
to be committed.

Upon aborting, the transaction uses its undo-set to roll back all writes and
restore the previous state as if nothing had happened. Then, it can choose
to retry immediately or utilise some form of back-off, which might be useful
in case of high contention.

The encounter-order approach, similar to the approaches of [1, 6], makes com-
mitting much simpler. However, encounter-order locking has the downside of
holding onto locks for a much longer time, potentially hindering performance
under high contention.
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4.1.3 Commit-Time Transactions

Commit-time or deferred-update transactions utilise a higher level of specu-
lative execution by deferring writes to commit time. During the execution, a
write-set is built, which stores the to be written values. Naturally, a read-set,
consisting of read locations and their current values, is also being book-kept,
which ensures that the transaction sees valid states only.

A transactional read of an address first needs to check whether the address
appears in its write-set as well, and in that case, return the latest new value
in the write-set. If the write-set does not contain the address, the associated
ownership record is fetched. If the location is found to be locked, the trans-
action can spin or abort. Else, the current version of the object is stored in
the transaction’s read-set, and the location is atomically loaded.

All transactional writes are deferred to commit time; therefore, performing
writes amounts to recording the address-value pair in the transaction’s write-
set.

During the execution of the transaction, the read-set is validated periodically
by checking that the recorded version of objects matches the current version.
If the read-set is found to be invalid, the transaction aborts.

When committing, all locks associated with entries in the write-set must be
acquired. This is done as follows: if a location in the write-set appears in
the read-set as well (i.e. the transactional write depended on the read or
vice-versa), the operation must atomically acquire the lock and validate that
the version of the object at hand did not change during the execution of
the transaction. If the location does not appear in the read-set as well, the
transaction simply acquires the associated locks. In case a lock cannot be
acquired, the transaction aborts. Once all locks are acquired, the read-set
is revalidated to ensure consistency, and finally, all updates are made visible
using atomic stores. Afterwards, all locks are released, and the transaction
is considered to be committed.

When aborting, the transaction must release all previously held locks and
can be retried or can back-off based on contention.

The commit-time approach, similar to the approach of [1] and as also dis-
cussed in [1, 2, 7], presents a much easier write operation; however, due to
its speculative nature, committing is much harder, and reading involves a
look-aside into the write-set. For the latter, fast approaches using Bloom
filters exist, as discussed in [2].
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Moreover, as will be presented in the Results section, commit-time transac-
tions have an inherent limitation due to the way writes are handled. That
is, only those writes will correctly be made visible, which do not depend on
previous transactional writes. In the case of transactional Red-Black Trees,
inserting a node relies heavily on intermediate rotations and recolourings,
which makes commit-time transactions unsuitable or the datastructure de-
sign unnatural. In the case of Skiplists, the problem disappears since swing-
ing pointers at a certain level does not depend on earlier computed results.

4.2 Transactional Red-Black Trees

One of the custom datastructures is a transactional Red-Black Tree imple-
mentation that is used to evaluate the performance of the proposed STM
versions and demonstrate the ease of transactional datastructure design.

Binary trees are tree-graphs with a root in which each node has at most two
children. A binary search tree (or BST for short) is a type of search datas-
tructure built on top of binary trees. In a BST, each node is an object that
contains left-child, right-child and parent pointers to other nodes, and
a key attribute. Keys are stored with the condition that each node’s key must
be larger than any key in its left subtree and smaller than any key in its right
sub-tree, or in other words, flattening the tree gives an increasing sequence of
keys. In a binary search tree, the operations of search, insertion and deletion
run in O(log n) time in the average case; however, in the worst-case, these
datastructures offer no greater performance than linked-lists with O(n) time
[12]. The reason behind this is that BSTs do not balance themselves after the
tree is modified; therefore, successive insertion of strictly smaller or larger
elements will result in a linked-list-like structure starting at the root, which
can be seen in Figure 4.4b.
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Figure 4.4: a) balanced BST b) unbalanced BST
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Red-Black trees are a type of self-balancing binary search tree that aim to
solve the previously mentioned performance issue, permittingO(log n) worst-
case search, insertion and deletion complexity [12]. A binary tree is consid-
ered to be balanced if the height of each node’s left and right sub-tree differ
by no more than one. The height of a binary tree is defined as the length of
the longest possible path from the root to a leaf node (i.e. a node with no
children).

