Handling complexity and change
in grid computing



w’\ﬁw
00—

¢¢H\WWJI
50008~ e e_ <

Advanced School for Computlng and Imaging

This work was carried out in graduate school ASCI.
ASCI dissertation series number 143.

This work was carried out in the context of Virtual Laboratory for e-Science project
(ww.vl-e.nl). This project is supported by a BSIK grant from the Dutch Ministry of
Education, Culture and Science (OC&W) and is part of the ICT innovation
program of the Ministry of Economic Affairs (EZ).

Copyright (© 2007 by Gosia Wrzesinska



VRIJE UNIVERSITEIT

Handling complexity and change
in grid computing

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad Doctor aan
de Vrije Universiteit Amsterdam,
op gezag van de rector magnificus
prof.dr. L.M. Bouter,
in het openbaar te verdedigen
ten overstaan van de promotiecommissie
van de faculteit der Exacte Wetenschappen
op donderdag 10 mei 2007 om 10.45 uur
in de aula van de universiteit,
De Boelelaan 1105

door

Matgorzata Wrzesinska

geboren te Warschau, Polen



promotor: prof.dr.ir. H.E. Bal
copromotor: dr. J. Maassen



Czyzby mi sie udato?






Contents

List of Figures

List of Tables

Acknowledgments

1

Introduction

1.1 Motivationand goals . . . . . . . .. .. ... .
1.2 Heterogeneity and change . . . . .. .. .. ... .. ... ......
1.3 Data sharing in dynamic environments . . . . . . .. ... .. .. ...
1.4 Contributions . . . . . . . ... L
1.5 Outline of thisthesis . . . . . . . ... ... .. ... ... ...

Context: grid programming environments

2.1 Introduction . . . . . . . . . . L

2.2 Grid programming environments . . . . . . ... ... oL
2.2.1 Application deployment tools . . . . . . .. ... ... ... ..
2.2.2  Application development tools . . . . . .. ... ... ... ..

2.3 Satin: a divide-and-conquer framework . . . . .. ... ...
2.3.1 The divide-and-conquer paradigm . . . . .. ... ... .. ..
2.3.2 The Satin programming model . . . . . ... ... ... ...
2.3.3 Implementation . . . . . . . ... ... ... L.
234 Load balancing . . . . .. ... ... o oo

24 Satinvsother GPEs . . .. ... ... ... ... L

Fault tolerance, malleability and migration

3.1 Imntroduction . . . . . . ... . ... ...

3.2 Background . . . . ... ..
3.2.1 Failuremodels . . .. .. ... ... . ... oL
3.2.2 Fault-tolerance techniques . . . . . . . . ... ... ... ...,
3.2.3 Malleability techniques . . . . . . . .. ... ... ... .. ...
3.2.4 Migration techniques . . . . . . . .. ..o oL

3.3 Fault-tolerance for Satin . . . . . .. ... .. ... L.
3.3.1 Failure detection . . . . . .. .. ... ... L.

iii

vi



ii

CONTENTS

3.3.2 Recomputing jobs stolen by leaving processors . . . . . .. .. 44
3.3.3 Orphanjobs. . . . . ... . . .. 45
3.3.4 Orphan propagation . . . .. .. .. .. ... ... ... 46
3.3.5 Handling crashes of the master processor . . . .. . ... ... 51
3.3.6 Jobidentifiers. . . . . .. .. ..o 51
3.3.7 Alternative orphan saving schemes . . . . . . ... ....... 55
3.4 Malleability and migration for Satin . . . ... ... ... .... ... 57
3.4.1 Adding processors . . . . . . ... 57
3.4.2 Saving partial results from the leaving processors . . . . . . . . 58
3.4.3 Using malleability to implement migration . . . . . .. .. ... 61
3.5 Totalcrashes . . . . ... . .. . . ... .. 61
3.5.1 The basic checkpointing algorithm . . . ... ... .. .. ... 62
3.5.2 Restoring the computation after an abort or total crash . . . . 62
3.5.3 The checkpoint file . . . . .. .. ... ... 0oL 66
3.5.4 The coordinator . . . ... ... ... ... ... 66
3.6 Performance evaluation . . . ... ... ... ... .o o0 67
3.6.1 Overhead during crash-free execution . . .. ... ....... 70
3.6.2 Performance in the presence of crashes . . . . . ... ... ... 70
3.6.3 Performance of migration . . .. .. ... ... ... ... 73
3.6.4 Performance of the abort/restore mechanism . . . . ... ... 73
3.7 Comparison with related work . . . . . . ... ... ... ... 76
3.8 Conclusion . . . . . .. ... 7
Self-adaptation 79
4.1 Introduction . . . . . . . . . . . ... 79
4.2 Background . . . . . ... 80
4.2.1 Resource selection . . . . .. .. ... oL 80
4.2.2 Adaptation . . . .. ... 81
4.3 Avoiding performance models . . . . ... ... 82
4.3.1 Application requirements . . . . . .. .. ..o oL 83
43.2 Resourcemodel . . . . . . ... L oo 84
4.3.3 Weighted average efficiency . . . ... .. .. .. ... .. ... 84
4.3.4 Adaptation coordinator . . . .. ... .. ... ... ... ... 85
4.3.5 Collecting performance statistics . . . . ... ... ... . ... 85
4.3.6 Adaptation strategy . . . .. ... oL o oo 87
4.3.7 Further improvements of the adaptation strategy . . . . . . .. 90
4.3.8 Implementation . . . . . . . . .. ... 91
4.4 Performance evaluation . . . . . ... .. ... oL 91
4.4.1 Scenario 0: adaptivity overhead . . . . . . .. ... ... .. 92
4.4.2 Scenario 1: expanding to more nodes . . . . . ... .. .. ... 94
4.4.3 Scenario 2: overloaded processors . . . . . .. ... ... 94
4.44 Scenario 3: overloaded network link . . . .. .. ... .. ... 94
4.4.5 Scenario 4: overloaded processors and an overloaded network link 95
4.4.6 Scenario 5: crashingnodes. . . . . . . ... . ... L. 96
4.5 Comparison with related work . . . . . . . . . ... ... ... ..... 97



CONTENTS iii
4.6 Conclusion . . . . . . . ... 100

5 Data sharing in dynamic environments 103
5.1 Introduction. . . . . . . . . . . .. 103
5.2 Background . . . .. ... 104
5.2.1 Shared data paradigms . . . .. .. ... ... ... 104

5.2.2  Algorithms implementing data sharing . . . . . ... ... ... 107

5.2.3 Consistency models . . . .. .. ... . oL 109

5.3 The divide-and-share programming model . . . . .. .. ... .. ... 115
5.4 Programming interface and examples . . . . . .. .. ... ... L. 116
5.5 Implementation . . . . . . . . .. ... o 119
5.6 Divide-and-share applications . . . . . . ... ... ... ... ... 123
5.6.1 Traveling Salesman Problem . . ... ... ........... 123

5.6.2 LocusRoute . . . . .. .. ... ... . ... 123

5.6.3 Barnes-Hut N-body simulation . . .. ... ... ........ 124

5.6.4 SAT solver . .. .. . . . .. ... 125

5.7 Performance evaluation . . . .. ... .. ... ... ... 126
5.8 Comparison with related work . . . . . . ... ... ... L. 129
5.9 Conclusions . . . . . . . . L 131

6 Summary and conclusions 133
Bibliography 137
Samenvatting 153
Publications 157



iv

CONTENTS




List of Figures

2.1
2.2
2.3
24
2.5

3.1
3.2
3.3
34
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22

4.1
4.2
4.3

The classification of the grid programming environments . . . . . . . .
The quicksort algorithm . . . . . ... ... ... o000
Raytracer: an example divide-and-conquer application in Satin

Compiling Satin applications . . . . . . . . ... ... ... ..
Thedesignof Ibis. . . . . . . . ... ... .

An example computation tree before and after the crash of processor 3
The crash handling procedure . . . . . . . .. .. .. ... .. .. ...
Restoring the parent-child link . . . ... ... ... ... ... ....
Processor 4 returns the result of the orphan to processor2 . . . . . ..
Orphan propagation . . . . . . . . . ... ... .
Orphan propagation . . . . .. . . ... ...
Handling the crash of the master (processor 1) . . . ... .......
Level stamps . . . . . . . . . L
An example of a deadlock . . . ... ... .. ... ... .. .. ...
Handling gracefully leaving processors . . . . . ... ... .. .. ...
Handling gracefully leaving processors . . . . . . .. ... ... . ...
Processors are taking a checkpoint . . . . ... ... ... 0 L.
Crash handling procedure and reading the checkpoint file . . ... ..
Reusing the checkpointed results . . . . . .. .. ... ... ... ...
Raytracer, overhead during crash-free execution . . . . . . .. .. ...
TSP, overhead during crash-free execution . . . . . . .. ... .. ...
Raytracer, performance in the presence of crashes . . . . . .. ... ..
TSP, performance in the presence of crashes . . . . . . ... ... ...
Raytracer, performance of migration . . . . .. ... .. ... .. ...
TSP, performance of migration . . . . .. .. ... ... .. ......
Raytracer, performance of abort/restore . . . . ... ... ... ....
TSP, performance of abort/restore . . . . . .. ... ... .......

A subset of the execution tree used as a benchmark . . . . ... . ...
Adaptation strategy . . . . . .. ..o
The runtimes of the Barnes-Hut application, scenarios 0-5 . . . . . . .

23
25
26
27



vi

LIST OF FIGURES

4.4

4.5

4.6

4.7

4.8

5.1
5.2
5.3
5.4
5.5
5.6

5.7
5.8

Barnes-Hut iteration durations with /without adaptation, too few CPUs

(Scenario 1) . . . . . .. 93
Barnes-Hut iteration durations with/without adaptation, overloaded
CPUs (Scenario 2) . . . . . . ..o o 95
Barnes-Hut iteration durations with/without adaptation, overloaded
network link (Scenario 3) . . . . ... ... L oL 96
Barnes-Hut iteration durations with/without adaptation, overloaded
CPUs and an overloaded network link (Scenario4) . .. ... .. ... 97
Barnes-Hut iteration durations with /without adaptation, crashing CPUs
(Scenario 5) . . . . ... 98
Data sharing paradigms . . . . . .. ... ... 105
Algorithms implementing data sharing . . . . . ... ... ... .... 107
Declaring shared objects in the TSP application . . . ... ... ... 117
Using shared objects in the TSP application . . . . . .. ... .. ... 118
Declaring a shared object in the Barnes-Hut application . . . . . . .. 120
Using a guard function to enforce shared object consistency in Barnes-

Hut . . . 121
Speedups on 32 DAS-2 processors . . . . . . ..o 126

Speedups of Barnes-Hut on DAS-2 . . . .. .. ... ... ... .... 127



List of Tables

2.1
2.2
2.3

3.1
3.2
3.3
34

5.1
5.2
5.3
5.4
5.5

Nodes used in the GridLab experiment . . . . . ... . ... ... ... 29
The comparison of Satin and other grid programming environments . 32
The comparison of Satin and other grid programming environments . 33
Checkpoint file sizes . . . . . . . . ... 68
Orphan saving statistics . . . . . .. .. ... ... ... L. 72
Crash performance statistics . . . . . . . ... .. .. ... .. ..... 73
Checkpoint file size while aborting and restoring applications . . . . . 76
Processor configurations in the Grid’5000 testbed . . . . . . . . . ... 128
Nodes used in the Grid’5000 experiment . . . . . . . . .. ... . ... 128
Test results the Grid’5000 testbed . . . . . . . ... ... ... . ... 130
Statistics for Grid’5000 runs . . . . . .. oL 130
Statistics for Grid’5000 runs - cont. . . . . . .. ... ... L. 130



viii LIST OF TABLES




Acknowledgments

Even though only a single name is listed on the cover of this thesis, many people have
contributed to it. I would like to use this section to acknowledge these contributions.

Henri Bal and Jason Maassen were the supervisors of my PhD project. Most of the
ideas presented in this thesis were inspired by the discussions with them. Apart from
these countless discussions they also invested much time into reading and correcting
my papers and this thesis.

Rob van Nieuwpoort is the author and implementor of the prototype Satin sys-
tem. The work described in this thesis is based on his research and the current
implementation of Satin is based on his prototype.

Rob van Nieuwpoort and Jason Maassen are the designers and implementors of
the Ibis communication library on top of which Satin is built.

Ceriel Jacobs constantly works on keeping the Ibis and Satin source code complete,
orderly and, most importantly, efficient. He corrected the countless bugs I introduced
into Satin and implemented many features, for which I could not find time or simply
was not skilled enough. He also helped to keep to my source code consistent in the
most, busy period of my PhD.

Niels Drost drank hectoliters of coffee with me while discussing many ideas de-
scribed in this thesis. He is also the author of Zorilla, which was used to implement
the adaptivity component from chapter 4.

Kees Verstoep is the administrator of the DAS-2 supercomputer which was used
for the experiments presented in this thesis. Kees was always very helpful when I had
problems with node reservations. He also wrote the SAT solver application I use in
chapter 5.

Maik Nijhuis wrote the first version of the Barnes-Hut application which was later
optimized by Ceriel and Rob and used in chapter 4 of this thesis.

Kris Borg implemented the first version of checkpointing described in chapter 3.
This work was his Master’s project.

Thilo Kielmann co-supervised the checkpointing project together with myself.
Thilo also inspired the adaptivity work described in chapter 4.

Mathijs den Burger allowed me to use his traffic shaper for the experiments in
chapter 4.

Ana Oprescu helped with the performance evaluation section in chapter 3.

The cover of this thesis was designed by Wouter Gransbergen (Mi$) and the back-
ground photo was taken by Grumpy.






Chapter 1

Introduction

1.1 Motivation and goals

Grid environments integrate heterogeneous and geographically-distributed computing
resources into a single system. Many applications can benefit from such environments,
for example collaborative applications, which enable remote collaborations and shar-
ing of computational resources or data-intensive applications, which process data
located on geographically distributed resources. In this thesis, we focus on another
interesting class of applications: distributed supercomputing applications. Distributed
supercomputing applications use computational grids to solve computational chal-
lenges that could not be tackled on a traditional parallel systems. Grids provide
computational power many times larger than that of a traditional supercomputer.
However, the complexity of Grid environments also is many times larger than that of
traditional parallel machines. Grid environments are inherently heterogeneous. Grids
consist of machines with various processor architectures and various operating sys-
tems. Processor speeds vary dramatically. Finally, the quality of network connections
varies from low-latency Local Area Networks (LANs) to high-latency and possibly
low-bandwidth Wide Area Networks (WANs). Grid environments are also inherently
dynamic. The availability of resources is constantly changing. Processors may crash
or become unavailable because they are claimed by a higher-priority application or
because a reservation has ended. New processors may become available. Also, the
load on the resources, both network links and processors, is constantly changing.

In order to achieve good performance, grid applications need to be able to tolerate
high wide-area latencies (i.e., they need to be latency insensitive) and possibly low
bandwidths. They need to be portable (i.e., able to run on multiple architectures
without the need of recompilation) and able to efficiently utilize processors with vari-
ous speeds (i.e. the fast processors should not have to wait for the slow ones. Finally,
they need to adapt to dynamic characteristics of the environment.

Writing grid-enabled applications is therefore an inherently complex task. The
programmer does not only need to have deep understanding of the application problem
domain, but also of the complex parallel and distributed programming issues such



2 CHAPTER 1. INTRODUCTION

as: optimizing the inter-processor communication, load balancing, fault tolerance,
adaptivity etc. Because of this complexity, few grid-enabled applications have been
developed until now and the tremendous power of grid environments is still mostly
unused. Therefore, the process of creating grid applications needs to be simplified.

We believe that this goal can be achieved with grid programming frameworks
(high-level grid programming environments). A framework is a set of tools (such as
compiler, runtime system, libraries etc.) that forms a layer of abstraction between the
application and the low-level grid infrastructure. Frameworks present a programmer
with a high-level programming model that abstracts away the details of the underly-
ing platform. Because the programming model is high-level, it does not support all
possible applications, but only a certain class of applications. However, the advan-
tage of narrowing the supported application set is that most of the grid related issues
can be resolved automatically by the framework software. In contrast, low-level pro-
gramming environments (e.g., message-passing environments such as MPICH [112])
support a wider range of applications, but the application programmer is responsible
for dealing with grid issues.

In this work we focus on the class of divide-and-conquer applications. Divide-and-
conquer is a popular and efficient paradigm for writing grid applications [32, 139].
Divide-and-conquer algorithms operate by splitting the problem into subproblems and
then solving them recursively. The divide-and-conquer paradigm is a generalization
of the popular master-worker paradigm. The task graph of a divide-and-conquer
application is hierarchically structured. Therefore, such applications can be executed
with excellent communication locality in grid environments, which are usually also
hierarchical: they consist of multiple clusters or supercomputers with low-latency
intra-cluster communication and high-latency inter-cluster links.

The divide-and-conquer paradigm has broad applicability in many fields such as
astrophysics, bioinformatics, computational geometry, numerical methods, games and
other search and optimization problems. Also, all master-worker computations can
be expressed in the divide-and-conquer model.

In earlier work by Rob van Nieuwpoort [175] a prototype divide-and-conquer
framework called Satin was designed and implemented. The Satin framework con-
sists of a compiler and a runtime system, both written entirely in Java. Java is also
used to write applications with Satin. This allows the application to run over het-
erogeneous architectures without the need of recompilation (thanks to Java’s ‘write
once, run anywhere’ property). Satin extends the sequential Java language with two
simple divide-and-conquer primitives: spawn and sync. The programmer writes the
application in a recursive way and annotates the sequential code with those primitives
to create a grid application. The Satin compiler generates the necessary communica-
tion and load-balancing code. Satin uses a grid-aware load-balancing strategy called
Cluster-aware Random Work Stealing (CRS) [176] which allows Satin applications
to run very efficiently in a wide-area setting [178]. Also, because work stealing is
a dynamic load balancing strategy [175], it allows efficient usage of processors with
various speeds and/or variable load.

The combination of Java and CRS allows Satin to resolve a number of grid issues,
namely the heterogeneity of processor architectures, the heterogeneity of processor



1.2. HETEROGENEITY AND CHANGE 3

speeds and large wide-area latencies. However, there is still a large number of problems
that need to be solved before Satin becomes a mature grid programming framework.
In the following sections, we will describe those problems and sketch the solutions
which will be presented in more detail in the remaining part of this thesis. The
result of the work presented in this thesis is a full-fledged, mature grid programming
framework.

1.2 Heterogeneity and change

An important problem in grid computing is resource selection: which resources and
how many resources should we use to achieve good performance? Even in traditional
parallel environments (single cluster or supercomputers) finding the optimal number
of processors is a difficult task and is often solved in a trial-and-error fashion. In grid
environments, this problem is an order of magnitude harder because of the hetero-
geneity of resources. Even though Satin can handle the heterogeneity of processor
architectures and speeds and can run efficiently on high-latency networks, there are
still combinations of resources that will result in very poor performance. For example,
when some very slow processors are used, the performance gain they might provide will
not outweigh the load-balancing and communication overhead they introduce. Also,
if bandwidth on a certain link is lower than a certain minimal bandwidth (which is
different for each application) the performance of the application dramatically de-
teriorates. Finally, using more processors than the application’s level of parallelism
allows will result in poor resource utilization.

Another problem is the dynamic characteristics of the grid environment. The
availability of resources constantly changes. Grids are inherently more unreliable than
traditional parallel computers or clusters. The number of processors and network links
is much larger and therefore the mean-time-to-failure becomes much shorter. There is
no centralized control, so (a part of) our resources can be turned off for maintenance
or simply given to another user. The resources are shared by many users, so they
can become overloaded. To survive in such an environment, the application needs to
be fault tolerant, that is, able to continue working in the presence of processor and
network failures. In order to not only survive but also achieve good performance, the
application needs to adapt to changing conditions. This involves malleability, which
is the ability to change the number of processors used on the fly and migratability,
which is the ability to transfer to another set of resources during the application run.

In chapters 3 and 4 we will discuss the solutions to those problems. First, we
discuss the question of providing fault tolerance, malleability and migratability to
divide-and-conquer applications. In chapter 3, we will present a simple algorithm
that provides fault tolerance, malleability and migratability to divide-and-conquer
applications. Using this algorithm, the applications can handle joining/leaving pro-
cessors and migrate with an overhead that is close to zero.

In chapter 4, we will show how to use malleability to provide a solution to the
adaptation and the resource selection problem. Existing solutions to those problems
require providing a performance model for an application. Such a performance model



4 CHAPTER 1. INTRODUCTION

is used to predict the running time of the application on a given set of resources.
Various resource sets are compared using the performance model and the resource
set which yields the shortest runtime is selected for execution. To provide adaptiv-
ity, this resource selection phase is repeated during application execution, either at
regular intervals or when performance degradation is detected. Constructing per-
formance models, however, is inherently difficult. Creating such a model requires
expertise which an application programmer might not have. In chapter 4, we discuss
an alternative approach to application adaptation and resource selection. We start an
application on any set of resources. During the application run, we collect statistics
about the run and use them to deduce the resource requirements of the application.
Next, we adjust the resource set the application is running on by adding or remov-
ing nodes. Thus, we are using malleability to achieve adaptivity. This approach
does not necessarily result in the optimal resource set. However, it allows avoiding
various performance bottlenecks, such as slow WAN links or overloaded processors.
We demonstrate the working of this approach in various scenarios typical for grid
environments and show that significant performance improvements can be achieved.

1.3 Data sharing in dynamic environments

Divide-and-conquer is a paradigm with a broad range of applications. However, an
important disadvantage is the lack of global state. The only way of sharing data
between tasks is by explicit parameter passing and returning results. This model
turns out to be insufficient for many applications. One class of such applications
consists of programs that pass large data structures as parameters. With pure divide-
and-conquer, those large parameters need to be copied each time a task is executed
remotely (stolen), while copying the parameters once and reusing them later would
be more efficient. Another class of applications consists of programs that need to
share data between independent tasks. In pure divide-and-conquer, this form of data
sharing is not possible. Branch-and-bound applications belong to this class. Sharing
the best known solution between all the processors taking part in the computation
allows pruning large parts of the search tree. Another example is game-tree search
where a transposition table is shared to avoid evaluating the same position twice.

In chapter 5, we investigate the possibility of extending the divide-and-conquer
model with a shared data abstraction. We propose a divide-and-share model: the
divide-and-conquer model extended with a shared data abstraction — shared objects.
Implementing a shared data abstraction on the Grid is a challenging problem. Pro-
viding strong consistency while maintaining high performance is infeasible even on
tightly connected systems like clusters of workstations. In grid environments, it is
even harder due to large wide-area latencies and due to the fact that grid environ-
ments are inherently dynamic. Luckily, many applications can tolerate weaker con-
sistency models. In fact, only applications that can tolerate weaker consistency will
be able to efficiently run in grid environments. Many consistency models have been
proposed but none of them are suitable for divide-and-conquer grid applications. As
we will explain in more detail in chapter 5, they are either too expensive to imple-



1.4. CONTRIBUTIONS 5

ment in grid environments, or do not fit the needs of our applications. Therefore,
we will introduce a new, relaxed consistency model, which we call guard consistency.
With guard consistency, the programmer can define the consistency requirements of
an application by means of boolean guard functions. A guard function is associated
with a divide-and-conquer task and defines whether the shared data accessed by this
task are in a correct state from the application’s point of view. The runtime system
uses an inexpensive optimistic protocol which allows the object replicas to become
different as long as guards are satisfied. Only when a guard becomes unsatisfied, does
the runtime system bring the local replica into consistent state which is a potentially
expensive operation.

Using the divide-and-share model we implement a number of new applications and
evaluate them in a real grid environment. We demonstrate that our applications can
achieve high efficiencies in such environments.

1.4 Contributions

The starting point for this work was a prototype divide-and-conquer framework im-
plemented by Rob van Nieuwpoort. In this thesis, we will show how we turned it into
a mature, full-fledged grid computing environment. The contributions made in this
thesis can be summarized as follows:

1. We have designed and implemented a set of algorithms that provide fault tol-
erance, malleability and migratability to divide-and-conquer applications. The
resulting system can handle a vast variety of scenarios typical for the Grid:

e crashing processors, including a total crash can be handled

e processors joining and leaving an on-going computation can be handled
with high efficiency

e an application can be efficiently migrated

e an application can be stopped and restarted later on a possibly different
set of resources

2. We propose a novel approach to resource selection and adaptation that does
not require constructing analytical performance models for applications. Our
approach improves application performance in many different situations that
are typical for grid computing. It handles all of the following cases:

e automatically adapting the number of processors to the degree of paral-
lelism in the application, even when this degree changes during the com-
putation

e migrating (part of) a computation away from overloaded resources

e removing resources with poor communication links that slow down the
computation



6 CHAPTER 1. INTRODUCTION

e adding new resources to replace resources that have crashed

3. We have improved the applicability of the Satin framework by extending the
divide-and-conquer programming model with a shared data abstraction: shared
objects. Shared objects provide a novel consistency model called guard con-
sistency. We have shown that a shared data abstraction can be implemented
efficiently in dynamic grid environments.

1.5 Outline of this thesis

The rest of this thesis is structured as follows. In chapter 2, we classify and review
existing grid programming environments. Further, we describe the prototype Satin
framework designed and implemented by Rob van Nieuwpoort. We outline the is-
sues that need to be resolved to turn the prototype Satin into a full-fledged, mature
grid programming environment. Finally, we compare both the prototype and the
full-fledged Satin with other grid programming environments. In chapter 3, we will
present an algorithm that provides fault tolerance, malleability and migratability to
divide-and-conquer applications. We will describe its implementation in Satin and
its performance evaluation. In chapter 4, we will address the problems of resource
selection and adaptation to changes in grid environments. We will present a simple
approach to those problems and we will evaluate it in a number of scenarios typical
for grid environments. In chapter 5, we will show how we can improve the applicabil-
ity of the Satin framework by extending its programming model with a shared-data
abstraction. We will draw our conclusions in chapter 6.



Chapter 2

Context: grid programming
environments

2.1 Introduction

In this chapter, we review the related work. We propose a classification of the existing
grid programming environments (GPEs) and discuss the most important of those
tools. Further, we will describe the Satin programming environment and programming
model and illustrate it with a number of code samples. We explain the Cluster-aware
Random Work Stealing algorithm and briefly describe the implementation of Satin.
Finally, we will compare Satin to other grid programming models. The remaining
chapters will give more specific related work concerning the topics described in those
chapters (fault tolerance, adaptivity and data sharing).

2.2 Grid programming environments

Programming grid applications consists of two major tasks: application development
and application deployment. Application development consists of dividing the problem
into tasks that can be done in parallel, mapping those tasks to physical processors,
providing inter-processor communication and synchronization. Application deploy-
ment involves resource selection, discovery and reservation, spawning processes and
providing file I/O. Grid programming tools can be roughly divided into two classes:
tools that support application development (grid programming models) and environ-
ments that support application deployment. Typically, a grid programming model
is combined with an application deployment tool to achieve full functionality. Some
grid programming models (e.g., Proactive [30]) provide also application deployment
functionality.

In the rest of this section, we will review a number of grid programming tools. We
do not attempt to present all existing grid programming tools. We selected those that
in our opinion have the biggest impact on the grid computing community. We will



8 CHAPTER 2. CONTEXT: GRID PROGRAMMING ENVIRONMENTS

grid programming
environments

application application
deployment development

Java CoG KOALA
Kit high-level low-level
Globus GAT (semi—-implicit parallelization) (explicit parallelization)
Toolkit
P2P supercomputing MW Satin HPJava RPC
Zorilla XtremWeb GRID workflow ProActive MPI

superscalar  systems

Figure 2.1: The classification of the grid programming environments

start with application deployment tools and describe the Globus Toolkit [86] which is
de facto a standard in grid computing, Java Commodity Grid (CoG) Kit [180] which
provides among others a Java binding to Globus tools, KOALA [136] which provides
co-allocation of multiple sites, Grid Application Toolkit (GAT) [23] which can be
layered on top of Globus, CoG Kit or other middleware and provides higher-level
application deployment functionality, and grid middlewares based on peer-to-peer
technology: Zorilla [72] and XtremWeb [54].

Next, we will describe application development tools — grid programming models.
We will divide the grid programming models into high-level programming models and
low-level, explicit communication models. With high-level models, the programmer
only needs to be concerned with decomposing the problem into tasks that can be done
in parallel. The programming environment (the compiler and/or the runtime system)
will take care of low-level issues such as mapping tasks to physical processors (load
balancing), inter-processor communication, fault tolerance etc. The high-level models
we discuss include: grid superscalar [29], a master-worker framework (MW) and work-
flow systems. Explicit communication programming models typically provide only a
communication abstraction. The programmer needs to not only take care of the
problem decomposition but also of the low-level issues. The explicit communication
models we discuss include: HPJava, MPI, ProActive and Remote Procedure Calls.
The classification of all grid programming environments discussed in this chapter is
shown in Figure 2.1.

2.2.1 Application deployment tools

The functionalities that application deployment tools need to provide include:



2.2. GRID PROGRAMMING ENVIRONMENTS 9

e Resource discovery: finding compute nodes suitable for the execution of our
application.

e Resource reservation: reserving compute nodes, network links and possibly
other resources.

e Remote execution: creating processes on remote resources.
e File I/0: Staging of the executable, input and output files. Remote file access.

Application deployment tools can be divided into low-level middleware that ez-
poses the complexity of the grid to the programmer and higher-level tools that hide
the grid complexity. The Globus Toolkit and Java CoG Kit belong to the former class
while the Grid Application Toolkit belongs to the latter group.

Globus

Globus Toolkit is a set of libraries and programs that address common problems that
occur when building grid applications [86]. Globus is becoming a standard in grid
computing. The most important components on the Globus Toolkit are:

e The Monitoring and Discovery Service (MDS) which provides information about
grid resources. MDS can be used by applications for resource discovery.

e The Globus Resource Allocation Manager (GRAM) which provides resource
allocation and remote execution functionalities.

e The Globus Access to Secondary Storage (GASS) which provides access to re-
mote files. GASS is typically used for executable, input and output file staging.

e GridFTP which provides data transfer functionality.

The Globus Toolkit provides relatively low-level support for grid programming,
i.e. it exposes the complexity of the grid to the programmer instead of hiding it. The
programmer must be aware of many details of the underlying platform, for example,
he must explicitly state which local resource managers have to be used (e.g., PBS
or Condor) when allocating resources or he must select the appropriate file transfer
protocol (e.g., FTP, HTTP etc.).

Java CoG Kit

The Java Commodity Grid (CoG) Kit provides access to grid services for Java appli-
cations. Java CoG Kit is a mapping between Java and the Globus Toolkit. Therefore,
Java CoG Kit provides similar functionality as the Globus Toolkit: resource manage-
ment and remote execution, file I/O and information services. Additionally, CoG
provides a number of simple GUI components that can be used as building blocks
for grid portals. CoG has a layered architecture (similar to the GAT below), which
allows shielding the application programmer from the constant changes the Globus
Toolkit is undergoing.



10 CHAPTER 2. CONTEXT: GRID PROGRAMMING ENVIRONMENTS

KOALA

An important problem of tools such as Globus Toolkit or Java CoG Kit is the lack
of co-allocation, that is, the ability to schedule an application on multiple sites (clus-
ters or supercomputers) simultaneously. For example, using the Globus Toolkit, the
programmer can submit an application to multiple sites, but there are no guarantees
that all parts of the application will be started at the same time.

This problem is addressed by the KOALA scheduler [136]. KOALA builds on top
of the Globus Toolkit — it uses Globus tools to submit jobs to the individual execution
sites and to stage in files. KOALA makes sure that all job components located on
different sites start simultaneously. To achieve this goal, KOALA repeatedly tries
to claim processors. If not enough idle processors are available on one or more sites,
claiming is repeated until successful. This strategy can be optimized if a site supports
advance reservations.

GAT

Grid Application Toolkit (GAT) [23] provides a simple API to grid applications. While
Globus and CoG Kit expose the complexity of the grid to the application programmer,
the GAT hides the details of the underlying platform. GAT can be layered on top of
the lower-level grid middleware such as Globus, as will be explained below. The GAT
consists of the following subsystems:

e Resource Management Subsystem allows the application to discover resources,
reserve them and submit and manage jobs. An important component of this
subsystem is the Resource Broker. The Resource Broker can find resources
based on the hardware and software requirements specified by the application
programmer (e.g., the amount of memory, minimal CPU speed, operating sys-
tem). The Resource Broker can also reserve the resources and spawn remote
processes. The application programmer does not need to be concerned about
details such as local resource managers types. Such issues are resolved auto-
matically by the GAT Resource Broker.

e File Subsystem provides the application with access to files. Using this subsys-
tem the application can create, destroy, move, read or write files. The API is
based on POSIX and is very simple to use. The application programmer needs
only to specify the file name and location and the GAT will take care of selecting
the appropriate access protocol (e.g., FTP, HTTP, GridFTP etc.) and auto-
matically optimize the adjustable parameters based on the available information
about the environment. The File Subsystem also provides a logical file abstrac-
tion. A logical file is a set of file replicas that are geographically distributed. If
an application attempts to use a logical file, the GAT will automatically select
the closest replica.

e Monitoring and Event Subsystem provides utilities for application and grid re-
source monitoring.



2.2. GRID PROGRAMMING ENVIRONMENTS 11

e Information Exchange Subsystem which allows advertising and searching for
application metadata.

The architecture of GAT is based on the principle that the API layer should be
independent of the underlying middleware. GAT features a three-layer architecture:
the APT layer, the GAT engine layer and the GAT adaptors layer. GAT adaptors are
bindings of the GAT API to various grid middlewares, e.g. Globus, UNICORE [11],
Zorilla. GAT adaptors are dynamically interchangeable at runtime. The GAT engine
dispatches API calls to the adaptor layer. This layered architecture ensures that appli-
cations using GAT can run without modifications on top of various grid middlewares.
The applications are also immune to changes in the grid middleware.

Peer-to-Peer Supercomputing

Peer-to-peer supercomputing middlewares are an alternative to traditional deploy-
ment tools. Peer-to-peer supercomputing middlewares are characterized by the lack
of centralized components. Therefore, they are inherently more resilient to failures
and easier to set up and maintain than traditional, centralized tools.

Zorilla [72] is one such grid middleware based on peer-to-peer technology. Zorilla
implements all functionalities needed by grid applications in a fully decentralized fash-
ion. Those functionalities include resource discovery and reservation, remote process
creation and file staging. Zorilla does not provide remote file access.

The Zorilla system consists of a number of Zorilla nodes which form a peer-to-peer
network. Nodes can be added and removed at any moment. A grid application directs
its requests to its local Zorilla node which cooperates with other nodes to grant the
requests. Zorilla is implemented entirely in Java and provides a Java API to grid
applications.

Another example of a peer-to-peer supercomputing middleware is XtremWeb [54].
XtremWeb has a three-tier architecture: it consists of clients, workers and the coordi-
nation service which mediates between clients and workers. The coordination service
accepts task requests from clients and launches the tasks on the available workers.

2.2.2 Application development tools

Application parallelization can be classified into three approaches: implicit, explicit
and semi-implicit [159]. With implicit parallelization, the programmer writes a se-
quential application which is automatically parallelized by the environment. Auto-
matic parallelization is not used in grid computing because it is hard to get satisfactory
performance with this approach.

With semi-implicit parallelization, the programmer identifies the parts of the prob-
lem which can be solved in parallel. However, the environment takes care of mapping
tasks to physical processors, load balancing and inter-processor communication. The
semi-implicit approach is very popular in grid computing. It allows achieving high-
performance while hiding most of the grid complexity from the programmer. The pro-
grammer is provided with a high-level and easy to use programming model. Examples
of environments supporting the semi-implicit approach are: grid superscalar [29] (a



12 CHAPTER 2. CONTEXT: GRID PROGRAMMING ENVIRONMENTS

form of fork-join or divide-and-conquer parallelism), MW [95] (a master-worker frame-
work), workflow systems and our Satin framework (divide-and-conquer). Below, we
will refer to those environments as high-level programming models or frameworks.

With explicit parallelization, the programmer is responsible not only for identi-
fying work that can be done in parallel, but also for mapping the tasks to physi-
cal processors, load balancing and communications. Examples are: HPJava [120],
MPI [96], ProActive [30] and Remote Procedure Calls [154]. Environments that sup-
port this approach typically provide only some communication abstraction. Addition-
ally, some implementations of MPI provide transparent fault tolerance and/or migra-
tion [106], however, no grid-enabled implementation currently provides this function-
ality. ProActive provides migration support and transparent fault tolerance. Below,
we will refer to those models as explicit communication models.

For each programming model, we will discuss a number of non-functional proper-
ties that are vital in grid environments:

e Performance: One of the major driving forces behind grid computing is achiev-
ing higher performance than on traditional parallel systems. However, achiev-
ing high performance in grid environments is a challenging task which requires
complex techniques, such as latency hiding or dynamic load balancing. Typ-
ically, high-level programming environments apply such techniques automati-
cally while explicit communication models require the programmer to take care
of performance. On the other hand, the explicit communication models, by
giving the programmer full control over performance optimizations, often allow
a more efficient implementation.

e Fase of use: A grid programming environment should hide as much grid com-
plexity from the programmer as possible. High-level programming models are
clearly easier to use than explicit communication models as they relieve the pro-
grammer from dealing with complex issues such as inter-process communication,
load balancing, fault tolerance etc. Explicit communication models require the
programmer to deal with such issues explicitly.

e Applicability: Tt is important that a grid programming environment supports
a broad variety of applications. High-level programming models typically re-
quire the application programmer to use a specific programming paradigm which
might not be suitable for all applications. Explicit communication models can
be used for any type of application.

e Support for fault tolerance, malleability, migratability: Fault tolerance, mal-
leability and migratability are essential features of a grid application. On sys-
tems consisting of hundreds or thousands of machines, the mean-time-to-failure
may become shorter that the lifetime of an application. Moreover, grid envi-
ronments lack centralized control and situations in which part of the computing
resources is suddenly rebooted or claimed by a higher-priority application are
not rare. Therefore, without support for fault tolerance, malleability and mi-
gration, the chance that a grid application would ever complete would be small.



2.2. GRID PROGRAMMING ENVIRONMENTS 13

High-level programming models typically provide transparent support for fault
tolerance, malleability and migration. Explicit communication models often
require the programmer to take care of those issues.

e Adaptivity: Grid environments are inherently dynamic. Not only the availabil-
ity of resources changes constantly, but also the performance characteristics of
available resources vary. On time-shared machines the processors may become
overloaded by another, higher-priority application. Also network links may be-
come overloaded and the available bandwidth may decrease dramatically. In
order to achieve a reasonable performance, an application constantly has to
adapt to changes in the grid environment. The adaptation support may be
provided by the programming environment or may be added by the application
programmer. Currently, few programming environments and applications have
adaptation support.

o Portability: Grids are inherently heterogeneous. Therefore, a grid programming
environment should not be tied to any specific platform. It should abstract
away various platform-specific issues from the application. Another important
issue is the programming language supported by a grid programming environ-
ment. Therefore, languages such a Java are becoming popular in grid computing.
Thanks to the virtual machine technology, Java applications can run on hetero-
geneous architectures without the need of recompilation and porting. Thanks
to JIT technology, the performance of Java applications is currently comparable
with the performance of C applications [51].

Grid superscalar

When programming with the grid superscalar model [29], the programmer has to
structure the application as a set of possibly repetitive, sequential tasks. Such tasks
can be executed in parallel on the grid. The programmer must provide an IDL file
specifying which tasks should be considered for a parallel execution. The IDL used
in grid superscalar is based on CORBA IDL.

Each task operates on a set of files. Tasks that operate on the same file can have
a data dependency. The grid superscalar compiler analyzes the data dependencies
automatically. The grid superscalar runtime system maintains a graph of tasks. Edges
of this graph denote data dependencies. When a task is completed, it is removed from
the graph and the graph is searched for tasks with no incoming edges (i.e., no data
dependencies). Such tasks are submitted for execution. The user is required to specify
a file with a list of nodes that will be used for the execution. The runtime system uses
the Globus Toolkit (see section 2.2.1) to execute tasks on those servers. However, the
core of grid superscalar is independent of the grid middleware and can be combined
with any software from section 2.2.1.

e Performance: No extensive performance evaluation of the grid superscalar sys-
tem has been performed yet. In [29] experiments on up to 8 CPUs (on 2 nodes)
are reported. A 6-fold speedup was the maximal speedup achieved on this



14 CHAPTER 2. CONTEXT: GRID PROGRAMMING ENVIRONMENTS

testbed. At the moment, it is not clear how much performance can be ex-
pected from the grid superscalar applications. However, since a GRAM call is
performed to spawn each task, fine-grained applications will not perform well,
since the cost of the GRAM call will not be amortized by the execution time of
the task. Therefore, grid superscalar is only suitable for coarse-grained applica-
tions.

e Fase of use: Grid superscalar provides a high-level programming model which
hides most of the grid complexity and parallel-programming issues from the
programmer.

o Applicability: The fork-join/divide-and-conquer parallelism supported by the
grid superscalar is applicable to a large class of problems. However, only
coarse-grained parallel applications can be implemented efficiently with grid
superscalar, as explained above.

e Fault tolerance, malleability, migration: Currently grid superscalar does not
support fault tolerance, malleability and migration. Adding transparent support
for fault tolerance is planned in the future.

e Adaptivity:  Currently, grid superscalar does not provide support for adap-
tation. In the future, a scheduling policy that takes into account dynamic
information on the system load will be used.

e Portability: Grid superscalar applications are written in C++ or Perl. Appli-
cations written in C++ need to be recompiled for each architecture/operating
system and therefore their portability is limited. Perl is an interpreted language
and therefore applications written in Perl can be run on different systems with-
out the need of recompilation, as long as a Perl interpreter is available on a
given system.

MW - a master-worker framework

MW [95] is a framework for writing grid-enabled master-worker applications. In
master-worker applications, a single process called the master divides the problem to
be solved into independent tasks and dispatches those tasks to the worker processes.
After solving a task, a worker process returns the result to the master and requests a
new task. The master-worker paradigm is very popular in grid computing. Since the
tasks are independent, little communication is needed and high performance can be
achieved even on wide-area networks.

The MW API is extremely simple: the programmer needs to provide only a small
number of functions: a function to split up work, worker initialization routine, a
function performing the actual task etc. The runtime system takes care of load
balancing, inter-processor communication and fault-tolerance. MW also abstracts
an Infrastructure Programming Interface (IPI) which allows to port the framework
to different Grid middleware. MW was implemented on top of Condor [169] and
PVM [162]. In the future, it will be ported to Globus Toolkit [86]



2.2. GRID PROGRAMMING ENVIRONMENTS 15

e Performance: Master-worker applications typically achieve high performance
on the grid. MW has been reported to achieve high efficiencies. It has been
used to solve a combinatorial optimization problem on a heterogeneous, wide-
area testbed consisting of 502 processors in 7 clusters. A parallel efficiency of
80% was achieved on this testbed.

e Fase of use: MW provides a very high-level programming model and is therefore
extremely easy to use. The application programmer is shielded both from the
complexity of the grid environment and from complex parallel programming
issues such as load balancing and communication.

e Applicability: MW supports only embarrassingly parallel applications. However,
many useful problems exhibit this structure.

o Fault tolerance, malleability, migration: MW transparently handles worker crashes.
If a worker fails, the task executed by this worker is re-assigned to another
worker by the runtime system. A failure of the master has to be treated in a
special way. MW offers a feature to checkpoint the state of the master. The
programmer, however, needs to provide functions that write and read the state
of the master. MW is also malleable. Leaving workers are handled using the
fault-tolerance mechanism. Joining workers receive tasks from the work queue
of the master.

e Adaptivity: Master-worker applications use dynamic load-balancing which al-
lows them to adapt to varying processor speeds: slower processors get fewer
tasks to process.

e Portability: MW applications are written in C++ and they have to be compiled
separately for each platform, which limits their portability.