4

2 6

1 3 5 7

Figure 4.5: A Red-Black Tree with shaded black and unshaded red nodes

In a Red-Black Tree, compared to binary search trees, each node has an extra
attribute, its colour. Each node is coloured either red or black, which, along
with some local rotation operations, ensures that the tree remains balanced
after insertion and deletion. The tree is painted in such a way that the
following properties hold [12]:

1. Every node is painted either red or black

2. The root and leaf nodes are black

3. Every red node’s children must be black

4. From each node to its descendant leaves, all paths contain the same
number of black nodes

In binary search trees, the root’s parent and the leaf nodes’ left and right
child pointers point to nil (i.e. to nothing). By convention, in a Red-Black
Tree T, a single sentinel node T.nil is used to represent pointers to nil which
is always coloured black. This node has the same properties as any other
node in the tree but with arbitrary key and left-right pointers. This implies
that in a Red-Black Tree there is a single sentinel leaf node (as opposed to
BSTs, where the leaf nodes are not a single sentinel); moreover, that the
second part of property (2) is always ensured. Because of this, the last level
of nodes in Figure 4.5 are not leaf nodes, but the sentinel node is omitted
from drawing for the sake of simplicity. The reasoning behind choosing a
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single sentinel node to represent nil is that it creates a simpler rebalancing
procedure.

Inserting a key into a binary search tree can be summarised as follows. Start
at the root of the tree and perform the following until the current node pointer
is nil: if the current node pointer is nil insert the node at that position. If
the current node is not nil and the key we wish to insert is smaller than the
current node’s key, move the current node pointer to the left; else, move it to
the right. This algorithm modifies the tree structure, which may or may not
violate the properties of a Red-Black Tree. These properties, which might
be violated, are namely that the root needs to be black and that a red node
cannot have red children. Therefore, when inserting keys into a Red-Black
Tree, the tree may need to be repainted, and the tree structure may need to
be modified. Modifying the tree structure relies on local rotations which are
illustrated in Figure 4.6.
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right-rotate(x)

left-rotate(y)

α

Figure 4.6: Rotation operations on binary search trees

One promising aspect of transactional datastructure design and one reason
for choosing Red-Black Trees is the simplicity involved in crafting them com-
pared to the lock-based or lock-free approaches. Inserting and deleting keys
in a Red-Black Tree involves a rebalancing or fixup method compared to sim-
ple binary search trees, which makes the number of local rotations needed
not known in advance. The lock-based approach would have difficulties cre-
ating a cycle-free acquisition order [7], and a lock-free approach [13, 14, 15]
would involve modifying multiple locations at once. With transactions, the
complexity of crafting such datastructure reduces to merely specifying which
method needs to execute atomically, and the runtime environment will take
care of the rest, which, arguably, also makes the process of crafting such
datastructures more accessible and less prone to mistakes.

To demonstrate the simplicity regarding transactional datastructure design,
consider as an example the insertion algorithm described in Algorithm 2,
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and its transactional translation in C++ in Figures 4.7. The algorithm,
which inserts node z with key k into a Red-Black Tree T , can be roughly
summarised as follows, while, for the sake of simplicity, the description of the
fixup method responsible for repainting and performing rotations on the tree
is omitted. Firstly, pointers y and x are initialised to nil and the root of the
tree in this order. While x does not point to nil, y is swung to x (this pointer
keeps track of the parent of the new node z), and based on the new node z’s
key, x is swung either to its left or right child pointer. After the location of
the new node is found, its parent pointer is assigned y. If the parent pointer
is still nil, the tree was empty; therefore, the root is assigned the new node.
If the tree was not empty, depending on the key of z, the parent node’s left
or right child is assigned z. Finally, the new node is initialised with nil left
and right child pointers and the colour red.