Workflow systems

Grid workflows are meta-applications running on the computational grid. A workflow
is an aggregation of multiple sequential or parallel applications (called components
in this context) which cooperate by passing files or data. The simplest workflow is a
pipeline in which components are arranged in a chain and each component receives
data from the previous component in the chain, processes the data and passes it to
the following component. In general, a workflow is a directed graph of components,
in which edges express data dependencies between the components.

Workflow systems are environments which allow building workflows out of indi-
vidual components. Workflow systems often provide a graphical user interface that
allows rapid development of workflow applications. Alternatively, the programmer
can use technologies such as XML to define the dependencies between the compo-
nents. Workflow systems automatically map workflow components onto the available
grid resources. This mapping is performed in such a way that the runtime of the
workflow application is minimized and/or other user constraints are met (e.g., the ac-
curacy of the result). Workflow systems typically use application development tools,



16 CHAPTER 2. CONTEXT: GRID PROGRAMMING ENVIRONMENTS

such as the Globus Toolkit or GAT, to find the appropriate grid resources, schedule
and execute workflow applications.

A vast number of workflow systems exist, for example: DAGMan [166], Pega-
sus [66], Triana [168], ICENI [134], GridAnt [26], GridFlow [53], Gridbus work-
flow [187], Kepler [25], Taverna [141], Askalon [79], VLAM-G [13], GrADS [172] and
ASSIST [20] (see [188] for a detailed overview of many of those systems).

e Performance: Workflow systems automatically map workflow components onto
the Grid to maximize the performance of the workflow. To achieve this goal,
static and /or dynamic information about the grid environment (e.g. the number
of available processors, estimated data transfer times etc.) is used.

e Fase of use: Workflow systems are extremely easy to use. The application
programmer needs to specify only the data dependencies between workflow com-
ponents. The programmer does not need to explicitly deal with the complexity
of the grid environment.

e Applicability: The workflow model is suitable only for coarse-grained parallel
applications.

o Fault tolerance, malleability and migration: Most workflow systems support
fault tolerance. A vast variety of techniques is used. Most commonly, fault tol-
erance is provided transparently to the application programmer. For example,
a failed component can restarted on the same or alternative resource. Com-
ponents can be also replicated on multiple resources or checkpointed. Some
systems provide support for migration, for example the GrADS systems.

e Adaptivity:  Most workflow systems maps workflow application to grid re-
sources statically, i.e., after the execution of the application has started, the
mapping cannot be changed. Such systems, therefore, do not support adaptiv-
ity. Pegasus [66] handles dynamic changes in grid environment using just-in-time
scheduling. With just-in-time scheduling, rather than mapping all components
at once, each component is mapped to a physical resource only after all its data
dependencies have been resolved, that is, after all components it depends on
have finished execution. Just-in-time scheduling performs better in dynamic
environments than static scheduling. However, once a component is started
it cannot be remapped to a different resource, which can result in poor per-
formance. GrADS [172] and ASSIST [20] support adaptivity by monitoring
performance of the application components and migrating them to better re-
sources if a performance degradation is required. Those systems assume that
a performance model (i.e., a mathematical formula that allows to predicts the
runtime of a component of a given resource) is known for each component.

e Portability: The portability of workflow systems varies greatly. Many of those
systems are based on the Java technology which enhances their portability.



2.2. GRID PROGRAMMING ENVIRONMENTS 17

HPJava

HPJava [120] is a Java-based framework supporting data-parallel programming style.
It extends sequential Java with support for distributed arrays: arrays that are physi-
cally distributed over the memories of the participating processors. The programmer
manipulates those arrays using high-level constructs such as the owverall construct
which denotes a distributed, parallel loop.

The programming model of HPJava has been inspired by the High Performance
Fortran (HPF) programming model [85] and many constructs look similar to the
constructs used in HPF, for example overall resembles HPF’s forall. In fact, the
programming model provided by HPJava is lower-level than that of HPF. The main
difference between HPJava and HPF is that with HPJava a process can only access
locally held elements of distributed arrays. If a process needs to access an element held
by another processor, explicit communication must take place. With HPF, processes
are allowed to access any element of a distributed array and the compiler takes care
of the communication.

HPJava provides a communication library called Adlib which implements collective
communication primitives. Those primitives are expressed in terms of distributed-
array operations. Some examples of operations provided by Adlib are: remap which
changes the mapping of a distributed array to processors, shift which copies a given
array to a new array and shifts all elements by a given number of positions, and
mazval which returns the maximum element of a given distributed array.

Currently, distributed implementations of the HPJava collective communication
rely on availability of native communication interfaces

e Performance: No extensive performance evaluation of HPJava has been per-
formed. In [120] experiments on up to 36 CPUs (in as single, homogeneous
cluster) and speedups up to 17 are reported. However, since HPJava is an
explicit communication programming model, the application programmer will
have to take the responsibility for grid-specific optimizations, such as dynamic
load balancing and latency hiding.

e Fase of use: HPJava offers a relatively low-level programming model and there-
fore burdens the programmer with tasks such as load balancing and inter-process
communication. Programming the communication is somewhat simplified by
the array primitives provide by the Adlib communication library. Also, the
programmer has to explicitly deal with some grid-related issues.

e Applicability: ~HPJava supports data-parallel applications. Many important
scientific problems can be programmed in this style.

o Fault tolerance, malleability, migration: HPJava currently does not support
fault tolerance, malleability or migration.

e Adaptivity: HPJava does not provide support for adaptivity. Adaptive features
need to be programmed by the application programmer.



18 CHAPTER 2. CONTEXT: GRID PROGRAMMING ENVIRONMENTS

e Portability: The use of Java technology enhances the portability of HPJava
application. Thanks to Java’s ‘write once, run anywhere’, HPJava’s applications
can be run unmodified in heterogeneous environments. However, currently the
distributed-memory implementation of HPJava relies on native communication
interfaces (MPI or LAPI) which severely reduces the portability of the system.
A pure Java implementation is planned in the future

MPI

Explicit message passing is a popular parallel programming paradigm. Message-
passing applications are structured as a set of processes communicating via messages.
The Message Passing Interface (MPI) [71] is a standard that defines the syntax and
semantics of a set of communication primitives useful for that type of applications.
MPI features synchronous and asynchronous point-to-point communication and var-
ious forms of collective communication, e.g. broadcast, scatter, gather and all-to-all
exchanges. MPI is typically used for SPMD (Single Program Multiple Data) style pro-
grams. In SPMD programs, all processors execute the same program on a different
part of the data.

Multiple implementations of the MPI standard exist. MPICH-G2 [112] is a grid-
enabled implementation that allows running MPI applications across multiple clus-
ters. MPICH-G2 is an integration of the popular MPICH [96] implementation with the
Globus Toolkit [86]. The Globus Toolkit is used to stage in/stage out executables and
files, start processes on remote resources and combine different communication meth-
ods available in a heterogeneous environment (e.g., vendor-specific protocols within
clusters with TCP/IP on the inter-cluster links).

Other implementations of MPI which address some grid issues are PACX-MPT [90]
which provide grid-aware collective communications or MetaMPT [76] which support
multiple communication protocols. MagPIE [115] is a library of MPI-like collective
operations optimized for hierarchical, wide-area systems.

e Performance: MPI applications typically achieve high performance on cluster
supercomputers. Achieving high performance in grid computing requires the
programmer to explicitly manage heterogeneity. For example, the programmer
has to take various processor speeds into account when distributing work. Also,
the communication hierarchy has to be taken into account. MPI provides fea-
tures that make such optimizations possible. Asynchronous operations can be
used for latency hiding. MPICH-G2 uses the communicator construct to deliver
the topology of the underlying platform to the programmer.

e Fase of use: Message passing is a cumbersome and error-prone programming
style compared to semi-automatic parallelization provided by higher-level mod-
els, such as grid superscalar or master-worker. The programmer has to explic-
itly deal with load-balancing and inter-processor communication. As mentioned
above, in order to achieve satisfying performance, the programmer also needs
to explicitly manage some aspects of the underlying platform, such as commu-
nication hierarchy and large differences in processor speeds.



2.2. GRID PROGRAMMING ENVIRONMENTS 19

e Applicability: The majority of applications can be programmed in message-
passing style. MPI is especially suitable for SPMD programs.

o Fault tolerance, malleability, migration: There are two approaches to providing
fault tolerance, malleability and migration in MPI applications. One approach
is providing them transparently to the application programmer. This is usually
done using system-level checkpointing and/or message logging. This approach
was adopted for example in: Co-check MPI [160], Starfish [14] MPI and MPICH-
V [49]. A transparent implementation of task migration has been proposed in
MPI-TM [152]. AMPI [101] supports malleability and migration via processor
virtualization: the programmer is presented with a wvirtual processor abstrac-
tion and the runtime system dynamically maps virtual processors to physical
processors. An advantage of system-level approaches is that little or no effort is
required from the application programmer. Disadvantages are complexity, large
amount of data that needs to be saved and lack of portability.

Another approach is to let the programmer provide fault tolerance, malleability
or migration. Various extensions and modifications of the MPI standard were
proposed. For example, the MPI-2 standard [137] extends the basic MPI stan-
dard with primitives for dynamic process management: creating new processes
and process termination. FT-MPI [78] proposes extending the set of possible
communicator states from valid, invalid to (OK, PROBLEM, FAILED). If a
communicator is in an erroneous state, it needs to be rebuilt according to the
specified semantics: shrink (shrink the communicator to exclude the failed pro-
cessors), blank (creates a communicator with ‘gaps’ that have to be filled before
the communicator can be used for communication), rebuild (rebuilds the com-
municator by starting new processes to fill the ‘gaps’). SRS [171] is a library
supporting application-level checkpointing for MPI applications. With SRS the
programmer has to specify which variables need to be checkpointed and when
checkpointing has to take place.

o Adaptivity: MPT itself does not provide support for adaptivity. Adding adap-
tivity to an MPI application is the responsibility of the application program-
mer. Adaptive MPI applications have been developed in the context of the
GrADS project [173]. Each time a performance degradation of the application
was detected, the application was checkpointed and restarted on another set
of resources. The SRS software has been used to perform the migration. The
application programmer needs to supply a performance model for the applica-
tion which allows predicting application runtimes on various set of resources.
Also a resource selector has to be created which uses the performance model to
select a resource set which results in the shortest application runtime. Further,
the application needs to be instrumented with sensors that collect application
information and detect a performance degradation.

e Portability: Grid-enabled MPI implementations hide many platform-specific
details which enhances portability. However, MPI is typically used in combi-
nation with C or Fortran. Applications written in those languages cannot be



20 CHAPTER 2. CONTEXT: GRID PROGRAMMING ENVIRONMENTS

ported to another architecture without recompilations. Java bindings of the
MPT interface exist, such as MPJ [55]. However, the message-passing paradigm
does not integrate well with object-oriented Java [131]. Communication models
based on method invocations, such as Group Method Invocation (GMI) [131]
fit better into the Java model.

ProActive

ProActive [30] is a Java middleware which supports the so-called Object-Oriented
SPMD programming model [35]. This model is similar to the SPMD model supported
by MPI. Whereas an MPI application consists of a number of processes, a ProActive
application is structured as a set of active objects. Like passive objects, active objects
serve incoming method invocations. Additionally, each active object has its own
thread of control. Method calls to active objects are asynchronous with transparent
future objects. ProActive provides various group communication primitives based on
method invocations.

ProActive provides a convenient deployment mechanism: deployment descriptors.
The goal is to remove any references to the software and hardware configuration from
the application code, so that the application can run unmodified on different configu-
rations. The application has access to virtual nodes. An external XML descriptor file
specifies the mapping of the virtual nodes to JVMs and the ways the JVMs should
be started, for example it specifies the shell command that should be used to start
a JVM or a local resource manager to obtain nodes. Starting JVMs can also involve
using grid application deployment tools such as the Globus Toolkit.

e Performance: ProActive applications can achieve high performance. In [103]
a speedup of 100 on 150 nodes has been reported for a parallel solver for 3D
Maxwell equations. However, since ProActive is an explicit communication
model, the programmer is responsible for applying grid-specific optimizations.

e Fase of use: ProActive supports an explicit message passing programming
model. The disadvantages of explicit message passing has been already men-
tioned in the discussion of MPI. However, ProActive is based on Java which is a
higher-level programming language than C or Fortran, which are typically used
in combination with MPI.

e Applicability: Since the programming model supported by ProActive is rela-
tively low-level, a broad variety of applications can be programmed with this
programming environment.

e Fault tolerance, malleability, migration: ProActive supports migration of active
objects between JVMs. The migration is either self-triggered or initiated by an
external entity. This facility can be used to implement application malleability
and migration. ProActive also provides transparent fault tolerance through
Communication Induced Checkpointing.

e Adaptivity: Providing adaptivity is the responsibility of the application pro-
grammer. No adaptive ProActive applications have been developed to date.



2.2. GRID PROGRAMMING ENVIRONMENTS 21

e Portability: Portability of ProActive applications is ensured through the use
of the Java technology. The deployment descriptors hide the details of the
underlying platform from the application enhancing its portability.

Remote Procedure Calls

The concept of Remote Procedure Calls (RPC) [40] has been widely used in program-
ming distributed applications. RPC is similar to message passing, however, instead
of sending a message to a remote machine, a routine is called on this machine. With
message passing the message has to be explicitly received. With RPC this is not
the case. Typically a new thread is created on the receiver to serve the incoming
procedure call.

Java’s Remote Method Invocation (RMI) [10] is an object-oriented variant of RPC.
RMI allows invoking methods on objects located in remote Java Virtual Machines.
The suitability of Java RMI for grid computing was investigated in [177]. This re-
search has shown that many high-performance applications can be programmed using
Remote Method Invocations and run efficiently in grid environments. The disadvan-
tages of RMI are similar to other explicit message-passing models (such as MPI):
the programmer has to explicitly deal with issues like load balancing, communication
hierarchy and varying processor speeds. Additional disadvantages of RMI are: lack
of asynchronous method calls which makes latency-hiding difficult and lack of group
operations.

GridRPC [154] extends RPC with a number of important primitives. Apart from
synchronous procedure calls, the GridRPC API defines also asynchronous calls and
primitives to operate on those calls, e.g. to monitor the status of a previously sub-
mitted call, to cancel a call or to wait for any of multiple, previously submitted calls.
In that way, GridRPC supports fork-join type of parallelism. GridRPC is suitable for
medium-to-coarse-grained parallel applications but not for fine-grained parallelism.
Example implementations of GridRPC are Netsolve [27] and Ninf [164].

e Performance:  Applications based on RPCs can achieve high performance
in grid environments. For example, in [177] a data-parallel application pro-
grammed with RMI has been shown to achieve in wide-area setting perfor-
mance close to single-cluster performance. However, it is the responsibility of
the programmer to apply grid specific optimizations. GridRPC supports this
by providing for example asynchronous procedure calls.

e Fase of use: Like other explicit communication models, programming with
RPCs is difficult since the programmer has to explicitly deal with complex grid
programming issues.

e Applicability: A broad variety of applications can be programmed with RPCs.

e Fault tolerance, malleability, migration: Some RPC frameworks, such as RPC-
V [69] provide transparent fault tolerance. With other frameworks, providing
fault-tolerance, malleability and migration is the responsibility of the program-
mer.



22 CHAPTER 2. CONTEXT: GRID PROGRAMMING ENVIRONMENTS

e Adaptivity:  When programming with RPCs, providing adaptivity is the re-
sponsibility of the application programmer. However, some implementations of
GridRPC API provide a form of transparent adaptivity. For example, Ninf-G
uses dynamic information from Network Weather Service [181] to dynamically
select the best resource to execute an RPC call.

e Portability: The portability of an RPC/RMI application depends on the se-
quential language used. Using Java enhances the portability of an application.

2.3 Satin: a divide-and-conquer framework

Satin is a framework for writing divide-and-conquer applications developed by Rob
van Nieuwpoort [175]. Satin has been inspired by Cilk [46] (hence the name) — a
C-based divide-and-conquer framework designed for shared-memory machines. Satin
has been designed to run efficiently in grid environments. Satin is Java-based which
allows Satin applications to run across heterogeneous grids without the need of re-
compilation. Programming with Satin is very easy: in order to create a parallel grid
application, the programmer annotates the sequential code with divide-and-conquer
primitives. The Satin compiler and runtime system take care of the low-level issues,
such as inter-processor communication and load balancing. Satin uses a load balancing
algorithm called Cluster-aware Random Work Stealing. This algorithm allows Satin
applications to achieve high performance in heterogeneous, wide-area environments.

In the remainder of this section, we will describe Satin’s programming model and
illustrate it with code examples. Next, we will briefly describe Satin’s runtime system
and the Cluster-aware Random Work Stealing load-balancing algorithm.

2.3.1 The divide-and-conquer paradigm

Divide-and-conquer algorithms operate by dividing the problem at hand into smaller
subproblems. The division process continues until the problems become trivial to
solve. The solutions of subproblems are combined to provide the solution of the
parent problem. A typical example of a divide-and-conquer algorithm is the famous
quicksort algorithm for sorting arrays of real or integer numbers (Figure 2.2). In the
divide phase, a pivot element is chosen (thick lines in Figure 2.2) — this can be any
element of the array, for example the first one. Next, the array is partitioned into 2
smaller arrays: an array consisting of elements smaller or equal to the pivot element
and and array consisting of elements greater than the pivot element. This partitioning
is performed in place by swapping elements that are in wrong positions. Then the
same procedure is applied to the smaller arrays and is repeated until the size of the
arrays reaches 1. In the combine phase arrays are ‘glued’ together.

Because the subproblems (also called tasks or jobs) in a divide-and-conquer com-
putation are independent, such a computation can be parallelized by executing dif-
ferent tasks on different machines. Moreover, the task graph of a divide-and-conquer
application has a hierarchical structure. Therefore, such applications can be executed
with good communication locality on hierarchical grids.



2.3. SATIN: A DIVIDE-AND-CONQUER FRAMEWORK

23

8|10 4|6/ 1|15 7
4/\
7| 1] 4 10| 15| 8
T RN
61/ 4 8| [15]10
N
41| |6 10 |15
PR T
1| |4
——
1 4
oy '
14| 6 10|15
Ty B
14| 6 8 |15/10
114|6| 7| 81510

Figure 2.2: The quicksort algorithm



24 CHAPTER 2. CONTEXT: GRID PROGRAMMING ENVIRONMENTS

The divide-and-conquer model has many applications. Examples of divide-and-
conquer computations include: search and optimization problems (e.g. the satisfi-
ability problem [97]), astrophysical simulations (e.g., the Barnes-Hut N-body algo-
rithm [34]), grammar based learning [12], parallel rendering (raytracing), bioinfor-
matics computations, computational geometry problems (e.g., convex hull calcula-
tion), adaptive data classification procedures and numerical methods (e.g multigrid
algorithms [184]). Also, all the master-worker computations can be expressed in
the divide-and-conquer model. In fact, divide-and-conquer is a generalization of the
master-worker model: master-worker can be seen as a divide-and-conquer with one
level of recursion. The master-worker paradigm has gained extreme popularity in
grid community and a vast majority of existing grid applications has been written
using this paradigm, for example the famous SETI@home project [7] and similar
initiatives [2, 4, 1, 5], the GridSAT satisfiability solver [64], etc. The advantage of
divide-and-conquer over master-worker is not only its broader applicability, but it
also solves several performance issues. With master-worker computations, the per-
formance of the master process can become a bottleneck of application performance:
the speed of the master limits the number of workers that can be used and therefore
it limits the speedup that can be achieved. Moreover, master-worker may suffer from
communication overhead between the master and workers, especially if they are lo-
cated on different clusters. This problem can be alleviated by using the hierarchical
master-worker paradigm [110]. The hierarchical master-worker grid system uses two
levels: a single supervisor process controls multiple master processes. There is one
master per site and each master controls a set of workers located on the same site. In
this way the amount of wide-area communication is reduced. The divide-and-conquer
paradigm can be seen as a further generalization of the hierarchical master-worker
paradigm.

2.3.2 The Satin programming model

Satin extends the Java model with two Cilk-like divide-and-conquer primitives: spawn
and sync. While Cilk introduces new keywords into C to implement those primitives,
Satin integrates cleanly into Java, without the need of language extensions.

The spawn operation is a special form of method invocation. A spawnable method
can potentially be executed in parallel with the method that has invoked it. We call
such an invocation a spawned method invocation. The programmer indicates which
methods are spawnable by means of marker interfaces (this mechanism is used in Java
RMI). The programmer declares spawnable methods in an interface which extends the
special, empty satin.Spawnable interface. Each invocation of a method declared in
such a way is a spawned method invocation.

Sync is a synchronization operation with the following semantics: wait until all
the methods spawned by the current method complete and return their results. Only
after the sync operation has returned are the results of the spawned methods available.
Before sync, the values of the variables containing those results are undefined. Sync
is a method defined in the class satin.SatinObject. Each class that spawns work needs
to extend the SatinObject class and inherits the sync() method.



2.3. SATIN: A DIVIDE-AND-CONQUER FRAMEWORK 25

1: interface RaytracerInterface extends satin.Spawnable() {

2: BitMap render (Scene scene, int x, int y, int w, int h);

3: }

4:

5: class Raytracer extends satin.SatinObject

6: implements satin.Spawnable {

7:

8: BitMap render (Scene scene, int x, int y, int w, int h) {

9:

10: BitMap picturel, picture2, picture3, pictured;

11:

12: if (w < THRESHOLD && h < THRESHOLD) {

13: return renderSequentially (scene, x, y, w, h);

14: } else {

15: picturel = render (scene, x, y, w/2, h/2); /xspawnx/

16: picture2 = render (scene, xtw/2, y, w/2, h/2); /«spawnx/
17: picture3 = render (scene, x, y+h/2, w/2, h/2); /+spawnx/
18: picture4 = render(scene, x+w/2, yt+h/2, w/2, h/2); /«spawnx/
19: sync ()3

20: return combinePictures(picturel, picture2, picture3, pictured);
21: }

22: }

23:

24: }

Figure 2.3: Raytracer: an example divide-and-conquer application in Satin

Figure 2.3 shows an example Satin application: Raytracer: a rendering application
that uses the raytracing method. It takes an abstract scene description as an input
and outputs a bitmap. The application is parallelized by recursively dividing the
picture into four smaller pictures until a certain threshold is reached. Below the
threshold the pictures are rendered sequentially. After rendering the smaller pictures
the final image is reassembled.

In Figure 2.3 the interface RaytracerInterface (line 1) extends the satin.Spawnable
interface. Therefore, the render(...) method (line 2) declared in the RaytracerIn-
terface is marked as spawnable. Each invocation of this method (lines 15-18) will
be a spawned invocation, which means that picturel, picture2, pictured and pic-
ture4 will be (potentially) rendered in parallel. The Raytracer class extends the
satin.SatinObject class to inherit the sync() method and implements the Raytracer-
Interface.

The parameter-passing semantics of spawnable methods are different than the
semantics of normal Java methods. Where a spawnable method is executed remotely,
the call-by-value semantics are used. However, when a spawnable method is executed
locally, the call-by-reference semantics are applied to avoid the overhead of copying the
possibly large parameters. Since at the moment a method is spawned it is unknown
whether it will be executed remotely or locally, the programmer cannot assume either
call-by-value or call-by-reference semantics. Therefore, the programmer must make
sure that the application works correctly if either call-by-value or call-by-reference
semantics is used.



26 CHAPTER 2. CONTEXT: GRID PROGRAMMING ENVIRONMENTS

S . = . = .
— —_—

Figure 2.4: Compiling Satin applications

Satin does not provide shared memory. The only way of sharing data between
tasks is by explicit parameter passing and returning results. Global variables should
not, be used by spawnable methods. In other words, spawnable methods should not
have side effects. In chapter 5, we will show how this model can be extended with a
shared-object abstraction which allows data sharing between independent tasks.

2.3.3 Implementation

The Satin framework consists of a bytecode rewriter and a runtime system. The appli-
cation code is first compiled with a standard Java compiler (javac) and then rewritten
by the bytecode rewriter which transforms it into a parallel application (Figure 2.4).
The bytecode rewriter replaces each spawned method invocation and each sync() op-
eration with a call to the Satin runtime system. For each spawned method invocation
the Satin runtime system creates a datastructure called invocation record. An invoca-
tion record contains the references to the parameters of the method (not copies of the
parameters; the parameters are copied only if the method is executed remotely) and
some extra administration data. The method described by the invocation record is
not invoked immediately. Instead, the invocation record is placed in the work queue —
a datastructure maintained by the runtime system and containing unprocessed tasks
(spawned method invocations).

For each method that spawns work a spawn counter is created - an object that
counts the outstanding spawned method invocations. Each time a method is spawned,
the spawn counter of its parent (the method that invoked it) is increased. Each time
a spawned method returns, the spawn counter is decreased.

In the sync call, the spawn counter of the current method is checked. If its value
is 0, the control is returned to the current method. Otherwise, tasks from the work
queue are executed. If the work queue is empty, the Satin runtime system performs
load balancing by means of work stealing: it contacts another node, and downloads
a task (an invocation record), which it subsequently executes. The choice of a victim



2.3. SATIN: A DIVIDE-AND-CONQUER FRAMEWORK 27

Application

RMI GMI RepMI Satin MPJ

Ibis Portability Layer (IPL)

TCP UDP P2P

[ ] pure Java implementation
[ implementation with native code

Figure 2.5: The design of Ibis

for work stealing is very important for the application performance. The Satin’s work
stealing algorithm will be described in more detail in the next section.

When an invocation record is inserted in the work queue, it is put at the head of
the queue. In a sync operation, if a local task is executed, it is also taken from the
head of the queue, so that the queue works as a stack. However, if a task is stolen
from a remote node, it is taken from the tail of the remote node’s work queue. In
divide-and-conquer computation, larger jobs tend to be located towards the tail of
the queue and stealing large jobs reduces communication overhead.

The Satin runtime system has been implemented on top of the Ibis communication
library [179]. The structure of Ibis is shown in Figure 2.5. The core of Ibis is the
Ibis Portability Layer which consists of a number of well-defined interfaces. The
application programmer can use the IPL directly or can program with one of the
higher-level programming models implemented on top of IPL. Those models include:
RMI (remote method invocations), GMI (asynchronous and group communication),
RepMI (object replication), Satin and MPJ (MPI-like message passing in Java).

The TIPL can have different implementations that can be selected and plugged
into the application at runtime. The application needs to specify its communica-
tion requirements, such as unreliable/reliable communication, point-to-point/group
communication, etc., and the Ibis runtime system selects the appropriate Ibis imple-
mentation.

Ibis includes both pure Java implementations based on the TCP, UDP or peer-



28 CHAPTER 2. CONTEXT: GRID PROGRAMMING ENVIRONMENTS

to-peer technology and a number of specialized implementations with native code,
for example an implementation based on the Panda communication library [39], MPI
or GM. The pure Java implementation can be used everywhere, but if an Ibis appli-
cation is running on a system where Panda, GM or MPI is available, a specialized
implementation can be used. Ibis includes a number of optimizations that make the
communication more efficient. For example, Ibis offers an optimized object serializa-
tion implementation.

Ibis, apart from communication facilities, provides the Ibis Registry. The Reg-
istry provides, among others, a membership service to the processors taking part in
the computation. The application processes can use this service to discover other
processes taking part in the application. The Registry also offers fault detection.
Finally, the Registry provides the possibility to send signals to application processes.
Currently the Registry is implemented as a centralized server.

2.3.4 Load balancing

Satin balances the load using a work stealing approach. When a processor runs
out of work, it steals a task from another processor. The choice of the victim is
important for the performance of the application. For homogeneous systems, Random
Stealing (RS) has been shown to be the optimal strategy [47]. With RS, the victim is
chosen at random, with uniform probability, from all processors. In grid environments,
however, RS performs suboptimally. Because of the uniform probability with which
the victim is selected, typically the majority of steal requests are sent to a remote site
(cluster /supercomputer). Stealing is done synchronously, that is, the thief waits idly
until a reply arrives. In grid environments, this means waiting a wide-area round trip
most of the times.

Cluster-aware Random Stealing (CRS) [176] is a load-balancing algorithm designed
especially for hierarchical systems. CRS distinguishes between nodes in the local site
and in remote sites. When a node runs out of work, it first tries to steal from a node in
a remote site. However, this wide-area steal request is performed asynchronously: the
thief does not wait until a reply arrives. Instead, it sets a flag indicating that a wide-
area steal is in progress and starts synchronous stealing in the local site. Even if the
node finds a job in the local cluster, the wide-area steal request is not canceled. If it is
successful, the job is simply put in the work queue. Only one wide-area steal request
at a time is allowed — as long as the flag is set, only local stealing will be performed.
Victims for both wide-area and local stealing are chosen at random. With wide-area
stealing, each node in any remote site has the same probability of being chosen. With
local stealing, nodes in the local site are chosen with uniform probability.

Because wide-area stealing is done asynchronously, CRS efficiently hides wide-area
latencies. Also, compared to RS, CRS sends much less wide-area messages and thus
saves wide-area bandwidth. The performance of CRS was evaluated both in simula-
tions and in a real grid environment — the GridLab testbed. On the GridLab testbed,
it achieves 80% efficiency, while the efficiency of RS ranges from 26% (daytime) to
62% (nighttime). Table 2.3.4 contains some information about the nodes used in
this experiment. The latencies between the nodes ranged from 1 millisecond to 3.5



2.4. SATIN VS OTHER GPES 29

Operating CPUs/ | total
location architecture System nodes | node | CPUs
Vrije Universiteit Intel Red Hat
Amsterdam Pentium-III Linux
The Netherlands 1 GHz kernel 2.4.18 8 1 8
Vrije Universiteit Sun Fire 280R
Amsterdam UltraSPARC-ITIT Sun
The Netherlands 750 MHz 64bit Solaris 8 1 2 2
ISUFI/High Perf. Compaq Compaq
Computing Center Alpha Tru64 UNIX
Lecce, Italy 667 MHz 64bit V5.1A 1 4 4
Cardiff Intel Red Hat
University Pentium-II1I Linux 7.1
Cardiff, Wales, UK 1 GHz kernel 2.4.2 1 2 2
Masaryk Univ.

Brno Intel Xeon Debian Linux

Czech Republic 2.4 GHz kernel 2.4.20 4 2 8
Konrad-Zuse SGI

Zentrum fiir Origin 3000

Informationtechnik MIPS R14000

Berlin, Germany 500 MHz IRIX 6.5 1 16 16

Table 2.1: Nodes used in the GridLab experiment

seconds. The bandwidths ranged from 9 KByte/s to 11 MByte/s. The application
used in this experiment was the Raytracer. More details about his experiment can be
found in [178].

2.4 Satin vs other GPEs

Satin is an application development tool. It does not provide application deployment
functionalities. Satin can be combined with any application deployment tool, for
example, in our grid experiments we have used Satin in combination with the Globus
Toolkit and Zorilla.

Satin provides the programmer with a high-level programming model. The appli-
cation programmer needs only to decompose the problem into tasks that can be done
in parallel. The Satin compiler and runtime system take care of the low-level issues
such as load balancing and inter-process communication. Below, we will investigate
which non-functional properties we have identified in section 2.2.2 are met by Satin.

e Performance: Satin achieves excellent performance in grid environments. A
Satin application has been shown to achieve parallel efficiency of 80% in a het-
erogeneous, wide-area environment. Such high performance can be achieved



30

CHAPTER 2. CONTEXT: GRID PROGRAMMING ENVIRONMENTS

because of the hierarchical structure of divide-and-conquer applications which
suits the structure of grid platforms and the use of the CRS load balancing algo-
rithm. The application programmer does not need to make any special effort to
optimize the application for grid environments. The grid-specific optimizations
are applied by the compiler and the runtime system.

Ease of use: As a high-level programming model, Satin is extremely easy to use.
To create a grid application, the application programmer only needs to annotate
the sequential code with the simple divide-and-conquer primitives: spawn and
sync. The runtime system takes care of the low-level issues.

Applicability: A broad range of applications can be expressed in the divide-and-
conquer model. This includes all master-worker computations (as divide-and-
conquer is a generalization of master-worker), search and optimization problems,
astrophysical simulations, parallel rendering etc.

However, the applicability of the divide-and-conquer paradigm is limited by
the lack of global state. The only way of sharing data between tasks is by
explicit parameter passing. This model is insufficient for many applications.
In chapter 5, we will show how the divide-and-conquer model can be extended
with a shared-abstraction: shared objects. This will extend the applicability of
our programming model to for example branch-and-bound applications, games
with transposition tables, VLSI routing and many others.

Fault tolerance, malleability and migration: In chapter 3, we will show how we
can provide transparent support for fault-tolerance, malleability and migration.
We will present a divide-and-conquer-specific algorithm which allows Satin ap-
plications to run on variable numbers of nodes with little overhead.

Adaptivity: Since Satin uses a dynamic load-balancing algorithm, it can adapt to
varying processor speeds. However, if a difference in processor speeds becomes
too large, for example because another, high-priority application overloads part
of the processors, the performance might suffer. The overloaded processors
will not perform enough computation to amortize the overhead they cause by
stealing work from other processors. Also, the prototype Satin implementa-
tion could not adapt to changing network conditions. If a certain network link
became overloaded and the bandwidth drops beneath a certain threshold, the
performance of the application would decrease dramatically. In chapter 4 we
will show, how we can make Satin applications adapt to changing conditions in
grid environments.

Portability: The portability of Satin is ensured by the use of the Java technology.
Thanks to Java’s ‘write once, run anywhere’ property, Satin applications can
run unmodified on heterogeneous resources.

Tables 2.2 and 2.3 provide an overview of all application development tools
discussed in section 2.2.2 and a comparison of those systems to the Satin frame-
work. We compare them to both the prototype Satin system implemented by



2.4. SATIN VS OTHER GPES 31

Rob van Nieuwpoort and to the full system which is the result of the work
described in this thesis.



32 CHAPTER 2. CONTEXT: GRID PROGRAMMING ENVIRONMENTS

perf. optimizations
applied ease of use applications

GRID fork/join

superscalar automatically + coarse grained

MW automatically + master-worker

Workflow very

systems automatically + coarse grained
all, but most suitable

HPJava by programmer +/- for data-parallel
all, but most suitable

MPI by programmer - for SPMD applications

ProActive by programmer - all

RPC by programmer - all

Satin

(prototype) automatically + divide-and-conquer

Satin divide-and-conquer

(full system) automatically + with data sharing

Table 2.2: The comparison of Satin and other grid programming environments



2.4. SATIN VS OTHER GPES

33

FT, malleability, migration | adaptivity | portability
GRID
superscalar - - +/-
MW + +/- -
Workflow
systems + only some varies
ch
HPJava - - +

only some
MPI implementations - -
ProActive + - +
+ (RMI)

RPC - - - (others)
Satin
(prototype) - - +
Satin
(full system) + + +

Table 2.3: The comparison of Satin and other grid programming environments



34 CHAPTER 2. CONTEXT: GRID PROGRAMMING ENVIRONMENTS




Chapter 3

Fault tolerance, malleability and
migration

3.1 Introduction

In grid environments, the availability of computing resources changes constantly. Pro-
cessor crashes are more likely to occur than in traditional parallel environments. Also,
since there is no centralized control, computing nodes may be rebooted or shut down
for maintenance with or without prior notice. Finally, processors may be taken away
from the application because they are claimed by another, higher-priority application,
because a processor reservation has ended. On the other hand, new processors might
become available.

A grid application must be able to adapt to such changes in order to survive in
a grid environment and achieve good performance. In this chapter, we will discuss
three issues that are important for grid applications to adapt to changes in grid
environments:

o fault tolerance — the ability of an application to operate in the presence of
hardware and software failures, i.e. processors and network crashes.

e malleability — the ability of an application to handle processors joining and
leaving an on-going computation.

e migratability — the ability of an application to transfer to a different set of
computational resources during the run.

The three above issues are closely related to each other. For example, if an ap-
plication can handle crashing processors (fault tolerance) and continue working on
the diminished number of processors, it can also handle leaving processors (partial
malleability). However, if the processors are leaving gracefully (i.e., after a prior no-
tice) handling it may be more efficient than handling crashing processors. Further, if
an application is malleable, it is also migratable: it can be migrated from one set of



36 CHAPTER 3. FAULT TOLERANCE, MALLEABILITY AND MIGRATION

resources to another by first adding the new processors to the computation and then
removing the old ones.

In this chapter, we will present a novel technique to provide fault tolerance, mal-
leability and migratability to divide-and-conquer applications. We will describe its
implementation in Satin and evaluate its performance.

The rest of this chapter is structured as follows. Section 3.2 contains background
information on fault tolerance, malleability and migration. In section 3.3, we will
present our fault-tolerance algorithm. In section 3.4, we will describe how the fault-
tolerance algorithm can be extended to handle malleability. In section 3.5, we will
further extend our fault-tolerance algorithm to handle total crashes. In section 3.6,
we will evaluate the performance of our algorithms. In section 3.7, we compare our
approach with related work. Finally, we conclude in section 3.8.

3.2 Background

In this section, we will discuss some background information on fault tolerance, mal-
leability and migration issues.

3.2.1 Failure models

To achieve fault tolerance in a distributed system or application, it is important to
know the failure model of the system components. A failure model characterizes the
behavior of a component in case of a failure. The literature lists a vast number of
failure models with various degrees of ‘severity’. A failure model is more severe than
another failure model if the set of faulty behaviors allowed by it is a superset of the set
of behaviors allowed by the other model [138]. The most commonly used models are
crash failure and arbitrary failure also known as Byzantine failure. Crash failure is the
least severe failure model. In this model, a faulty process stops prematurely but it was
working correctly before it stopped. Byzantine failure is the most severe failure model
and it states that a faulty process might exhibit any behavior whatsoever. Most fault-
tolerance techniques, including the one presented in this chapter, assume the crash
failure model. There are also techniques known that can deal with Byzantine failures.
The techniques for handling both crash and Byzantine failures will be described briefly
hereafter.

3.2.2 Fault-tolerance techniques

In this section, we will describe the most important approaches to implementing fault
tolerance in distributed applications. We will cover checkpointing, message logging,
retry (recomputing) and replication.

Checkpointing

The most popular fault-tolerance mechanism is checkpointing, i.e., periodically sav-
ing the state of the application on stable storage, a device that can survive failures



3.2. BACKGROUND 37

— usually one or more hard disks. The information stored on the stable storage is
called a checkpoint. After a crash, the application is restarted from the last check-
point rather than from the beginning [165]. Checkpointing comes in three varieties:
uncoordinated checkpointing, coordinated checkpointing and communication induced
checkpointing [77].

With uncoordinated checkpointing, each process takes its checkpoints indepen-
dently. This allows to avoid the synchronization overhead. Finding a consistent set
of checkpoints to roll back to might be difficult, however. Rolling back a crashed
process may cause rolling back other, dependent processes that have sent or received
messages from the crashed process. This rollback propagation might extend back to
the initial state of the computation (domino effect) [149].

The domino effect can be avoided by using coordinated checkpointing or communi-
cation induced checkpointing. With coordinated checkpointing, the processes synchro-
nize before taking a checkpoint to make sure that the resulting set of checkpoints is
consistent. The disadvantage of coordinated checkpointing over uncoordinated check-
pointing is the synchronization overhead. The advantage is that the recovery is faster
and easier to implement.

With communication induced checkpointing, processes take two kinds of check-
points: local and forced. Local checkpoints are taken independently by each process.
Forced checkpoints are taken if a message exchanged by two processes could cause
creation of a useless checkpoint, that is, a checkpoint that will never be a part of a
consistent global state [77]. This guarantees that the domino effect will not occur.

In practice, the most commonly used technique is coordinated checkpointing [77].
The reason is that, currently, the main cause of overhead is access to stable storage and
not synchronization. The simplicity of the recovery procedure is also an important
argument.

Checkpointing can be done either at the system level or at the application level.
With system-level checkpointing, the system-level state of the application is saved.
The advantage of system-level checkpointing is that it is completely transparent to the
application programmer. However, the system-level implementation of checkpointing
can be extremely complex, as has been shown in the Dynamite project [106]. Not
only do the memory image, stack and registers of a process need to be saved, but also
its signal mask, open file descriptors and open network connections. Reproducing
the open file descriptors after a process has been restarted from a checkpoint is non-
trivial, because the files might not be accessible on the machine where the process is
restarted. Restoring network connections requires complex protocols. Finally, system-
level checkpointing is inherently not portable, since process checkpoints contain OS-
specific data, and a process checkpointed under one OS cannot be restarted on another
OS.

With application-level checkpointing, the application itself saves its critical vari-
ables and datastructures. Application-level checkpointing is typically easier to im-
plement. It often requires the cooperation of the application programmer, however,
and is therefore not transparent. Further, application-level checkpointing is more
portable than system-level checkpointing, as the checkpoint data does not contain
OS-dependent information. Finally, application-level checkpointing is more efficient



38 CHAPTER 3. FAULT TOLERANCE, MALLEABILITY AND MIGRATION

since smaller amounts of data need to be saved.

Checkpointing is used in grid computing by such systems as Condor [169], Dy-
namite [106] (system-level checkpointing), Cactus [22] (application-level checkpoint-
ing) and the European DataGrid project [92] (application-level checkpointing). Also,
several MPI implementations provide checkpointing facilities, for example CoCheck
MPI [160], Starfish MPI [14] and MPICH-V [49].

The main advantage of checkpointing is that it is a very general technique which
can be applied to any type of parallel applications. The disadvantage is that it causes
execution time overhead, even if there are no crashes. This overhead depends on the
frequency with which checkpoints are taken and the programmer must be careful in
choosing a reasonable frequency. In [185] and [174], formulas are presented which can
be used to calculate the optimal checkpointing frequency. However, the programmer
needs to have a detailed knowledge about the characteristics of the application and
the system it is running on, such as the time it takes to save a checkpoint and the
mean-time-to-failure.

The overhead of checkpointing can be reduced using such techniques as concurrent
checkpointing [145] and incremental checkpointing [80]. With concurrent checkpoint-
ing, the execution of a process is continued while its state is being saved to stable
storage. Incremental checkpointing avoids rewriting the portions of the process state
that have not changed since the previous checkpoint.

Another problem of most checkpointing schemes is the complexity of the crash re-
covery procedure, especially in dynamic and heterogeneous grid environments where
rescheduling the application and retrieving and transferring the checkpoint data be-
tween nodes is non-trivial. The final problem of checkpointing is that in most existing
implementations, the application needs to be restarted on the same number of pro-
cessors as used before the crash, so it does not support malleability. An exception is
SRS [171], a checkpointing library for MPI applications which saves data in such a
way that an application can be restarted on a different number of processors.

Message Logging

An alternative fault-tolerance technique is message logging: during failure-free opera-
tion, each process logs sent or received messages (depending on the variant of message
logging algorithm) from other processes [77]. After a failure, the crashed process is re-
executed and the logged messages are replayed. Message logging protocols assume a
piecewise deterministic model: the execution of each process is deterministic between
occurrences of non-deterministic events. The non-deterministic events are usually re-
ceipts of messages, but the protocol can be easily extended to handle other types of
non-deterministic events. All non-deterministic events need to be logged.

Message logging is typically combined with checkpointing to reduce the amount
of re-execution needed — message logging enables the system to recover beyond the
last checkpoint [77]. Therefore, message logging is also often used to provide the
applications the ability to interact with the outside world. Message logging is used
less often than checkpointing. An example of a system that uses a combination of
message logging and checkpointing is MPICH-GF [183] or MPICH-V [49]. Message



3.2. BACKGROUND 39

logging can also be combined with other fault-tolerance techniques. For example,
RPC-V [69] combines message logging with replication.

Message logging schemes come in three flavours: pessimistic message logging, opti-
mistic message logging and causal message logging. Pessimistic message logging does
not allow any message to be received before it is logged. This approach guarantees
that so-called orphan processes are never created. An orphan process is a process
that depends on a message that has not been logged and whose sender has crashed.
The disadvantage of this approach is a high performance overhead. Logging messages
affects communication throughput and latency. The advantage of pessimistic logging
is the simplicity of the recovery procedure: processes other than the crashed process
are not affected by the crash.

Optimistic logging tries to reduce the logging overhead by making the optimistic
assumption that logging will complete before a crash occurs [77]. Messages are logged
asynchronously so a message can be received before it is logged. This reduces the
logging overhead but significantly complicates the recovery procedure. Optimistic
logging does not exclude the creation of orphan processes. Such processes must be
rolled back during the recovery procedure.