In order to ”transactionalise” this algorithm, one would need to specify which
lines should execute atomically. In pseudocode, this is usually marked as an
atomic {...} block wrapping the statements in the method. Provided that
compiler support exists for such, the atomic block would be parsed with a
transaction initialisation in the beginning and read statements in the form
int a = *b; replaced with int a = read(b); and write statements in the
form A = b; replaced with write(&A, b);. Here, the functions T *read(T

*) and void write(T *, T) refer to the transactional interface described
in Section 4.1. Such a translation of the sequential method can be seen in
Figure 4.7.

The method void tx rb insert(Node<T> *) is a member of the class
TransactionalRBTree<T> and operates on pointers to Node<T> objects. No-
table differences to Algorithm 2 are line 2 which set up a new transaction
as described in Section 4.1, line 6 which starts the transaction, and line 29
which commits it. The atomic block (i.e. statements that should execute
atomically) is placed in a try-catch block which is retried until the transac-
tion is able to commit. All reads are replaced by method calls to Tx.read()

and writes are replaced by calls to Tx.write(). In case the transaction fails,
i.e. during the insertion procedure some inconsistencies are encountered, all
methods throw an AbortException which is caught by the catch block. The
transaction then aborts itself and is retried.
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Algorithm 2 RB-Insert(T, z)

1: y ← T.nil
2: x ← T.root
3: while x 6= T.nil do
4: y ← x
5: if z.key < x.key then
6: x ← x.left
7: else
8: x ← x.right
9: end if

10: end while
11: z.p ← y
12: if y = T.nil then
13: T.root ← z
14: else if z.key < y.key then
15: y.left ← z
16: else
17: y.right ← z
18: end if
19: z.left ← T.nil
20: z.right ← T.nil
21: z.color ← RED
22: RB-Insert-Fixup(T, z)
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1 template<class T>
2 void t x r b i n s e r t (Node<T> ∗z ) {
3 Transact ion Tx ;
4 bool done = fa l se ;
5 while ( ! done ) {
6 try {
7 Tx . begin ( ) ;
8

9 Node<T> ∗y = Tx . read(& n i l ) , ∗n = y ;
10 Node<T> ∗x = Tx . read(&root ) ;
11

12 while ( x != n) {
13 y = x ;
14 i f ( z−>key < Tx . read(&x−>key ) )
15 x = Tx . read(&x−> l e f t ) ;
16 else
17 x = Tx . read(&x−>r i g h t ) ;
18 }
19 Tx . wr i t e (&z−>parent , y ) ;
20

21 i f ( y == n)
22 Tx . wr i t e (&root , z ) ;
23 else i f ( z−>key < Tx . read(&y−>key ) )
24 Tx . wr i t e (&y−>l e f t , z ) ;
25 else Tx . wr i t e (&y−>r i ght , z ) ;
26

27 Tx . wr i t e (&z−>l e f t , n i l ) ;
28 Tx . wr i t e (&z−>r i ght , n i l ) ;
29 Tx . wr i t e (&z−>co lour , RED) ;
30

31 t x r b i n s e r t f i x u p ( z ) ;
32 done = Tx . commit ( ) ;
33 }
34 catch ( AbortException&) {
35 Tx . abort ( ) ;
36 done = fa l se ;
37 }
38 }
39 }

Figure 4.7: Transactional insertion into a Red-Black Tree
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4.3 Transactional Skiplists

Skiplists are probabilistic datastructures similar in nature to balanced trees,
proposed by William Pugh in 1990 [16]. Skiplists can be thought of as linked-
lists in which nodes are equipped with additional pointers to other nodes
further into the list to allow for more efficient searching. They exhibit O(log
n) search, insert and delete average-case complexities and O(n) worst-case
complexities, similar to binary search trees.