Causal message logging also avoids synchronous access to stable storage while
avoiding creating orphan processes at the same time. Causal logging ensures that
each message on which a process causally depends (according to Lamport’s happened-
before relation [118]) is either logged or available locally (in the volatile memory) to
that process. This is implemented by piggybacking messages in the process’ memory
which have not been logged on each message the process sends to another process.
The recovery procedure with causal logging is more complex than in case of pes-
simistic logging. In practice, pessimistic logging is most commonly used because of
the simplicity of the recovery procedure [77].

The advantages and disadvantages of message logging techniques are similar to
those of checkpointing techniques. Message logging is a very general technique but it
can cause high execution time overhead. It can affect communication throughput and
latency. With some message-logging protocols, if stable storage is accessed through
the network, the bandwidth required by the application doubles. Also, message log-
ging cannot be used to implement malleability: the application cannot continue ex-
ecution on the diminished number of processors, the crashed processor needs to be
replaced.

Replication

Replication is another approach to implementing fault tolerance. Multiple copies of
the same task/process are run on separate processors. If one of the copies crashes,
other copies are used. This technique can be used not only for tolerating crash failures
but also Byzantine failures. In the latter case, replication is combined with voting:
the result returned by the majority of replicas is considered valid, other results are
discarded. To tolerate N crash failures, N+1 replicas are needed. To tolerate N
Byzantine failures, 3N-+1 replicas are needed. This technique is suitable for systems
of which high-availability is required, since the recovery is fast — it basically requires



40 CHAPTER 3. FAULT TOLERANCE, MALLEABILITY AND MIGRATION

switching to another replica.

Replication is often used in hardware-based fault tolerance. An example is Triple
Modular Redundancy used in electronic systems.

An example of software-based fault tolerance using the replication principle is
the mechanism used in the FTAG runtime system [61]. The FTAG programming
language is based on the functional paradigm. A FTAG program is structured as a
set of modules. Modules can be decomposed into sub-modules, which resembles the
divide-and-conquer style programming. With FTAG, the user can select one of the
two supported failure models: crash failure or Byzantine failure. The computation is
replicated for fault-tolerance purposes. The replicas exchange partial results. If the
crash failure model is selected, this exchange of partial results is used to speed up the
computation: if a replica receives a result of a certain sub-module and it does not
need to compute this sub-module anymore. If the Byzantine failure model is used,
majority voting is used for each partial result to determine its correctness.

Another example of a system that uses software-based replication is RPC-V [69].
RPC-V combines replication with message logging.

Retry

Another technique used for providing fault tolerance is retry — recomputing parts of
the work that were lost in a crash. This technique cannot be applied to an arbitrary
application. One group of applications to which this technique can be applied are
applications structured as a series of (possibly nested) atomic actions [129]. In case of
a processor crash, an atomic action can be aborted without side-effects and restarted
from the beginning,.

Applications that adhere to the functional programming paradigm can also use
this principle [108]. Functional programming applications consist of functions with no
side-effects. There is no notion of global state and the result of a function depends only
on its input parameters. Function execution will always produce the same outputs if
given the same inputs, a property known as referential transparency [61]. So, in case
of a crash, functions executed by crashed processors can be re-executed.

One example of applications that adhere to the functional programming paradigm
are master-worker applications. Master-worker tasks are typically functions whose
results depend solely on their parameters and with no side-effects. Fault tolerance
in master-worker applications is typically implemented by recomputing tasks done
on crashed workers. A separate fault-tolerance technique needs to be applied to the
master — usually checkpointing or replication. An example of a master-worker frame-
work that adopts this fault-tolerance mechanism is MW [95] (see also section 2.2.2).
Charlotte [33] introduces a fault-tolerance mechanism called eager scheduling. It
reschedules a task to idle processors as long as the task’s result has not been re-
turned. Crashes can be handled without the need of detecting them. Assigning a
single task to multiple processors also guarantees that a slow processor will not slow
down the progress of the whole application.

Divide-and-conquer applications also adhere to the functional paradigm and there-
fore the retry principle can be used for providing fault tolerance in this type of appli-



3.2. BACKGROUND 41

cations. However, this naive approach might lead to large amounts of recomputation
when a task located high in the hierarchical task graph is lost in a crash. Also, naive
recomputation might cause the need of recomputing work done by processors that
have not crashed. In this chapter, we will explain in more detail why the naive re-
computing approach is not adequate for divide-and-conquer applications and we will
present a more efficient solution. Other divide-and-conquer frameworks which use re-
computing to achieve fault tolerance are: Cilk [46], CilkNow [44], Atlas [32], DIB [83]
and Lin and Keller’s work [126]. A more detailed description of the algorithms used
by those systems and their comparison to the algorithm described in this chapter will
be given in the related work section at the end of the chapter.

3.2.3 Malleability techniques

The basic idea behind implementing transparent malleability in parallel applications
is separating parallelizing, that is, identifying what can be done in parallel, from map-
ping to physical processors [101]. For SPMD (MPI-like) applications, this can be done
by processor virtualization. The programmer operates on virtual processors, the num-
ber of which is typically many times bigger than the number of physical processors.
The runtime system takes care of mapping the virtual processors to the physical one.
Malleability can be achieved in two ways. One way is migrating virtual processors off
leaving or to joining physical processors. Another way is checkpointing the application
in such a way that each virtual process has a separate checkpoint file. The application
can then be stopped, checkpoint files rearranged and the application restarted on a
different number of processors. This approach is used in Adaptive MPI [101] (virtual
processor migration and checkpointing) and Phoenix (only checkpointing).

Another approach is to treat the number of processors the application is running
on as a variable. The data partitioning depends on the value of this variable. When
this value is fixed at the time the job starts and cannot be changed during the run,
we call the application moldable [111]. Many data-parallel and SPMD applications
are written in that way. Moldable applications can be turned into malleable appli-
cations by introducing reconfiguration points at which the number of processors can
be changed. This approach is used in DyRecT [93], DRMS [9] and SRS [171]. At
a reconfiguration point, global synchronization and data redistribution takes place.
Data redistribution can be done by means of group communication (DyRecT, DRMS)
or checkpointing (SRS).

Master-worker and divide-and-conquer paradigms are especially attractive when
implementing malleability. When programming with those paradigms the program-
mer does not use the notion of processors. Instead the notion of tasks or jobs is used.
The tasks are mapped to the physical processors by the compiler or runtime system.
Joining processors are handled in a straightforward manner by assigning tasks from
the pool of free tasks to those processors. Leaving processors can be handled using
the fault-tolerance mechanism: leaving processors are treated as crashing processors.
Some systems, however, can handle gracefully leaving processors (i.e., after a prior
notification) more efficiently than processor crashes. For example, Piranha [56] al-
lows the programmer to specify a ‘cleanup’ procedure which is called when a task



42 CHAPTER 3. FAULT TOLERANCE, MALLEABILITY AND MIGRATION

needs to vacate a leaving processor. In this thesis, we will also present a malleability
mechanism that is an ‘optimized’ version of the fault-tolerance mechanism.

3.2.4 Migration techniques

In sequential applications, migration is traditionally achieved by stopping the appli-
cation execution on the current node, transferring the whole application state to the
new node and restarting the application on the new node from the point where it was
stopped on the old node. Migration can also be implemented on top of checkpointing:
a checkpoint file is created on the old node and transferred to the new node where
the application is restarted from the checkpoint file rather than from the beginning.
Those two approaches are very similar. In fact, direct migration can be seen as an
optimized version of checkpoint-based migration: the data is transferred directly into
the memory of the new machine instead of via stable storage [160].

Similarly to checkpointing, migration can be implemented either on the operating
system level (system-level migration) or in the application itself (application-level
migration). As explained in section 3.2.2; system-level implementations are extremely
complex. Care needs to be taken to properly save and restore open file descriptors and
open network connections [106]. Also, system-level implementations are not portable.
However, implementing migration on the OS level is transparent and therefore more
convenient for the programmer. Application-level techniques are less complex to
implement and more portable. Typically, they are also more efficient, since less data
needs to be saved and transferred. However, application-level techniques are not
transparent.

Parallel applications can be migrated using the same approach: each process is
migrated separately by direct transfer of the process state or by checkpointing. Spe-
cial care needs to be taken to guarantee that the states of all migrated processes are
consistent and that the communication channels between processes are correctly re-
stored after migration. Migration of MPI applications was studied in the Dynamite
project [106] also in [101], [152] and [167].

Another approach to migrating parallel applications is using malleability to achieve
migration. An application can be migrated from one set of resources to another by
first adding the new set of resources to the computation and then removing the old
set.

3.3 Fault-tolerance for Satin

The divide-and-conquer paradigm is well suited for implementing fault-tolerance, mal-
leability and migration. There is no notion of global state in a divide-and-conquer
application: function execution does not have side-effects and the result of a function
depends only on its input parameters. Function execution will always produce the
same outputs if given the same inputs, a property known as referential transparency.
So, the work lost in a crash of a processor can be redone at any time during execution
of the application.



3.3. FAULT-TOLERANCE FOR SATIN 43

Therefore, it is possible to handle leaving or crashing processors by recomputing
work done by those processors. Such a mechanism has low overhead, as no syn-
chronization between processors is needed and no data needs to be stored on stable
storage. Several such techniques have been proposed [32, 44, 83, 126]. However, the
common problem of those techniques is redundant computation which degrades their
performance. They do not reuse orphan work, that is, tasks that are dependent on
tasks done by leaving processors. Orphan work is discarded and recomputed.

In this section, we will describe a recovery mechanism which salvages orphan work
and thus avoids redundant computations. Orphan work is salvaged by restructuring
the execution tree. The overhead of our mechanism during crash-free execution is very
small. Our mechanism can handle crashes of multiple processors or entire clusters.

In the following sections, we will discuss two simple extensions to the fault-
tolerance mechanism. First, we extend the orphan saving scheme in such a way
that we can also reuse partial results computed by the gracefully leaving processors.
This occurs, for example, when the processor reservation is coming to an end or when
the application receives a notification that it should vacate part of its processors for
another, higher-priority application. When the processors leave gracefully, the work
done by them is randomly distributed over the other processors. Then, the orphan
saving scheme is used to reuse those partial results. When processors are leaving
gracefully, our mechanism can save nearly all the work done by the leaving proces-
sors. That, combined with the fact that adding processors to ongoing divide-and-
conquer computations is straightforward (they just start stealing), results in efficient
malleability. We can also use our technique for efficient migration of the computation:
to migrate the computation from one cluster to another, we first add the new cluster
to the computation and then (gracefully) remove the old one.

The disadvantage of this scheme is that always at least one processor must be
running, or else all work will be lost. This makes it impossible to stop an application
and restart it later from the point where it was stopped. It is also impossible to
survive total crashes, i.e. the situations when all processors have crashed. Therefore,
we extended the basic scheme with the possibility of storing partial results in a user-
defined file. The results stored in the file can be reused using the orphan-saving
mechanism.

The resulting system can handle a vast variety of scenarios typical for the Grid:

Crashing processors, including a total crash can be handled.

Processors joining and leaving an on-going computation can be handled with
high efficiency.

An application can be efficiently migrated.

An application can be stopped and restarted later on a possibly different set of
resources.

In the remainder of this section, we will describe the basic fault-tolerance mecha-
nism. The extensions will be described in the following sections.



44 CHAPTER 3. FAULT TOLERANCE, MALLEABILITY AND MIGRATION

3.3.1 Failure detection

We use two different mechanisms to detect processor crashes. One mechanism is
implemented in the communication layer (Ibis). If a connection between two hosts
is broken, the communication layer notifies the Satin runtime system. The second
mechanism is implemented in the Ibis Registry. The Registry periodically sends a
keep-alive message to every node. If a node does not respond to this message within
the specified timeout, the Registry notifies the remaining nodes that this node has
died.

In general, it is impossible to detect failures reliably in asynchronous systems where
message propagation time is unbounded. Therefore, both of our failure detection
methods assume that there exist an upper bound on message propagation time. This
may result in false positives in some cases. Also, the system cannot distinguish
between a crashed processor and a broken network connection. This may also result
in false positives. False positives, however, affect the performance of our failure
recovery algorithm, as some jobs might be recomputed unnecessarily, but not its
correctness. The system will continue to work correctly as long as the following
condition is satisfied:

If processor A thinks that processor B has crashed, then either pro-
cessor B has indeed crashed or processor B thinks that processor A has
crashed.

We make sure that this condition always holds by breaking all connections with pro-
cessors that we assume to be crashed.

3.3.2 Recomputing jobs stolen by leaving processors

To be able to recompute jobs stolen by leaving processors, we keep track of all the
jobs stolen in the system. Each processor maintains an outstandingJobs list contain-
ing the invocation records of jobs stolen from this processor (invocation records are
datastructures describing the jobs, see section 2.3.3). For each job, the processorID
of the thief is stored. When one or more processors are leaving or crashing, each of
the remaining processors traverses its outstandingJobs list and searches for jobs stolen
by the leaving processors. If such a job is found, it is put back in the work queue of
the processor from which the job was stolen. Later, this job will be recomputed by
the local processor or stolen by another processor. Figure 3.1 (a) shows an example
computation tree. Four processors are taking part in the computation. Processors
store the information about stolen jobs in their outstandingJobs queues: processor 1
remembers that job 2 was stolen by processor 3 and job 14 by processor 2. Processor 3
remembers that job 4 was stolen by processor 4. Processors also remember where the
jobs were stolen from: this information is stored in the invocation record of each
stolen job. Figure 3.1 (b) shows the situation after the crash of processor 3. As soon
as processors 1, 2 and 4 discover the crash of processor 3, they search through their
outstandingJobs lists. Processor 1 discovers that job 2 has been stolen by processor 3
and puts this job back in its work queue (figure 3.2 (a)). Each job reinserted into



3.3. FAULT-TOLERANCE FOR SATIN 45

a work queue during the recovery procedure is marked as ‘restarted’. Children of
‘restarted’ jobs are also marked as ‘restarted’ when they are spawned.

3.3.3 Orphan jobs

Orphan jobs are jobs stolen from leaving processors. In figure 3.2 (a), job 4 and all its
subjobs are orphans. In most existing approaches, the processor which has finished
working on an orphan job must discard the result of this job: since the processor where
the job was stolen from has crashed, the result cannot be sent back. Orphan jobs are
recomputed when their restarted parents are recomputed. For example, in figure 3.2
(a), job 4 and all its subjobs would be recomputed while recomputing job 2. This is
undesirable, since a crash of a small number of processors can cause recomputation
of large parts of the work, if the crashing processor was computing jobs high in the
tree.

The results of orphan jobs are valid partial results and can be used while recom-
puting their parents. The results of orphan jobs would be usable if the processors
recomputing the parents knew where to retrieve those orphans or the orphan task
knew the new address to return the result. Thus, salvaging orphan jobs requires
creating the link between the orphan and its restarted parent.

We restore links between parents and orphans in the following way: for each fin-
ished orphan job (jobs 9 and 17 in figure 3.2 (a)), we forward to the other processors a
small message containing the jobID of the orphan and the processorlID of the processor
computing this orphan.

We abort the unfinished intermediate nodes of orphan subtrees, since they require
little computation: in a typical divide-and-conquer application, the bulk of the com-
putation is done in the leaf nodes, the intermediate nodes only split work and combine
the results. Aborting simplifies the algorithm and eliminates the possibility of dead-
locks in Satin. In section 3.3.7, we will discuss an alternative orphan saving scheme
in which the unfinished orphans are not aborted. We will show that this makes the
algorithm much more complicated and does not improve the performance.

The (jobID, processorID) tuples are stored by each processor in a local orphan
table. Figure 3.2 (b) shows the computation tree after the recovery procedure. Pro-
cessor 4 aborted jobs 4, 8 and 16 and forwarded the (jobID, processorID) tuples for
jobs 9 and 17 to the other processors. Processors 1 and 2 stored those tuples in their
orphan tables. The crash recovery procedure is completed. Note that the crash re-
covery does not require inter-process synchronization: each processor processes the
crashes independently of the other processors.

Jobs that have been restarted after a crash and all their subjobs have a ‘restarted’
flag set in their invocation records. Before starting the execution of such jobs, pro-
cessors perform lookups in their local orphan tables. If the jobID of the spawned job
corresponds with the jobID of one of the orphans in the table, the processor does not
start computing the job. Instead, it puts the job on its outstandingJobs list and sends
a message to the owner of the orphan requesting the result of the job. Figure 3.3 (a)
shows the continuation of the computation from figures 3.1 — 3.2. In the meantime,
processor 2 stole job 2 from processor 1 and started executing it. Because it is a



46 CHAPTER 3. FAULT TOLERANCE, MALLEABILITY AND MIGRATION

‘restarted’ job, processor 2 performs a lookup in its orphan table for this job and all
its subjobs. After spawning job 9, it discovers that it has an entry for this job in its
orphan table. Instead of computing this job, it puts it on the outstandingJobs list
and asynchronously sends a message (result request) to processor 4 requesting the
result of job 9 (figure 3.3 (a)). Note, that at this moment, the state of the execution
tree and the datastructures (outstandingJobs lists) is exactly as if job 9 was stolen
by processor 4 from processor 2. This has important consequences. First, the result
returned by processor 4 can be handled using the normal routine used for handling the
results of stolen jobs. Processor 2 does not need to wait until the result is returned.
Instead, it can compute other jobs in the meantime. Second, if processor 4 crashes
before it returns the result, this crash will be handled by the normal crash recovery
procedure: job 9 will be taken from the outstandingJobs list and put back in the work
queue of processor 2. This guarantees that job 9 will always be computed and that
processor 2 will not hang waiting indefinitely for the reply of processor 4.

Processor 4, after receiving the result request sends the result of job 9 to processor 2
(figure 3.4 (a)) The format of the message containing this result is exactly the same
as a format of a message returning the results of a stolen job. The results of job 17
will be reused in the same way later in the computation.

Note that reusing orphans does not influence the correctness of the algorithm. If
the result of an orphan is not found (e.g. because the (jobID, processorID) tuple
does not arrive in time), the job can always be recomputed. Reusing orphans is an
optimization that improves the performance of the system but does not influence
the correctness of the crash recovery procedure. This has important consequences
for the implementation of the forwarding of the tuples: no reliable and potentially
high-overhead broadcast protocols are needed. Currently, we are using asynchronous
broadcasting. An alternative solution would be piggybacking tuples on other messages
sent by the Satin runtime system, for example steal requests and replies. Also, we use
message combining: instead of sending each tuple in a separate message, we combine
multiple tuples into one message. This reduces the number of messages sent during
the recovery procedure to one broadcast message per processor.

3.3.4 Orphan propagation

An orphan subtree might not necessarily be located on a single processor like in the
example above where the whole subtree of job 4 was located on processor 3 (figure 3.1
(a)). If one of the subjobs of job 4 was stolen, the orphan subtree would be distributed
over two processors. For example, in figure 3.5 (a), processor 5 stole job 8 from proces-
sor 4. After the crash of processor 2, job 8 and all its subtree become orphans because
their ancestor, job 4, was stolen from a crashed processor. However, processor 5 does
not have enough information to discover that. Therefore, we introduce orphan prop-
agation messages. When a processor discovers that a part of the orphan subtree was
stolen by another processor, it sends an orphan propagation message containing the
identifier of the stolen job to the other processor. Orphan propagation messages are
sent asynchronously. Orphan propagation continues recursively, if necessary. In our
example, processor 4 sends an orphan propagation message to processor 5 (figure 3.6



3.3. FAULT-TOLERANCE FOR SATIN 47

processor 1

1 outstandingJobs[ (2,proc3),(14,proc2)]

proce.wor 4 processor 3 processor 2
outstandingJobs ] outstandingJobs{ (4,proc4)] outstandingJobg[] (a)

processor 1
outstandingJobg[ (2,proc3),(14,proc2)]

processor 4 processor 2

outstandingJobs [] outstandingJobs[]

(b)

O ovrinshed

@ Job in progress
l Job spawned but not yet started

Figure 3.1: An example computation tree before and after the crash of processor 3



48 CHAPTER 3. FAULT TOLERANCE, MALLEABILITY AND MIGRATION

processor 1
outstandingJobs| (14,proc2)]

proce.wor 4 processor 2
outstandingJobs [] outstandingJobs{] (@)

processor 1
outstandingJobs| (14,proc2)]
orphan table [(9,proc4),(17,proc4)]

@ (9,proc4),(l7,proc4/

processor 4

: processor 2
outstandingJobs [] outstandingJobs{]
orphan table [(9,proc4),(17,proc4)]

(b)

O ovrinshed

@ Job in progress
l Job spawned but not yet started

Figure 3.2: The crash handling procedure



3.3. FAULT-TOLERANCE FOR SATIN

processor 2
outstandingJobs[]
orphan table[(9,proc4),(17,proc4

processor 1
outstandingJobs] (2,proc2)]
orphan table [(9,proc4),(17,proc4)]

processor 4
outstandingJobs ] (@)
processor 2 processor 1
outstandingJobs{ (9,proc4)] outstandingJobs] (2,proc2)]

orphan table [(9,proc4),(17,proc4 orphan table [(9,procd),(17,procd)]

—®  processor 4
outstandingJobs []

(b)

O ovrinshed

@ Job in progress
l Job spawned but not yet started

Figure 3.3: Restoring the parent-child link



50 CHAPTER 3. FAULT TOLERANCE, MALLEABILITY AND MIGRATION

processor 2
outstandingJobs[]
orphan table[(9,proc4),(17,proc4

processor 1
outstandingJobs] (2,proc2)]
orphan table [(9,proc4),(17,proc4)]

processor 4
outstandingJobs []

€ obiinished
@ Job in progress

1 Job spawned but not yet started

Figure 3.4: Processor 4 returns the result of the orphan to processor 2



3.3. FAULT-TOLERANCE FOR SATIN 51

(a)). Processor 5 aborts jobs 8 and 16 and forwards a (jobID, processorID) tuple for
job 17 (figure 3.6 (a)).

3.3.5 Handling crashes of the master processor

The processor that spawned the job that is the root of the execution tree is called the
master. In figure 3.1 (a), job 1 is the root of the execution tree and processor 1 is the
master. A crash of the master is a special case. Since the root job was never stolen,
it will not be restarted during the normal recovery procedure in which jobs stolen by
crashed processors are restarted. Therefore, a special procedure for handling a crash
of the master is needed.

When the crash of the master is discovered, the remaining processors elect the new
master using the Registry!. The new master re-spawns the root job, thereby restarting
the application. The information needed to restart the application is replicated on
all processors. The new run of the application will reuse the partial results of the
orphan jobs from the previous run (when the master crashes, all jobs become orphans).
Figures 3.7 (a) shows the computation tree from figure 3.1 (a) after the crash of the
master (processor 1). Figure 3.7 (b) shows the situation after the crash handling
procedure. Processor 3 has been elected as a new master and restarted the root of
the computation tree (job 1).

3.3.6 Job identifiers

The job identifiers (jobID) must be both globally unique and reproducible: the iden-
tifier of a job that is re-spawned after a processor crash must be the same as it was
before the crash, otherwise the orphaned children cannot be linked correctly to their
parents. We create job identifiers in the following way: the root job is assigned ID=1.
The child’s identifier is computed by multiplying the identifier of its parent by the
maximal branching factor of the computation tree and adding the number of children
the same parent generated before. For example, the second child of a job with ID 4
in a tree with branching factor = 2 will have ID = 2 * 4 + 1 = 9. The jobs in the
tree in figures 3.1-3.7 are numbered according to this scheme.

In most divide-and-conquer applications, the maximal branching factor of the
execution tree is known. If it is not known, however, level stamps described in [126]
can be used. A level stamp is a string. The root job is identified by an empty string.
The level stamp of a child is created by appending a character to the identifier of the
parent. The appended character is the number of children the parent has spawned
before. For example, the first child of the root job will be identified with a stamp ‘0,
the second child of job ‘021’ will be identified with ‘0211°. Figure 3.8 shows an example
execution tree with level stamps. In our implementation, the application programmer
can specify the maximal branching factor of the application. In that case the integer
job identifiers are used, otherwise the runtime system uses level stamps.

LCrashes of the Registry have to handled by a separate mechanism such as checkpointing and
replication



52 CHAPTER 3. FAULT TOLERANCE, MALLEABILITY AND MIGRATION

processor 1
outstandingJobs] (2,proc3),(14,proc2)]

processor 4
outstandingJobs [ (8,procb)]

17
outps::r:;ﬁor\]ibs [ processor 2
° outstandingJobg[] (a)
processor 1

outstandingJobs| (14,proc2)]
otphan table [(9,proc4)]

(9,proc4) /

processor 5

outstandingJobs ] processor 2
orphan table [(9,proc4)] outstandingJobs[]
orphan table [(9,proc4)] (b)
O ovrinshed
@ Job in progress
‘1

Job spawned but not yet started

Figure 3.5: Orphan propagation



3.3. FAULT-TOLERANCE FOR SATIN

53

processor 1
outstandingJobs[ (14,proc2)]
orphan table [(9,proc4),(17,procb)]

outstandingJobs []
orphan table [(17,proc5)]

(17,proc5) \/

processor 5
outstandingJobs [] DFOCe&SFJr 2
orphan table [(9,proc4)] outstandingJob[]
orphan table [(9,proc4),(17,proc5)]
€O vfinshed

@ Job in progress
(1) Job spawned but not yet started

Figure 3.6: Orphan propagation



54 CHAPTER 3. FAULT TOLERANCE, MALLEABILITY AND MIGRATION

processor 4 processor 3 processor 2
outstandingJobs ] outstandingJobs] (4,proc4)] outstandingJobs]] (@)

processor 4 processor 3 processor 2
outstandingJobs [] outstandingJobs{] outstandingJobs{]

(b)

O ovrinshed

@ Job in progress
l Job spawned but not yet started

Figure 3.7: Handling the crash of the master (processor 1)



3.3. FAULT-TOLERANCE FOR SATIN 55

Figure 3.8: Level stamps

3.3.7 Alternative orphan saving schemes

In this section, we will discuss alternative orphan saving schemes and we will explain
why they were found to be less efficient.

Global result table

One alternative scheme we tried is using a global result table — a concept similar to a
transposition table [50] used in game solving environments or the table used in tabled
execution of logic programs [163]. It is a table accessible to all processors in which
results of jobs can be stored. Jobs in the table are identified by their parameters. The
global result table is used for storing the results of orphan jobs. As in the basic scheme,
only finished orphans are stored in the table. Unfinished orphans are aborted. When
recomputing jobs lost in crashes, processors perform lookups in the global result table.
If a lookup is successful the result found in the table is used instead of recomputing
the job.

The global result table is replicated on all processors. The replicas of the table do
not have to be strongly consistent. If a processor does not find a job, it can always
recompute it. Therefore, updates of the table are propagated to other processors
asynchronously.

The global result table scheme has many similarities with the basic scheme. In
fact, the basic scheme can be seen as a distributed implementation of the global result
table: instead of replicating the job results on all processors, the results are stored
locally and only pointers to the results ((jobID, processorID) tuples) are forwarded
to other processors.

The advantage of the global result table scheme over the basic scheme is that



56 CHAPTER 3. FAULT TOLERANCE, MALLEABILITY AND MIGRATION

orphan results are always available locally and the result request messages do not
need to be sent. This simplifies the algorithm and reduces the number of messages
that are sent in the system. However, a severe disadvantage of the global result
table scheme is that for applications with large job parameters and large job results,
much data is transferred. The problem of large parameters can be solved by using job
identifiers described in section 3.3.6 instead of parameters to identify jobs in the global
result table. However, there still remains the problem of large results. Therefore, the
global result table scheme is not suitable for applications with large parameters and
results.

Avoiding aborting orphans

To avoid aborting orphans, we extended the basic orphan saving scheme in the fol-
lowing way. The (jobID, processorID) are broadcast for all orphans, including the
unfinished ones. No orphan is aborted. This means that a result request may arrive
while the requested orphan job is still not finished. In that case, the information
about the processor requesting this job is stored in this job’s invocation record: the
owner field is set to the identifier of the processor requesting the job. For regular jobs
(i.e. not orphans) the owner field contains the identifier of the processor from which
the job was stolen and where the result should be returned. Thus, after the orphan
job is finished, its result will be returned to the processor that requested this job as
if this job was stolen from this processor.

Unfortunately, this solution introduces a possibility of deadlocks in the Satin run-
time system. For efficiency Satin is single-threaded and has one stack. Therefore
unfinished orphan jobs can be blocked by their parents which after being restarted
can be higher in the stack than their orphaned children. An example of such a situ-
ation is shown in figure 3.9. In this figure, the stacks of three processors are shown.
Job 2 was restarted after a crash. Jobs 4, 8, 16 and 32 are orphans. The arrows
denote parent-child relationships. Job 2 cannot be completed before job 4, because
job 4 is its child. Job 4 cannot be completed before job 16, because job 16 is its
grandchild. Job 16 cannot be completed before job 2 because it is lower in the stack.
In the basic orphan saving scheme such deadlocks are impossible — we reuse only the
finished parts of orphan jobs so their execution cannot be blocked by the restarted
jobs.

Such deadlock can be avoided by delaying the restarting of the jobs lost in a
crash until a safe moment. A job can be safely restarted when its parent is on the
top of the stack. Therefore, after a crash we do not put restarted jobs immediately
in the work queue, but store them in a separate queue. A job from this queue is
put in the work queue only if its parent is on the top of the stack and the work
queue is empty. In this way, we make sure that no orphans will be blocked by their
parents. Unfortunately, this approach increases the load balancing overhead of the
application. The reason is that putting jobs aside temporarily decreases the number
of jobs available in the system. Those jobs are typically relatively large jobs, because
restarted jobs have been stolen before, and stolen jobs tend to be large. Thus, the
decrease in the number of available jobs can be significant. The performance gain of



3.4. MALLEABILITY AND MIGRATION FOR SATIN 57

|
3 ¢ L8, )
1 lq! 132!
L —1 L — |
the stack of the stack of the stack of
processor 1 processor 2 processor 3
Lo
i...restarted . _,orphan

Figure 3.9: An example of a deadlock

not aborting orphans does not outweigh the extra load balancing overhead. Moreover,
not aborting orphans makes the algorithm significantly more complicated, increasing
the probability of bugs and race conditions.

3.4 Malleability and migration for Satin

An important characteristic of the fault-tolerance algorithm described in the previous
section is that after a crash, the application can continue running on the diminished
number of processors. The crashed processors do not need to be replaced. Therefore,
the applications using our fault-tolerance algorithm are already partly malleable: they
can tolerate processors leaving the on-going computation. In this section, we will
discuss how we can handle processors joining the on-going computation. Furthermore,
we will show how the crash handling mechanism can be optimized if the application
receives a prior notification before the processors are taken away. With the optimized
mechanism, we can save almost all work done by the leaving processors, reducing the
overhead to nearly zero.

3.4.1 Adding processors

Adding a processor to an on-going divide-and-conquer computation is simple. All we
need to do is to let the new processor steal jobs from the other processors and the
load will be balanced automatically. Adding processors has practically no overhead.



58 CHAPTER 3. FAULT TOLERANCE, MALLEABILITY AND MIGRATION

Special care needs to be taken when a processor joins the computation after the re-
covery procedure was executed by other processors (e.g., if new processors were added
to replace leaving processors). In this case, the orphan table of the new processor is
empty and it has to download an orphan table from one of the other processors, to
be able to reuse partial results. The problem here is that a joining processor does
not know: a) whether there was a crash recovery before it joined b) which other
processors have non-empty orphan tables and which do not (because they have also
just joined). We solve this problem in the following way. Every processor joining the
computation, even processors joining at the very beginning of the computation, except
for the master, tries to download an orphan table from another processor. Only the
master assumes that it has an up-to-date version of the orphan table (it is empty at
the beginning of the computation). Each processor piggybacks orphan table requests
on its steal requests until it receives the table.

3.4.2 Saving partial results from the leaving processors

We extended the crash handling algorithm in such a way that if processors are leaving
gracefully, that is if the application receives a notification before the processors leave,
we can save the partial results from the leaving processors.

We assume that such departure notifications will be sent to the application by
the grid scheduler or other grid middleware. Currently, however, none of the grid
schedulers support this functionality. For performance evaluation purposes, we imple-
mented a simple control interface in the Ibis Registry. The user can send a command
to the Registry containing a list of nodes that have to leave the computation. The
Registry passes this list to all the nodes taking part in the computation.

Our algorithm can also work with other models of departure notification, for ex-
ample, if notifications are sent only to the leaving processors and if they do not contain
the identifiers of other leaving processors. However, in such cases, our algorithm can
be less efficient, as will be explained below.

If a processor receives a departure notification, it chooses another processor ran-
domly, transfers all the results of its finished jobs to the other processor and exits.
The processor that receives those jobs treats them as orphan jobs: it broadcasts a
(jobID, processorID) tuple containing its own processorID for each received result.
Next, the normal crash recovery procedure is executed by all the processors that did
not leave. The processors that left are treated as crashed processors. The partial
results from the crashed processors are linked to the restarted parents, as it happens
in the case of orphan jobs.

An example is shown in figures 3.10 — 3.11. Processor 3 receives a signal that it
has to leave the computation. It chooses another processor at random (processor 4)
and it sends it all its finished jobs — jobs 11 and 21. It aborts the unfinished jobs, and
exits. Next, the remaining processors execute the normal crash handling procedure:
processor 1 restarts job 2 stolen by processor 3. Processor 4 handles its orphan jobs.
Jobs 11 and 21 received from processor 3 are handled in exactly the same was as
orphan jobs: for each of the a (jobID, processorID) tuple is sent and stored in the
orphan tables. Therefore, the jobs computed by processor 3 can be reused in further



3.4. MALLEABILITY AND MIGRATION FOR SATIN

processor 1

1 outstandingJobg[ (2,proc3),(14,proc2)]

proce@or 4 processor 3 processor 2
outstandingJobs [] outstandingJobs{ (4,proc4)] outstandingJobs[] (@)
a
processor 1
outstandingJobg[ (2,proc3),(14,proc2)]
processor 4 processor 2
outstandingJobs [] outstandingJobs[]
(b)
O ovrinshed

@ Job in progress
l Job spawned but not yet started

Figure 3.10: Handling gracefully leaving processors



60 CHAPTER 3. FAULT TOLERANCE, MALLEABILITY AND MIGRATION

processor 1
outstandingJobs] (14,proc2)]
able [(9,procd),(11,procd),(17,procd),(21,procd)]

(9,proc4),(11,proczyf
processor 4 (17,proc4),(21,proc4) processor 2 (@)
outstandingJobs [] outstandingJobs[]
orphan table [(9,proc4),(11,proc4),(17,proc4),(21,proc4)]
processor 2
outstandingJobs] (11,proc4)] processor 1
orphan table [(9,proc4), outstandingJobs[ (2,proc2)]

(11,proc4),(17,proc4),(21,proc4; able [(9,proc4),(11,procd),(17,procd),(21,procd)]

processor 4
outstandingJobs []

(b)

€O ovfinshed

@ Job in progress
l :) Job spawned but not yet started

Figure 3.11: Handling gracefully leaving processors



3.5. TOTAL CRASHES 61

computation (figure 3.11).

The choice of the processor to which the leaving processor will transfer its partial
results depends on the information the leaving processor has about the system. Cur-
rently, the departure notification received from the Registry contains the identifiers
of all processors that are leaving at the same time. Thus, the leaving processors make
sure that they transfer their results to one of the processors that are not leaving.
However, if the leaving processors do not have full information, it may happen that
partial results are transfered to a processor that is leaving as well. If it leaves while
the results are in transfer, they will be lost. Otherwise the processor will forward
them together with its own partial results to another processor. Note that this only
influences the performance of the algorithm and not the correctness: if the results are
lost they can always be recomputed.

3.4.3 Using malleability to implement migration

In section 3.6, we will show that our algorithm allows adding and removing processors
practically without loss overhead. Therefore, we can use malleability to implement
efficient application migration. We can migrate an application from one set of re-
sources to another, by first adding the new set of resources and then removing the old
one. Note that order is important — there must be some processors up and running
at all times to preserve work.

3.5 Total crashes

A disadvantage of our fault-tolerance and malleability mechanism is that if a processor
crashes suddenly, the work done by it is always lost. If a substantial part of the
processors crash, a substantial part of work needs to be recomputed. If all processors
crash, everything needs to be recomputed. Only if a prior notification is sent to the
application, can the work done on the leaving processors be saved. However, if all
processors are leaving, their work cannot be saved even if a prior notification is sent.
Thus, with the current fault-tolerance/malleability mechanism, it is not possible to
stop an application and restart it later from the point where it was stopped. The
application can only make progress if at every moment there is at least one processor
up and running.

To overcome this limitation, we extended our fault-tolerance mechanism to (pe-
riodically) store partial results on a stable storage. All processes taking part in the
application (periodically) save the results of their finished subjobs in a user-defined
file.

This mechanism can be used in two ways:

e To minimize the amount of work lost in crashes. In this scenario all processors
periodically save their partial results on the stable storage. After a crash, the
results computed by the crashed processor are retrieved and reused.

e To stop an application and restart it later from the point where it was stopped.



62 CHAPTER 3. FAULT TOLERANCE, MALLEABILITY AND MIGRATION

In this scenario, the user (or grid middleware) sends a signal to the application,
for example via the Registry. After receiving the signal, processes store their
results in the file defined by the user and exit. The user can use the file later to
restart the application on a possibly different set of resources.

This mechanism can be seen as an application-level checkpointing. The difference
with classical application-level checkpointing schemes is that it is done transparently,
that is, it does not need to be described explicitly by the programmer. This is possible,
because we concentrate on a single class of divide-and-conquer applications. In further
text we will refer to our mechanism as checkpointing.

3.5.1 The basic checkpointing algorithm

All processors taking part in the computation periodically save their partial results
in a user-defined checkpoint file. Along with the job results, the jobID of this job and
the processorID of the processor that has computed this job are stored. The interval
between the subsequent checkpoints (checkpointing interval) is defined by the user.

Processors do not access the checkpoint file directly. Instead, they send the data
to the coordinator processor which is responsible for writing and reading the check-
point file. The processors do not synchronize before taking their checkpoints — the
checkpoints can be taken independently. The coordinator is elected from among the
processes taking part in the computation. The election algorithm will be described
in section 3.5.4. If a processor crashes, the coordinator searches the checkpoint file
for the results computed by the crashed processor. All those results are retrieved and
stored in the memory of the coordinator. Next, the basic fault tolerance mechanism
is used to reuse those results — they are treated just like orphan jobs. For each of
those results, the coordinator forwards a (jobID, processorID) tuple with its own pro-
cessorID to the other processors. Processors store the (jobID, processorID) tuples in
their orphan tables. The orphan tables are used in exactly the same way as in the
basic fault tolerance mechanism.

An example is shown in figures 3.12 — 3.14. All processors periodically send
results of their finished jobs to the coordinator — processor 2. The coordinator stores
those results together with its own results in the checkpoint file. After the crash of
processor 3, a normal crash handling procedure is executed: processor 1 puts job 2
back in its work queue and processor 4 handles its orphans. Additionally, processor 2
searches the checkpoint file for the results computed by processor 3. It retrieves
jobs 11 and 21, stores them in its memory and broadcasts the (jobID, processorID)
tuples. The tuples are stored in orphan tables and used to reuse the checkpointed
results.

3.5.2 Restoring the computation after an abort or total crash

The main advantage of storing partial results on stable storage is the possibility of
stopping the computation and restarting it later without the need of recomputing
from scratch. Also, surviving a total crash is possible.



3.5. TOTAL CRASHES

processor 1

outstandingJobg[ (2,proc3),(14,proc2)]
checkpoint
file

processor 4 processor 3 processor 2 (coordinator)
outstandingJobs ] outstandingJobs[ (4,proc4)]  outstandingJobs] @
a
processor 1
outstandingJobg[ (2,proc3),(14,proc2)]
checkpoint

file

procr 4 processor 3 processor 2 (coordinator)
outstandingJobs [] outstandingJobs{ (4,proc4)]  outstandingJdobs ] b)
O ovrinshed

@ Job in progress
l Job spawned but not yet started

Figure 3.12: Processors are taking a checkpoint



64 CHAPTER 3. FAULT TOLERANCE, MALLEABILITY AND MIGRATION

processor 1
outstandingJobg[ (2,proc3),(14,proc2)]

checkpoint
file

processor 4 processor 2 (coordinator)
outstandingJobs[] outstandingJobs]]
@)
processor 1
outstandingJobs| (14,proc2)]
orphan table [(9,proc4),(17,proc4)]
checkpoint

file

(9,proc4),(17,proc§9/
ee ©€

prOCf 4 processor 2 (coordinator)
outstandingJobs [] outstandingJobs[]

orphan table [(9,proc4),(17,proc4)] (b)

Job finished

0@

[ ]
S

Job in progress
Job spawned but not yet started

Figure 3.13: Crash handling procedure and reading the checkpoint file



3.5. TOTAL CRASHES

processor 1

outstandingJobg[ (2,proc3),(14,proc2)]
orphan table [(9,proc4),(17,proc4)
(11,proc2),(21,proc2)]

checkpoint
file

(11,proc2)
(21,proc2

processor 4 processor 2 (coordinator)
outstandingJobs ] outstandingJobs[]
orphan table[(11,proc2),(21,proc2)] orphan table [(9,proc4),(17,proc4)] €)

processor 1

outstandingJobg[ (2,proc3),(14,proc2)]
orphan table [(9,proc4),(17,proc4)
(11,proc2),(21,proc2)]

checkpoint
file

prOCf 4 processor 2 (coordinator)
outstandingJobs [] outstandingJobs[]
orphan table [(11,proc2),(21,proc2)] orphan table [(9,proc4),(17,proc4)] (b)
O ovrinshed

@ Job in progress
l Job spawned but not yet started

Figure 3.14: Reusing the checkpointed results



66 CHAPTER 3. FAULT TOLERANCE, MALLEABILITY AND MIGRATION

When a computation is started, the coordinator checks if the checkpoint file spec-
ified by the user already exists. If this is the case, the coordinator assumes that the
computation has been restarted after an abort or a total crash. All results from the
checkpoint file are read into the memory of the coordinator, and for each of those
results a (jobID, processorID) tuple is sent to other processors. We use message
combining to avoid sending each tuple separately.

Currently, all results read from the checkpoint file are stored in the memory of the
coordinator. However, the amount of checkpointed data might be simply too large to
fit in the memory of the coordinator. An alternative solution would be distributing
the results among all the processors (currently) taking part in the computation.

3.5.3 The checkpoint file

The checkpoint file contains the partial results of the computation. The checkpoint
file is accessed by the coordinator, but it need not necessarily be located on the co-
ordinator’s local filesystem. In fact, the user may specify an arbitrary location for
the checkpoint file. The access to the checkpoint file is implemented using the Java
GAT (Grid Application Toolkit) interface [3], a Java implementation of the GAT [23].
Java, GAT provides a high-level APT for grid applications. Among others, Java GAT
provides an API for file operations that hides the complexity of the underlying in-
frastructure from the programmer. With GAT, the programmer only needs to specify
the file name and location. The GAT takes care of selecting the appropriate protocol
(e.g., FTP, SSH, HTTP, GridFTP etc.) and automatically optimizes the adjustable
parameters based on available information on the current environment.

For data intensive applications, the checkpoint file might become huge. If the
amount of space on stable storage is limited, it is necessary to prevent the checkpoint
file from growing too much. Therefore, we implemented checkpoint file compression.
During the application run, each checkpointed result eventually becomes redundant.
This happens when the parent of the checkpointed job is also written to the check-
point file. Therefore, the results of the children can be removed from the checkpoint
file. However, we do not remove the children from the checkpoint file as soon as
their parents are checkpointed, since this would cause much I/O overhead. Instead,
compression is performed when the checkpoint file exceeds the size specified by the
user. During the compression phase, a new checkpoint file is created and all the non-
redundant results from the old file are written to the new file. Then, the old file is
deleted. Note that the amount of free space on stable storage must be roughly twice
as big as the maximal checkpoint file size specified by the user. In the rare case that
the compression does not result in significant enough reduction of the checkpoint file
size, checkpointing is stopped: no new results will be checkpointed. Checkpoint file
compression is performed by the coordinator.