Skiplists consist of linked nodes of a certain height, where each node with
height h contains h forward pointers to other nodes. The height of a node
is chosen with a certain probability p (usually chosen to be 1/2 or 1/4 etc.).
In case p = 1/2, 50% of nodes will have height 1, 25% of nodes will have
height 2, etc. Skiplists consist of levels with level 0 being the uppermost one
in Figure 4.8, and the last level being the bottom one, which essentially acts
as a conventional linked-list. The maximum level is usually capped at log1/p

N, where N is the upper bound on the number of elements. This means that
with p = 1/2, up to 212 elements can be supported with the maximum level
of 12 [16]. Two dummy nodes, the head and nil, represent the starting and
ending points of all levels in a Skiplist.

head

3
7 11

27
38

nil

Figure 4.8: Skiplist with 5 elements

Searching in a Skiplist can be summarised as follows. According to Pugh,
starting at level L(n) = log1/p n is most ideal, however, choosing level 0 adds
only a small constant to the complexity [16]. Starting at some level n, the key
that we are searching for is compared to the key of the first forward pointer
of the current node. In case the keys match, the node is found. In case the
key is smaller than the next node’s, we move a level down; else, we move
one to the right. Until the node is found, or the current node points to nil,
this procedure repeats. This algorithm is highlighted using dotted arrows in
Figure 4.9.
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head

3
7 11

27
38

nil

head

3
7 11

27
38

nil

39

Figure 4.9: Inserting element 39 with height 1 into a Skiplist. a) shows the
search path to find the appropriate place on the last level. b) shows the final
Skiplist after insertion.

Inserting a key into a Skiplist L, shown in Figure 4.9 and Algorithm 3, con-
sists of two parts. Firstly, on lines 1-8, the appropriate place of the new node
needs to be found while also building an update list of pointers, which will be
used to thread the new node into the appropriate levels. Secondly, the new
node needs to be inserted into the appropriate levels. If the node’s random
height is higher than the head’s current one, the head’s level is increased
to match that of the new node. This is done on lines 11-17. Afterwards, a
new node is allocated and threaded into the list. On line 20, the new node’s
forward pointer at level i is assigned the ith element’s forward pointer in the
update array. Finally, on line 21, the update array’s ith element’s forward
pointers are pointed to the new node.

Conceiving a lock-based or lock-free insertion algorithm into a Skiplist would,
much like with Red-Black Trees, present a couple of difficulties that stem
from the fact that the height of a node is not known in advance. A lock-
based approach would need to figure out a cycle-free acquisition order of
multiple nodes’ forward pointers, and a lock-based approach would need to
modify multiple locations at once when swinging the update array’s forward
pointers. This creates an unnatural and error-prone structure for the algo-
rithms. Meanwhile, the transactional translation into C++, which is shown
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Algorithm 3 Skiplist-Insert(L, key)

1: update ← [0..MaxLevel]
2: x ← L.head
3: for i ← L.level downto 0 do
4: while x.forward[i] 6= nil ∧ x.forward[i].key < key do
5: x ← x.forward[i]
6: end while
7: update[i] ← x
8: end for
9: x ← x.forward[0]

10: if x = nil ∨ x.key 6= key then
11: h ← Get-Random-Height()
12: if h > L.level then
13: for i ← L.level+1 to h do
14: update[i] ← L.head
15: end for
16: L.level = h
17: end if
18: n ← Create-Node(h, key)
19: for i ← 0 to level do
20: n.forward[i] ← update[i].forward[i]
21: update[i].forward[i] ← n
22: end for
23: end if

in Figure 4.10, simplifies this into a naive sequential translation enclosed in a
try-catch block which is retried until the transaction can commit. All reads
are replaced with calls to Tx.read() and all writes are replaced with calls to
Tx.write().

Presented here the function void tx skip insert(Node<T> *n) is a mem-
ber of the class TransactionalSkiplist<T> and is responsible for inserting
a Node of type T.
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1 template<class T>
2 void t x s k i p i n s e r t (Node<T> ∗n) {
3 Transact ion<> Tx ;
4 bool done = fa l se ;
5 while ( ! done ) {
6 try {
7 Tx . begin ( ) ;
8 Node<T> ∗ curr = Tx . read(&head ) ;
9 Node<T> ∗update [MAX LEVEL + 1 ] ;

10 for ( int i = Tx . read(& l e v e l ) ; i >= 0 ; i −−) {
11 Node<T> ∗ curr = Tx . read(&curr−>neighbours [ i ] ) ;
12 while ( curr && Tx . read(&curr−>value ) < n−>value )
13 curr = Tx . read(&curr−>neighbours [ i ] ) ;
14 update [ i ] = curr ;
15 }
16 curr = Tx . read(&curr−>neighbours [ 0 ] ) ;
17 i f ( ! curr | | Tx . read(&curr−>value ) != n−>value ) {
18 int h = n−>he ight ;
19 i f (h > Tx . read(& l e v e l ) ) {
20 for ( int i = Tx . read(& l e v e l )+1; i<h+1; i++)
21 update [ i ] = Tx . read(&head ) ;
22 Tx . wr i t e (& l e v e l , h ) ;
23 }
24 for ( int i = 0 ; i <= h ; i++) {
25 Tx . wr i t e (&n−>neighbours [ i ] ,
26 update [ i ]−>neighbours [ i ] ) ;
27 Tx . wr i t e (&update [ i ]−>neighbours [ i ] , n ) ;
28 }
29 }
30 }
31 catch ( AbortException&) {
32 Tx . abort ( ) ;
33 done = fa l se ;
34 }
35 }
36 }

Figure 4.10: Transactional insertion into a Skiplist
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5. Evaluation

5.1 Method

In order to benchmark and measure the performance of STM versions de-
scribed in Section 4.1, certain iterations of tests have been performed on the
datastructures detailed in Section 4.2 and 4.3.

The tests were run on the DAS5 [17], a 6-cluster, 200-node, 16-core per
node distributed system for scientific computing in the Netherlands, designed
by the Advanced School of Computing and Imaging (ASCI). Of the whole
network, a single node was utilised to run the test scripts. Therefore, the
number of threads the tests are run on is bounded by 16, and the tests could
be run on 1, 2, 4, 8 and 16 threads, respectively.

The first test, plotted in Figures 5.1, 5.2, involves 10k insertions into both
the Red-Black Tree and Skiplist datastructures. In this test, only insertions
are performed, as the procedure for deletion is much similar and involves
about the same complexity and type of internal operations. The keys that
each thread inserts are determined at runtime, where each thread inserts all
integers in the interval [i ∗ n, (i + 1) ∗ n), where n is defined as the number of
total insertions over the number of threads, and i is the id of the thread which
ranges from 0 to 15 at the maximum. This results in storing 10k different
values in the datastructure, with the actual insertion being high-contention.
The same test was run using 100k and 1M insertions as well, and the results
showed a very similar pattern to the 10k insertions test; therefore, it was
decided to only include the latter.

In the case of the Red-Black Tree, only encounter-order transactions are
utilised. Due to the nature and specific implementation details of the datas-
tructure, the use of commit-time transactions proved unsuccessful. This is
mainly due to how commit-time transactions perform their writes: namely
that it records the address of the word in memory that it later wishes to
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change. Consider the scenario when the first node is inserted into the datas-
tructure. The insertion algorithm described in Section 4.2 effectively per-
forms two steps: it swings the root pointer to the new node and paints
the root black. Let A be the address of the root, B be the address of
the root’s colour field, and finally, Z and Z ′ be the address of the to-be-
inserted node and its colour. The write-list of the commit-time transaction
upon committing this single insertion contains then the following 2-tuples:
{〈A,Z〉, 〈B, ”black”〉}. After a successful commit, however, one would find
that the new root’s colour is still red, and the last step, i.e. the recolouring
of the root, affected the dummy node of the root and not the newly inserted
node. When such dependencies of writes are included in some method, the
proposed commit-time algorithm of Section 4.1.3 yields incorrect results. On
careful inspection, one might notice that this is not a problem for the inser-
tion algorithm of the Skiplist datastructure in Section 4.3, as inserting an
element only swings pointers of nodes to the left of the newly inserted node,
and those swings never depend on each other.