3.5.4 The coordinator

The coordinator is responsible for accessing the checkpoint file. The coordinator is
elected from among the processors taking part in the computation. A simple approach



3.6. PERFORMANCE EVALUATION 67

would be using the master as a checkpointing coordinator. However, to achieve the
optimal performance, the I/O bandwidth and latency between the coordinator and
the checkpoint file needs to be taken into account. Therefore, the processor with the
best I/O performance is elected to be the coordinator. The election is performed in
the following way.

1. The master is elected using the Registry

2. Each processor measures the time it takes to write a small file to the location
where the checkpoint file will be created.

3. The results of those measurements are sent to the master.

4. The master waits until it receives such messages from at least 50% of the pro-
Cessors.

5. The master selects the processor with the shortest file write time and announces
it as the new coordinator.

If the coordinator crashes, a new coordinator has to be elected. The new election
is initiated by the master, which sends a coordinator reelection message to all proces-
sors. Then, the normal coordinator election procedure is performed. The processors
postpone checkpointing until the election is completed.

If the coordinator has crashed while another process was sending checkpoint data
to it, the data will be lost and never written to the checkpoint file. The loss of
checkpoint data might affect the performance of the fault tolerance mechanism but
not its correctness. Therefore, we do not take any action to avoid such situations.

The coordinator may also crash while writing to the checkpoint file and the check-
point file may be corrupted. Therefore, each time a coordinator is initialized, it checks
the checkpoint file (if it exist) for possible errors. If errors are found, it creates a new
checkpoint file and transfers all non-damaged results from the old file to the new one.
The old file is deleted.

To minimize the overhead of checkpointing, we use concurrent checkpointing [124].
The results are written to the checkpoint file by a separate thread in the coordinator
process. This thread runs concurrently with the Satin computation.

3.6 Performance evaluation

In this section, we will evaluate the performance of our fault-tolerance algorithms.
First, we evaluate the overhead of our algorithms during crash-free execution. Second,
we evaluate the performance of our algorithms in the presence of crashes. We evaluate
both the basic orphan-saving algorithm and the checkpointing extension with various
checkpointing intervals. We will show that our algorithms add little overhead to Satin.

Next, we will show that our basic scheme outperforms the traditional approach,
which does not save orphan jobs, and that using checkpointing further improves the
performance.



68 CHAPTER 3. FAULT TOLERANCE, MALLEABILITY AND MIGRATION

1 min | 2 min | 5 min
Raytracer | 28 MB | 20 MB | 17 MB
TSP 217 KB | 128 KB | 55 KB

Table 3.1: Checkpoint file sizes

Further, we will show that our mechanism can be used for efficient migration of the
computation. Finally, we will demonstrate that using the checkpointing extension,
the computation can be stopped and restarted without losing work.

The experiments were carried out on the Distributed ASCI Supercomputer 2
(DAS-2). DAS-2 consists of five clusters located on five Dutch universities, in four
Dutch cities: Amsterdam, Leiden, Delft and Utrecht. One of the clusters consists of
72 nodes, the others consist of 32 nodes, so there are 200 nodes in total. Each node
contains two 1-GHz Pentium-IIIs and at least 1 GB RAM. All nodes run RedHat
Linux. Within a single cluster, nodes are connected by Myrinet [48] and 100 Mb/s
Ethernet. The clusters are interconnected by SurfNet, the Dutch university Internet
backbone. The bandwidth between the sites ranges from 300 Mb/s to 1 Gb/s. The
latencies are around 2ms.

All experiments described in this section were carried out on 32 nodes in 2 clusters
(16 nodes in each cluster). For intra-cluster communication we used Ethernet.

In our experiments, we used the following applications:

e Raytracer which renders a picture (bitmap) using an abstract description of a
scene. Raytracer has been parallelized by recursively subdividing the bitmap
into smaller parts and rendering the parts in parallel. Raytracer is a relatively
communication-intensive application.

e Traveling Salesman Problem (TSP) which searches for a shortest path connect-
ing a set of cities. TSP is a well-known NP-complete problem which has many
applications in science and engineering (e.g., manufacturing of circuit boards,
analysis of the structure of crystals, clustering of data arrays, etc.). TSP was
parallelized by evaluating different paths in parallel. The TSP implementation
used in this evaluation is less efficient than industrial implementations. The rea-
son is that the divide-and-conquer model does not allow data sharing between
different subcomputations and therefore does not allow pruning of the search
space?. However, our implementation is sufficient for the purpose of evaluat-
ing the performance of the fault-tolerance algorithms. TSP is a computation-
intensive application and sends little data.

2In chapter 5, we will present a data-sharing extension of our programming model and describe
a more efficient implementation of TSP



3.6. PERFORMANCE EVALUATION

69

350
300 |
250
[8)
)
& 500
(O]
e —= no fault tolerance
-5 150
g = basic fault tolerance
0@ 100+ == checkpointing 1 min
50 == checkpointing 2 min
== checkpointing 5 min
0_

Runtime (sec.)

Figure 3.15: Raytracer, overhead during crash-free execution

1050 —
900
750
600 —
1 = no fault tolerance
450 ;
| = basic fault tolerance
300 == checkpointing 1 min
150 == checkpointing 2 min
== checkpointing 5 min
0-

Figure 3.16: TSP, overhead during crash-free execution



70 CHAPTER 3. FAULT TOLERANCE, MALLEABILITY AND MIGRATION

3.6.1 Overhead during crash-free execution

In this section, we evaluate the impact of our algorithms on application performance
when no processors are leaving or crashing. We run the applications in the following
settings:

e The plain Satin system, that is, without any fault-tolerance mechanism enabled.

e The Satin system with the basic fault-tolerance mechanism (i.e., job recomput-
ing and saving orphans) enabled.

e The Satin system with periodic checkpointing and with the following check-
pointing intervals: 1, 2 and 5 minutes.

Figures 3.15 and 3.16 show runtimes of the two applications. The runtimes shown
are averages over 2—4 runs. The standard deviations are around 2 seconds for Ray-
tracer and 8 seconds for TSP.

The overhead of the basic fault-tolerance mechanism is negligible. Also, check-
pointing has s small overhead and the overhead does not seem to be dependent on
the checkpointing interval. This results from the fact that we are using concurrent
checkpointing, which minimizes the impact of accessing the checkpoint file on the
performance of the application. Table 3.1 lists the maximal sizes of the checkpoint
files for different checkpoint intervals. The checkpoint files produced by the TSP ap-
plication are small, since TSP does not process much data. Raytracer is more data
intensive, and therefore produces larger checkpoint files.

3.6.2 Performance in the presence of crashes

In this section, we will evaluate the performance of our algorithms in the presence of
crashes. First, we will compare the performance of our basic fault-tolerance algorithm
(with orphan saving but no checkpointing) with the traditional (‘naive’) algorithm in
which work lost in crashes is recomputed, but the orphans are not saved. Instead,
orphans are discarded after computing them and recomputed later. Next, we will
compare the performance of the checkpointing extension with the performance of the
basic algorithm. We will look at different checkpointing intervals. Finally, we will
evaluate the performance of our algorithm when the nodes are leaving gracefully, that
is, after a prior notification.

In these experiments, we run the two applications on 32 nodes in 2 clusters. We
remove one of the clusters in the middle of the computation, that is, after half of the
time it would take on 2 clusters without processors leaving. The case when half of
the processors leave is the most demanding, as the largest number of orphan jobs is
created in this case. Typically, the number of orphans does not depend on the moment
when processors leave, except for the initial and final phase in the computation.

To allow a fair comparison between various checkpointing intervals, we made sure
that the crash happens always exactly in the middle of a checkpointing interval. We
achieved it by adjusting the time the first checkpoint during the computation was
taken. To compute the time of the first checkpoint, we used the following formula:



3.6. PERFORMANCE EVALUATION 71

900
750
-
O 6004
3 600
~ —= 1 cluster leaves gracefully
D 450
- = 1 cluster crashes, ckpt 1 min
=
c == 1 cluster crashes, ckpt 2 min
S 300
e == 1 cluster crashes, ckpt 5 min
150 == ] cluster crashes, basic ft
=m ] cluster crashes, naive ft
O_

Figure 3.17: Raytracer, performance in the presence of crashes

2700 —
2250
-
O _
S 1800
n
— — 1 cluster leaves gracefully
D 1350 .
e = 1 cluster crashes, ckpt 1 min
=
= .
S o004 == 1 cluster crashes, ckpt 2 min
o == 1 cluster crashes, ckpt 5 min
450 == ] cluster crashes, basic ft
mm 1 cluster crashes, naive ft
0-

Figure 3.18: TSP, performance in the presence of crashes



72 CHAPTER 3. FAULT TOLERANCE, MALLEABILITY AND MIGRATION

basic ft | ckpt 5 min | ckpt 2 min | ckpt 1 min | graceful
Raytracer
jobs spawned 5 mln 5 mln 4.5 mln 4.5 mln 3.8 min
jobs stolen 405 460 408 506 470
jobs in orphan tables 79 342 690 768 392
jobs reused 79 275 288 430 384
% jobs reused 100% 80% 42% 56% 98%
broadcast messages 11 22 22 29 25
TSP
jobs spawned 400 000 360 000 330 000 330 000 290 000
jobs stolen 625 648 628 647 560
jobs in orphan tables 228 862 1503 2373 409
jobs reused 216 529 623 793 409
% jobs reused 95% 61% 41% 33% 100%
broadcast messages 12 16 20 25 14

Table 3.2: Orphan saving statistics

time of first checkpoint = (1/2 runtime on 32 cpus - 1/2 checkpoint
interval) modulo checkpoint interval

The charts in figures 3.17 and 3.18 show the runtimes of both applications. The
runtimes shown are averages taken over 4-6 runs. In 50% of the runs, the crashing
(or leaving gracefully) cluster contained the master.

On average, our basic fault-tolerance algorithm outperforms the traditional, ‘naive’
approach by 15% to 25%. Checkpointing improves the performance of the system by
further 10% to 15%. The performance improvement is largest with small checkpoint-
ing intervals. If nodes are leaving gracefully, the orphan saving algorithm provides up
to 40% performance improvement over the ‘naive’ algorithm.

Table 3.2 lists average numbers of jobs stored in orphan tables and average number
of jobs reused. While with the basic fault-tolerance algorithms almost all jobs are
reused, when checkpointing is used, only 30% to 80% of jobs are reused. This is
caused by the fact that many jobs in the checkpoint file are redundant, that is, their
parent or other ancestor was checkpointed. In such cases, only the ancestor is used.
Checkpoint compression can reduce the number of redundant jobs.

Table 3.2 also lists the number of broadcast messages sent in order to keep orphan
tables up to date. Because message combining is used, this number is small and
independent of the number of jobs in the orphan tables.

The variation in the runtimes for the traditional, ‘naive’ algorithm is large. This is
caused by the fact that the performance of the traditional algorithm depends heavily
on the number of orphan jobs created by the leaving processors, as all of those jobs
have to be computed twice. Because work is distributed randomly, the variation in
the number of created orphans is large which causes a large variation in runtimes for
the traditional algorithm. Our algorithms are much less sensitive to the number of



3.6. PERFORMANCE EVALUATION 73

mean | standard deviation mean standard deviation
TSP TSP Raytracer Raytracer

graceful 1695 s 1s 514 s 27 s

ckpt 1 min 1806 s 1195 565 s 25 s

ckpt 2 min 1865 s 175 s 582 s 37s

ckpt 5 min 1953 s 139 s 661 s 36 s

ckpt 10 min | 1971 s 108 s 687 s 73 s

basic ft 2246 s 258 s 668 s 25's

naive ft 2654 s 649 s 886 s 205 s

Table 3.3: Crash performance statistics

orphans, as only small overhead is incurred by reusing orphans. Table 3.6.2 lists the
standard deviations and means for all algorithms. These statistics were computed
over 4-6 runs.

The difference between the ‘naive’ algorithm and our algorithm is biggest when
the cluster containing master crashes. In that case, all the jobs become orphans and
with the traditional approach, the computation must be started from the beginning.
Our algorithm can reuse all the orphans and therefore the performance of the system
stays the same regardless of whether the master crashes or not.

3.6.3 Performance of migration

In this section, we will evaluate the overhead of malleability based migration. In this
experiment, we started an application on 32 nodes in 2 clusters. In the middle of the
computation, we gracefully removed one of the clusters and replaced it with another
cluster with the same number of processors (16). We compared the resulting runtime
with a runtime without migration. These runtimes are shown in figures 3.19 and 3.20.
The difference in the runtimes shows the overhead of migration. With our approach,
the overhead is smaller than 5%. There are two sources of this overhead. First, the
results from the leaving processors need to be sent over the network. Depending on
the application, the amount of data to be sent can be significant. Second, part of
the jobs need to be recomputed after migration, as only jobs that are finished at the
moment the migration is requested are saved and transferred to other processor.

The overhead stays small, however, which shows that our mechanism can be used
for efficient migration of the computation.

3.6.4 Performance of the abort/restore mechanism

In this section, we will evaluate the performance of the abort/restore mechanism. In
this experiment, we ran an application on 32 nodes in 2 clusters. In the middle of
the computation, we stopped the application by sending it an ‘abort’ signal. The ap-
plication checkpointed its results and exited. Next, we have restarted the application
on the same processor set and using the checkpoint file created in the aborted run.



74 CHAPTER 3. FAULT TOLERANCE, MALLEABILITY AND MIGRATION

350
300 |

—~

& 250

~ 200 |

()

"= 150

C 4

>

X 100 -

50_- = without migration

== with migration
0_

Figure 3.19: Raytracer, performance of migration

1050 +

(o) ~ ©0
o al o
o o o
| | |

450

Runtime (sec.)

300

150 == without migration

== with migration

Figure 3.20: TSP, performance of migration



3.6. PERFORMANCE EVALUATION

75

350

300
fT ]
& 250
~— 200
(D)
"= 150
S |
X 100 -

50 = without abort

== with abort/restore

0 -

Figure 3.21: Raytracer, performance of abort/restore

1050 +

~ ©0
al o
o o
| |

600

450

Runtime (sec.)

300

150 = without abort

== with abort/restore

0-

Figure 3.22: TSP, performance of abort/restore



76 CHAPTER 3. FAULT TOLERANCE, MALLEABILITY AND MIGRATION

application | file size
Raytracer | 12 MB
TSP 19 KB

Table 3.4: Checkpoint file size while aborting and restoring applications

We compared the resulting runtime with a runtime without abort/restore. Those
runtimes are shown in figures 3.21 and 3.22. The overhead of aborting and restoring
an application is 10% for a data intensive application (Raytracer) and only 1% for
a computation intensive application (TSP). This overhead is caused by the need to
write and read the checkpoint file. Practically no work is lost while aborting and
restoring an application. The sizes of the checkpoint files are listed in table 3.4.

3.7 Comparison with related work

Several fault tolerance mechanisms designed specifically for divide-and-conquer appli-
cations have been proposed in the literature. An interesting approach was presented
by Finkel and Manber in [83]. Their system, DIB, works in a way similar to Satin: it
runs divide-and-conquer applications in parallel by executing subproblems on different
processors. Load balancing is done by work stealing. The fault-tolerance mechanism
is based on redoing of work. Processors in DIB redo work of other processors even
if no crash has been detected. Redoing occurs while a processor waits for its steal
request to be granted. Instead of staying idle, the processor starts redoing work that
was stolen from it earlier but whose result it has not yet received. This approach
is robust since crashes can be handled even without being detected. However, this
strategy can lead to a large amount of redundant computation. The authors report
the ancestral-chain problem in their paper: assume that process P1 gave some work
to P2 which in turn gave some of it to P3, which failed before reporting the result
back to P2. In that case both P1 and P2 will redo the work they gave away and
the work given to P3 will be redone twice. Another problem, not discussed in the
paper, are orphan jobs. Orphan jobs are not aborted after a crash was discovered,
but executed until the end. When the result of an orphan is returned to its parent, it
will be discarded, since the parent has crashed. The same job will be computed again
while redoing the work given to the crashed processor. Therefore, like in the case of
ancestral chains, part of the work will be done twice.

Another approach was proposed by Lin and Keller [126]. Similarly to the DIB
approach, they base their fault tolerance mechanism on redoing the work. When a
crash of a processor is detected, the jobs stolen by the crashed processor are redone
by the owners of those jobs, i.e., the processors from whom the jobs were stolen. The
authors try to handle the problem of orphan jobs. They achieve it by storing with
each job not only the identifier of its parent processor (the processor from which the
job was stolen), but also the identifier of its grandparent processor (the processor
from which the parent processor stole the ancestor of our job). When the parent



3.8. CONCLUSION 77

processor crashes, the orphaned job is passed after completion to the grandparent
processor which in turn passes it to the processor which is redoing the work lost
in the crash. The result of an orphaned job can thus be reused. However, if both
parent and grandparent processor crash, the orphaned job cannot be reused anymore.
The concept can be extended by storing great-grandparent and higher level processor
identifiers to be able to handle more crashes, but the number of crashes a specific
implementation of this scheme can handle will always be limited by the number of
pointers the implementation stores. Moreover, the amount of data that needs to be
stored depends linearly on the number of crashes the implementation can handle.
Another problem with this mechanism is that the result of an orphan job is passed
to the grandparent processor only after the execution of this job is completed, which
may occur a long time after the crash. By that time, some other processor may have
already started or even completed redoing the same job. Our experiments show that
such situations occur often. Therefore, although this mechanism tries to reuse orphan
jobs, the amount of redundant work is still high.

Atlas [32] is another divide-and-conquer system. It was designed with heterogene-
ity and fault tolerance in mind and aims only at reasonable performance. Its fault
tolerance mechanism is also based on redoing the work. The problem of orphan jobs
is not addressed in Atlas. Atlas and its fault tolerance mechanism was based on Cil-
kNOW [44] — an extension of Cilk [46], a C-based divide-and-conquer system. Cilk
was designed to run on shared-memory machines while CilkNOW supports networks
of workstations.

3.8 Conclusion

In this chapter, we presented a mechanism that enables fault tolerance, malleability
and migration for divide-and-conquer applications. We proposed a novel approach to
reusing partial results by restructuring the computation tree. Using this approach we
minimized the amount of redundant computation, which is a problem of many other
fault-tolerance mechanisms for divide-and-conquer systems. Our approach also allows
to save almost all the work done by the leaving processors, when they leave grace-
fully. Divide-and-conquer applications using our mechanism can adapt to dynamically
changing numbers of processors and migrate the computation between different ma-
chines without loss of work.

Further, we extended our basic fault-tolerance mechanism with a simple check-
pointing facility. This extension allows the application to survive a total crash and
improves the performance of crash recovery when a significant part of the processor
has crashed. Finally, the checkpointing facility allows to abort an application and
restart it without loss of work.

We implemented our algorithms in Satin and evaluated them on a wide-area DAS-
2 system. In those experiments, we showed that the overhead of our algorithms during
crash-free execution is very small. We also showed that when processors crash, our
basic fault-tolerance algorithm outperforms the traditional approach (which does not
reuse orphans) by 15 to 25%. Checkpointing can improve the performance by a



78 CHAPTER 3. FAULT TOLERANCE, MALLEABILITY AND MIGRATION

further 10%. Finally, when nodes leave gracefully the performance improvement of
the orphan-saving approach over the traditional approach can reach 40%. We have
also demonstrated the orphan-saving algorithm can be used for very efficient migration
(with an overhead of smaller than 5%) and that the checkpointing facility can be used
for aborting and restarting an application without loss of work.



Chapter 4

Self-adaptation

4.1 Introduction

One important problem in grid computing is resource selection — selecting a set of
compute nodes such that the application achieves good performance. Even in tradi-
tional, homogeneous parallel environments, finding the optimal number of nodes is a
hard problem and is often solved in a trial-and-error fashion. In a grid environment
this problem is an order of magnitude harder because of the heterogeneity of resources:
the compute nodes have various speeds and the quality of network connections be-
tween them varies from low-latency and high-bandwidth local-area networks (LANS)
to high-latency and possibly low-bandwidth wide-area networks (WANSs). Another
important problem is that the performance and availability of grid resources varies
over time: the network links or compute nodes may become overloaded, the compute
nodes may become unavailable because of crashes or because they have been claimed
by a higher priority application. Also, new, better resources may become available.
To maintain a reasonable performance level, the application therefore needs to adapt
to the changing conditions.

In this chapter, we will first discuss existing solutions to the resource selection
and adaptation problems. Current approaches to the resource selection problem [172,
37] typically assume the existence of a performance model for an application — a
mathematical formula that allows to predict the application runtime on a given set of
resources. The performance model is used to evaluate a number of possible resources
sets and choose the most appropriate one.

The adaptation problem can be reduced to the resource selection problem: the re-
source selection phase can be repeated during application execution, either at regular
intervals, or when a performance problem is detected, or when new resources become
available. A precondition here is that the application is malleable or migratable, that
is, it can be moved to a different set of resources at runtime.

Constructing performance models for parallel applications is an inherently difficult
task. Creating such a model requires not only application domain knowledge but also
familiarity with complex parallel and distributed programming issues. In this chapter,



80 CHAPTER 4. SELF-ADAPTATION

we will describe an approach to resource selection and adaptation which does not use
performance models.

The rest of this chapter is structured as follows. In section 4.2, we will present
background information on resource selection and adaptation. In section 4.3, we will
describe our approach to resource selection and adaptation. In section 4.4, we will
evaluate our approach, and in section 4.5, we will compare it with related work. We
conclude in section 4.6.

4.2 Background

In this section, we will discuss some background on resource selection and application
adaptation. We will describe the existing approaches to those problems.

4.2.1 Resource selection

The resource selection problem involves choosing a subset of the set of all available
resources (compute nodes) on which the application will achieve a certain level of
performance. Typically, a resource set that yields the shortest execution time is
searched for. Alternatively, a resource set which allows the application to finish
before a certain deadline is selected. Note that both of those approaches need a way
of predicting the runtime of the application on a given set of resources.

In economy based grid computing [52] an extra search parameter is added: resource
cost. The total cost of the selected resource set must fall within a user-defined budget
and the application execution time should be minimized or the application must finish
before a given deadline.