When performing the insertions, three measures are recorded: the mean wall-
clock time of the total insertions with the standard deviation of the trial runs
and the normalised speedup of each thread compared to the sequential run;
finally, the mean abort rate, defined as the number of times a transaction
needs to abort before successfully committing, is plotted.

In order to have a better understanding on the costs of the API operations
of the transactional interface, the operations begin(), read(), write(),
commit(), and abort(), are also separately timed and plotted in Figure
5.3. In this test, the mean wall-clock times of the operations involving 10k
insertions into a Skiplist were measured and plotted in a scaled barplot.

5.2 Results

The 10k insertions into the Red-Black Tree datastructure gave interesting
results. In the first column Figure 5.1, the mean wall-clock time of 10k
insertions and its corresponding abort rates are plotted. It can be seen that
the execution time exhibits a logarithmic decrease until four threads, then a
steady logarithmic increase as more than four threads are utilised. Similarly,
for the abort rate, at x = 4, there is a clear inflexion point, where the slow
increase in abort rate suddenly jumps, and at x = 8, it is about seven times
as high. Due to the high abort rate and thereby slow execution time, the
speedup compared to the sequential execution stops increasing at x = 4
and starts a drastic decrease as can be seen in the first plot of Figure 5.2.
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The maximum speedup that the encounter-order algorithm could achieve was
about twice as fast as the sequential execution, which is similar to what the
Skiplist insertion speedup achieved when the number of threads was 4.

In the case of the Skiplist, the results obtained are much more pleasing, as the
second plot of the second column in Figure 5.1 exhibits a rather smooth loga-
rithmic decrease and thereby optimal scaling properties for both algorithms.
As the tests performed were high-contention, the commit-time algorithm per-
forms about twice as slow compared to the encounter-order one. As can be
seen, the abort rate of the commit-time algorithm is about five times as high
as that of the encounter-order algorithm when 16 threads are utilised. The
speedup, as can be seen in the second plot of Figure 5.2, compared to the
sequential execution of both algorithms are about the same, with execution
on 16 threads achieving a speedup of about 5.8.

The relative execution times of the certain operations in the transactional
API plotted in Figure 5.3, provide no surprises, as by analysing the complex-
ities of the algorithms described in Sections 4.1.2 and 4.1.3, one could have
already anticipated the results.

For the encounter-order algorithm, the write() operation clearly takes up
more than half of all the combined execution times as it is responsible for
read-set validation, lock acquisition and the atomic stores as well. Following
it, the commit() method is the second most costly, responsible for the read-
set validation and state reset. The abort() method takes up 7% of all
execution times, which is responsible for atomically storing back the original
values for the locations. The begin() and read() methods have negligible
time complexities, comprised mostly of simple statements and an atomic load
in case of the read method.

For the commit-time algorithm, as one could have expected, it is the commit()
method that takes up most of the execution time. It is responsible for lock
acquisition, which, due to the existence of the read-set, is in O(n2); more-
over, the read-set validation and atomic stores. Following are the write(),
and read() methods, which both need to traverse the write-set to check
whether the location is already contained and update the value or return the
stored value, respectively. The methods for begin() and abort() have neg-
ligible impact on performance, as they consist mostly of simple statements
of assignments.
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Figure 5.1: Red-Black Tree and Skiplist 10k insertion execution times using
encounter-order and commit-time transactions and corresponding abort rates

5.3 Discussion

The performance of the Red-Black Tree is not ideal, as it does not scale
well to highly concurrent applications. The suboptimal scaling properties
can be largely attributed to the complexity of the Red-Black Tree insertion
procedure, which potentially involves a large (and initially unknown) amount
of rotations and recolouring, which increases to a great extent the probability
of an invalid read-set and hence the rate of aborts. This can also be confirmed
by looking at the second plot in the first column of Figure 5.1 where the abort
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Figure 5.3: Relative operation times of encounter-order and commit-time
transactions

rate of the encounter-order algorithm is plotted.

As the encounter-order algorithm described in Section 4.1.2 is similar in
nature to the STM proposed by Ennals [6], these findings are in line with what
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is described by Dice and Shavit in their paper detailing the TL algorithm [1],
where the performance of encounter-order algorithms is compared. In that
paper, the Red-Black Tree test using Ennals’ STM version exhibited very
similar properties and patterns to what is described in the previous section,
matching even the infliction point at x = 4.

In the case of the Skiplist, the encounter-order algorithm outperforms the
commit-time with about a factor of two in mean wall-clock time and with
a factor of 5 in abort rate, even though the achieved speedup was relatively
similar for both. This is not in line with the findings of other papers like
[1, 2], where it is concluded that commit-time locking should be utilised in
case of high contention. However, it can easily be seen that in case of high
contention, the abort rate of the commit-time algorithm would drastically in-
crease since there is a very high chance that the read-set is invalidated. This
can be further confirmed by looking at the last plot of the second column,
where the abort rates are plotted. In the case of executing on 16 threads,
there is a difference of a factor of 5 between the abort rate of the encounter
order and commit-time locking mechanisms. Encounter-order locking is con-
sidered to be a disadvantage by [1, 2] as it holds onto locks for a much longer
time. However, precisely because of this property, it has a much lower chance
of aborting and could still achieve a better performance in the experiment.
Moreover, the commit-time algorithm contains a lookaside into the write-
and read-sets during committing, as explained in Section 4.1.3, which has
O(n2) complexity, and its read algorithm has linear time complexity. Com-
pared to the encounter-order algorithm, which has O(1) read and linear time
commit complexities, it is easy to see how it can overperform the commit-
time version. We can conclude that the disadvantage of the encounter-order
algorithm, namely that it holds onto locks for a much longer time, is still
preferable to the complexities introduced in the commit-time algorithm in
high-contention situations.
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6. Conclusion

The thesis set out to describe the intricacies of software transaction memory
and its main approaches, namely the non-blocking and lock-based versions.
In doing so, concurrent datastructure design emerged as a potential area
where the transactional techniques could be applied successfully. By using
the transactional approach to create concurrent datastructures, the process of
crafting them moves away from the use of error-prone and difficult-to-reason-
about lock-based and unnaturally structured lock-free algorithms to much
more accessible and straightforward ones. Similarly to findings described in
[18], this paper could also empirically conclude that apart from a few quirks
in notation, writing concurrent transactional algorithms are not very differ-
ent from their sequential counterpart while also being concurrent and correct.
Results showed that the commit-time lock-based transactions could only be
applied, without imposing an unnatural design on the datastructure itself,
in cases where there are no direct dependencies between the writes. This
is attributed to the fact that the commit-time transaction records its writes
as a list of (address, value) 2-tuples that are oblivious to whether one write
depends on the result of others. The encounter-order approach, however, can
safely be applied in all situations; moreover, as opposed to findings of papers
like [1, 2], under high-contention, it even outperforms its commit-time coun-
terpart. This is due to the fact that under high contention, the commit-time
transaction has a much higher abort rate as its read-set is invalidated more
and more frequently, and its operations have worse time complexities, which
hinders its performance. Further research could investigate how word-based
commit-time transactions can overcome their limitations concerning the de-
pendencies between their writes. Moreover, many popular datastructures
whose internal complexities create rather complex lock-based or lock-free
implementations could be explored to develop transactional versions of these
datastructures. Shifting to transactional design in place of the lock-based or
lock-free style could be considered a viable alternative by creating an acces-
sible abstraction to deal with concurrency.
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