Finding the resource set that gives an optimal performance requires, in the most
general case, an exhaustive search through all resource subsets. In the case of se-
quential applications, the complexity of the problem is O(n) where n is the number of
available resources, but in the case of parallel applications the problem is NP-complete
(the number of possible subsets is 2™). Since the number of available resources may
be very large and the resource selector must deliver an answer within reasonable time,
heuristics for pruning the search space are necessary. For example, in [65] resources
are grouped into clusters (sets of processors such that network latencies within a set
are lower than network latencies between the sets) and each possible set of such clus-
ters is evaluated. For each set of clusters, machines are sorted according to a certain
metric (three metrics are tried out for each cluster set: available memory, CPU speed
and the combination of the two). Next, the first N machines from the sorted list are
taken, for N ranging from 1 to the total number of machines in the cluster set, and
the resulting resource set is evaluated. If it yields an execution time shorter that the
current best set, it becomes the current best set. In [144], a greedy strategy is used:
the collection of machines is extended in each step with a machine with the highest
average bandwidth from all available machines. The procedure is repeated as long as
the predicted execution time becomes shorter.

To select an appropriate set, a method of ranking the possible resource sets is



4.2. BACKGROUND 81

needed. One method is using a performance model which allows predicting the ap-
plication running time on a given set of resources. Creating performance models is
a challenging task. It requires knowledge not only of the application domain but
also of the parallel computing issues. The literature describes such models only for
relatively simple, regular applications, such as parameter sweeps [37], master-worker
applications with homogeneous tasks [155] or regular iterative applications [128]. The
performance model approach has been used in such projects as AppLeS [37] and
GrADS [173].

Instead of using a detailed performance model of an application, some heuristic
approach can be used. If only a single node needs to be selected (sequential applica-
tions), node ranking can be based on the node CPU speed (flops) [102]. Even though
node speed does not always directly correspond to the application performance [142],
node speed can be used as a heuristic replacing the use of a detailed performance
model. This approach can be extended to parallel, single-site applications, i.e., par-
allel applications that can only run on a single cluster or supercomputer. Each site is
ranked according to its number of nodes, node speed and average node load. The site
with the biggest compute power is selected. This approach was used in the Cactus-
Code project [21]. Heuristic approaches have not been used for applications running
across multiple sites.

4.2.2 Adaptation

Grid environments are inherently dynamic. The availability and performance of grid
resources is constantly changing. Even if an application is started on the optimal
resource set, it may soon become suboptimal and the application performance may
suffer. Therefore, to achieve optimal or even reasonable performance the application
must constantly adapt to changing conditions. Application adaptation has two as-
pects: when to adapt, i.e., what circumstances should trigger the adaptation, and
how to adapt, i.e. what actions should be taken to perform the adaptation.
Adaptation can be triggered by events such as:

e Application performance degradation.

e Availability of new resources that were not available at the moment the appli-
cation was started.

e A change in application requirements.

To observe and measure the application performance degradation a concept of a
performance contract was introduced. A performance contract specifies that given
a set of resources with certain characteristics (e.g., bandwidth, processor speeds) an
application will achieve a specified performance [150]. Application performance can
be measured in a variety of ways. For example, a specified number of iterations per
second needs to be achieved as in the CactusWorm experiment [21]. In [173], the real
execution time of certain computation phases needs to be close to the execution time
predicted by the performance model.

The application can react to changes in the environment in two ways:



82 CHAPTER 4. SELF-ADAPTATION

e The application can change its behavior to use the current resources in a different
way.

e The application can be rescheduled on a different set of resources (the new and
the old resource sets can have a common subset).

Changing the application behavior can involve changing the mapping of the ap-
plication tasks to the available resources. For example, an overloaded processor can
get a lighter task. In [70], this strategy has been used to make a Successive Over-
Relaxation (SOR) application adaptive: the allocation of matrix rows is periodically
changed to adapt to a changing load of processors. Dynamic load balancing strate-
gies, such as the CRS used by Satin, or heuristics used for scheduling parameter-sweep
applications in the AppLeS project [57] make the application automatically adapt to
changing processor loads.

An alternative way of changing the application behavior is changing the algorithm.
For example, if its resources become overloaded, an application can start performing
the calculation with lower accuracy, or if a network bandwidth diminishes, an appli-
cation might start transferring pictures in a lower resolution.

The strategy of changing the application behavior cannot be applied to all types of
applications. Especially, the algorithm change strategy is only suitable for a limited
class of applications. Moreover, the algorithm change strategy is very difficult to
apply automatically by the compiler or the runtime system. Usually, such a strategy
has to be explicitly programmed by the application programmer.

Also, changing the application behaviour might not be sufficient to adapt to certain
changes in the environment, for example extremely overloaded processors or networks
or crashing processors. In that case, the application needs to be rescheduled on a
new set of processors. Typically, when an application needs to be rescheduled, a new
resource selection phase takes place. Possible resource sets are re-evaluated and the
application is migrated to the current best set. This strategy is more generic: it can be
applied to any type of application, provided that the application is migratable and/or
malleable. However, a performance model for the application must be available.

4.3 Avoiding performance models

Most of the existing approaches to resource selection and adaptation assume that a
performance model of an application is available. However, constructing performance
models for parallel applications is an inherently difficult task. Such models exist
for simple, regular applications. However, the divide-and-conquer applications we are
dealing with exhibit much more complex behavior and we believe that creating perfor-
mance models for such applications would be an extremely difficult task. In general,
creating performance models requires expertise which a typical application program-
mer may not have. Creating such a model requires not only application domain
knowledge but also familiarity with complex parallel and distributed programming
issues.



4.3. AVOIDING PERFORMANCE MODELS 83

In this chapter, we describe an alternative approach to application adaptation and
resource selection. We start an application on any set of resources. Simple heuristics
can be used to select this initial set of resources (e.g., select fast processors rather
than slow ones) but no performance model is needed. During the application run, we
collect statistics about the run and use them to estimate the resource requirements
of the application. Our approach does not use any application-specific statistics, but
look at metrics that can be applied to any parallel application: parallel efficiency,
communication overhead, etc. Looking at those parameters we can conclude, for ex-
ample, that there is not enough bandwidth in the system, or that there are more nodes
than the application degree of parallelism would justify. Next, we refine the resource
set the application is running on by adding and/or removing compute nodes. We
repeat this procedure periodically, which allows us to adapt to changing conditions.

A major advantage of our approach is that it improves application performance
in many different situations that are typical for grid computing. It handles all of the
following cases:

e Automatically adapting the number of processors to the degree of parallelism
in the application, even when this degree changes during the computation.

e Migrating (part of) a computation away from overloaded resources.

e Removing resources with poor communication links that slow down the compu-
tation.

e Adding new resources to replace resources that have crashed.

4.3.1 Application requirements

We studied the adaptation problem in the context of divide-and-conquer applications.
However, we believe that our methodology can be used for other types of applications
as well. In this section we summarize the assumptions about applications that are
important to our approach. We also discuss how our approach can be extended to
different types of applications.

The first assumption we make is that the application is malleable, i.e., it is able
to handle processors joining and leaving the on-going computation. In chapter 3, we
showed how divide-and-conquer applications can be made fault tolerant and malleable.
Processors can be added or removed at any point in the computation with little
overhead.

The second assumption is that the application can efficiently run on proces-
sors with different speeds. This can be achieved by using a dynamic load balanc-
ing strategy, such as work stealing used by divide-and-conquer applications [176].
Also, master-worker applications typically use dynamic load-balancing strategies (e.g.,
MW [95] described in section 2.2.2). We find it a reasonable assumption for a grid
application, since applications for which the slowest processor becomes a bottleneck
will not be able to efficiently utilize grid resources.



84 CHAPTER 4. SELF-ADAPTATION

Finally, the application is insensitive to wide-area latencies. Our strategies could
be extended to handle latency-sensitive applications. However, such applications can-
not run efficiently on wide-area grids.

4.3.2 Resource model

We assume the following resource model. The applications are running on multiple
sites at the same time, where each site is a cluster or supercomputer. We also assume
that the processors of the sites are accessible using a grid scheduling system, such as
Koala [136], Zorilla [72] or GRMS [23]. Processors belonging to one site are located
on the same LAN. The communication between the processors on the same site is
characterized by low latency and high bandwidth. Sites are connected by a WAN.
Communication between sites suffers from high latencies. We assume that the links
connecting the sites with the Internet backbone might become bottlenecks causing
the inter-site communication to suffer from low bandwidths.

4.3.3 Weighted average efficiency

In traditional parallel computing, a standard metric describing the performance of a
parallel application is parallel efficiency. Efficiency is defined as the average utilization
of the processors, that is, the fraction of time the processors spend doing useful work
rather than being idle or communicating with other processors [74].

1 n
efficiency = — * 1 — overhead;

2 )
where n is the number of processors and overhead; is the fraction of time the it
processor spends being idle or communicating. Efficiency allows calculating the appli-
cation speedup which indicates the benefit of using multiple processors in comparison
to using a single processor. The relationship between the efficiency and the speedup
is expressed by the following formula:

efficiency = @
Typically, the efficiency drops as new processors are added to the computation. There-
fore, achieving a high speedup (and thus a low execution time) and achieving a high
system utilization are conflicting goals [74]. The optimal number of processors is
the number for which the ratio of efficiency to execution time is maximized. Adding
processors beyond this number yields little benefit. This number is typically hard to
find, but in [74] it was theoretically proven that if the optimal number of processors
is used, the efficiency is at least 50%. Therefore, adding processors when efficiency is
smaller or equal to 50% will only decrease the system utilization without significant
performance gains.

For heterogeneous environments, that is, environments with processors with dif-
ferent speeds, we extended the notion of efficiency and introduced weighted average

efficiency.



4.3. AVOIDING PERFORMANCE MODELS 85

1 n
wa__efficiency = o ; speed; x (1 — overhead;)

In the above formula, the useful work done by a processor (1 — overhead;) is weighted
average by multiplying it by the speed of this processor relative to the fastest proces-
sor. The fastest processor has speed = 1, for others holds: 0 < speed < 1. Therefore,
slower processors are modeled as fast ones that spend a large fraction of time being
idle. Weighted average efficiency reflects the fact that adding slow processors yields
less benefit than adding fast processors.

In the heterogeneous world, it is hardly beneficial to add processors if the efficiency
is lower than 50% unless the added processor is faster than some of the currently used
processors. Adding faster processors might be beneficial regardless of the efficiency.

4.3.4 Adaptation coordinator

In order to monitor the application performance and guide the adaptation, we added
an extra process to the computation which we call adaptation coordinator. The adap-
tation coordinator periodically collects performance statistics from the application
processors and computes the weighted average efficiency. If the weighted average ef-
ficiency falls above or below certain thresholds, the coordinator decides on adding or
removing processors. A heuristic formula is used to decide which processors have to
be removed. During this process the coordinator learns the application requirements
by remembering the characteristics of the removed processors. Those requirements
are then used to guide the adding of new processors.

4.3.5 Collecting performance statistics

Each processor measures the time it spends communicating or being idle. The compu-
tation is divided into monitoring periods. After each monitoring period the processors
compute their overhead over this period as the percentage of the time they spent being
idle or communicating in this period. Apart from the total overhead, each processor
also computes the overhead of inter-cluster and intra-cluster communication.

In order to be able to calculate weighted average efficiency, we need to know the
relative speeds of the processors. The speeds of the processors depend on the applica-
tion and the problem size used. Since it is impractical to run the whole application on
each processor separately, we use application-specific benchmarks. Currently we use
the same application with a small problem size as a benchmark and we require the ap-
plication programmer to specify this problem size. The disadvantage of this approach
is that it requires extra effort from the programmer to find the right problem size and
possibly produce input files corresponding to this problem size, which might be hard.
An alternative solution would be generating benchmarks automatically by choosing a
random subset of the task graph of the original application. For example in figure 4.1,
two branches (darker nodes) of the execution tree are used as a benchmark.

Benchmarks have to be re-run periodically because the speed of a processor might
change if it becomes overloaded by another application (for time-shared machines).



86

CHAPTER 4. SELF-ADAPTATION

Figure 4.1: A subset of the execution tree used as a benchmark



4.3. AVOIDING PERFORMANCE MODELS 87

Therefore, measuring the speed incurs an overhead. There is clearly a trade-off be-
tween the accuracy of speed measurements and the overhead it incurs. The longer the
benchmark, the greater the accuracy of the measurement. The more often it is run,
the faster changes in processor speed are detected. In our current implementation,
the application programmer specifies the length of the benchmark (by specifying its
problem size) and the maximal overhead it is allowed to cause. Processors run the
benchmark at such frequency so as not to exceed the specified overhead. An improve-
ment to this approach would be combining benchmarking with monitoring the load
of the processor which would allow us to avoid running the benchmark if no change in
processor load is detected. This optimization would further reduce the benchmarking
overhead.

Note that the benchmarking overhead could be avoided completely for more reg-
ular applications, for example, for master-worker applications with tasks of equal
or similar size. The processor speed could then be measured by counting the tasks
processed by this processor within one monitoring period. Unfortunately, divide-and-
conquer applications typically exhibit a very irregular structure. The sizes of tasks
can vary by many orders of magnitude.

At the end of each monitoring period, the processors send the overhead statistics
and processor speeds in this period to the coordinator. The adaptation coordina-
tor stores the statistics received from the processors. Periodically, it computes the
weighted average efficiency and other statistics, such as average inter-cluster overhead
or overheads in each cluster. The clocks of the processors are not synchronized with
each other or with the clock of the coordinator. Each processor decides separately
when it is time to send data. Therefore, it happens occasionally that at the end of the
monitoring period, the coordinator misses data from a few processors. In that case,
the coordinator uses data from the previous monitoring period for those processors.
This causes small inaccuracies in the calculations of the coordinator. In our experi-
ments, we did not observe any influence of those inaccuracies on the performance of
adaptation.

4.3.6 Adaptation strategy

The adaptation coordinator tries to keep the application weighted average efficiency
between two thresholds: FE,.;, and Ep.,. When the weighted average efficiency
exceeds E,,.z, the adaptation coordinator requests new processors from the scheduler.
The number of requested processors depends on the current efficiency: the higher
the efficiency, the more processors are requested. The adaptation coordinator starts
removing processors when the weighted average efficiency drops below FE,;,. The
number of nodes that are removed depends on the weighted average efficiency. The
lower the efficiency, the more nodes are removed. The thresholds we use are E,;,,, =
50%, because we know that adding processors when efficiency is lower does not make
sense, and E,;, = 30%. Efficiency of 30% or lower might indicate performance
problems such as low bandwidth or overloaded processors. In that case, removing
bad processors will be beneficial for the application. Such low efficiency might also
indicate that we simply have too many processors. In that case, removing some



88 CHAPTER 4. SELF-ADAPTATION

processors may not be beneficial but it will not harm the application. The adaptation
coordinator always tries to remove the ‘worst’ processors. The ‘badness’ of a processor
is determined by the following formula:

proc__badness; = a * + [ xic_overhead; + v * inWorstCluster(i)

speed;

The processor is considered bad if it has low speed (sp}ae - is big) and high inter-cluster

overhead (ic_ overhead). High inter-cluster overhead indicates that the bandwidth to
this processor’s cluster is insufficient. Removing processors located in a single cluster
is desirable since it decreases the amount of wide-area communication. Therefore, pro-
cessors belonging to the ‘worst’ cluster are preferred. The function inWorstCluster(i)
returns 1 for processors belonging to the ‘worst’ cluster and 0 otherwise. The ‘badness’
of clusters is computed similarly to the ‘badness’ of processors:

cluster _badness; = a * + B xic_overhead;

speed;
The speed of a cluster is the sum of processor speeds normalized to the speed of the
fastest cluster. The ic_overhead of a cluster is an average of processor inter-cluster
overheads. The a, £ and 7y coefficients determine the relative importance of the terms.
Those coefficients are established empirically. Currently we are using the following
values: a =1, f = 100 and v = 10, based on the observation that ic_overhead > 0.2
indicates bandwidth problems and processors with speed < 0.05 do not contribute to
the computation.

Additionally, when one of the clusters has an exceptionally high inter-cluster over-
head (larger than 0.25), we conclude that the bandwidth on the link between this
cluster and the Internet backbone is insufficient for the application. In that case, we
simply remove the whole cluster instead of computing node badness and removing
the worst nodes. After deciding which nodes are removed, the adaptation coordina-
tor sends a message to those nodes, and the nodes leave the computation. Figure 4.2
shows a schematic view of the adaptation strategy. Dashed lines indicate a part that
is not supported yet, as will be explained below.

This simple adaptation strategy allows us to improve application performance in
several situations typical for the Grid:

e If an application is started on a smaller number of processors than its degree
of parallelism allows, it will automatically expand to more processors (as soon
as there are extra resources available). Conversely, if an application is started
on more processors than it can efficiently use, a part of the processors will be
released.

e If an application is running on an appropriate set of resources but after a while
some of the resources (processors and/or network links) become overloaded and
slow down the computation, the overloaded resources will be removed. After
removing the overloaded resources, the weighted average efficiency will increase



4.3. AVOIDING PERFORMANCE MODELS

wait & collect

A

statistics
T T Y
.-~ faster nodes compute weighted
s available .- average efficiency E,
Yes if
add nodes E,,, aboveE,

rank nodes
remove worst nodes

Figure 4.2: Adaptation strategy



90 CHAPTER 4. SELF-ADAPTATION

to above the FE,,,, threshold and the adaptation coordinator will try to add
new resources. Therefore, the application will be migrated from overloaded
resources.

e If some of the original resources chosen by the user are inappropriate for the
application, for example the bandwidth to one of the clusters is too small, the
inappropriate resources will be removed. If necessary, the adaptation component
will try to add other resources.

e If during the computation a substantial part of the processors crash, the adapta-
tion component will try to add new resources to replace the crashed processors.

e If the application degree of parallelism is changing during the computation, the
number of nodes the application is running on will be automatically adjusted.

4.3.7 Further improvements of the adaptation strategy

Further improvements of our adaptation mechanism are possible, but require extra
functionality from the grid scheduler and/or integration with monitoring services
such as NWS [181]. For example, adding nodes to a computation can be improved.
Currently, we add any nodes the scheduler gives us. However, it would be more
efficient to ask for the fastest processors among the available ones. This could be done,
for example, by passing a benchmark to the grid scheduler, so that it can measure
processor speeds in an application specific way. Typically, it would be enough to
measure the speed of one processor per site, since clusters and supercomputers are
usually homogeneous. An alternative approach would be ranking the processors based
on parameters such as clock speed and cache size. This approach is sometimes used
for resource selection for sequential applications [102]. However, it is less accurate
than using an application specific benchmark.

Also, during application execution, we can learn some application requirements
and pass them to the scheduler. One example is the minimal bandwidth required by
the application. The lower bound on minimal required bandwidth is tightened each
time a cluster with high inter-cluster overhead is removed. The bandwidth between
each pair of clusters is estimated during the computation by measuring data transfer
times, and the bandwidth to the removed cluster is set as a minimum. Alternatively,
information from a grid monitoring system can be used. Such bounds can be passed to
the scheduler to avoid adding inappropriate resources. It is especially important when
migrating from resources that cause performance problems: we have to be careful not
to add the resources we have just removed. Currently we use blacklisting - we simply
do not allow adding resources we removed before. This means, however, that we
cannot use those resources even if the cause of the performance problem disappears,
e.g. the bandwidth of a link might improve if the background traffic diminishes.

We are currently not able to perform opportunistic migration - migrating to better
resources when they are discovered. If an application runs with efficiency between
Epin and Ep,., the adaptation component will not undertake any action, even if
better resources become available. Enabling opportunistic migration requires, again,



4.4. PERFORMANCE EVALUATION 91

the ability to specify to the scheduler what ‘better’ resources are (faster, with a
certain minimal bandwidth) and receiving notifications when such resources become
available. If that was possible, we could add those better resources even when we are
running at good efficiency, and trigger removing (part of) the slower resources we are
running on.

Existing grid schedulers such as GRAM from the Globus Toolkit [86] do not sup-
port such functionality. The developers of the KOALA metascheduler [136] have
recently started a project whose goal is providing support for adaptive applications
in KOALA. In the future, KOALA will provide the functionalities required by us to
support opportunistic migration and to improve the initial resource selection.

4.3.8 Implementation

We instrumented the Satin runtime system to collect runtime statistics and send them
to the adaptation coordinator. The coordinator is implemented as a separate process.
For requesting new nodes, the Zorilla [72] system, described in section 2.2.1 is used.
It allows straightforward allocation of processors in multiple clusters and/or super-
computers. Zorilla provides locality-aware scheduling. It tries to allocate processors
that are located close to each other in terms of communication latency. In the future,
Zorilla will also support bandwidth-aware scheduling, that is, a scheduling strategy
that tries to maximize the total bandwidth in the system. Replacing Zorilla with an-
other grid scheduler is straightforward. For example, Zorilla could be replaced with
GAT [23] or KOALA [136].

4.4 Performance evaluation

In this section, we will evaluate our approach. We will demonstrate the performance
of our mechanism in a few scenarios typical for grid environments. The first scenario
is an ‘ideal’ situation: the application runs on a reasonable set of nodes (i.e., such
that the efficiency is around 50%) and no problems such as overloaded network and
processors, crashing processors, etc., occur. This scenario allows us to measure the
overhead of the adaptation support. The remaining scenarios are typical for grid
environments and allow us to demonstrate that with our adaptation support the
application can avoid serious performance bottlenecks such as overloaded processors
or network links.

For each scenario, we compare the performance of an application with adaptation
support to a non-adaptive version. In the non-adaptive version, the coordinator does
not collect statistics and or perform benchmarking (for measuring processor speeds).
In the ‘ideal’ scenario, we additionally measure the performance of an application with
collecting statistics and benchmarking turned on but without allowing it to change
the number of nodes. This allows us to measure the overhead of benchmarking and
collecting statistics. In all experiments we used a monitoring period of 3 minutes (180
seconds) for the adaptive versions of the applications.

All the experiments were carried out on multiple clusters of the DAS-2 wide-



92 CHAPTER 4. SELF-ADAPTATION

6000 @ without monitoring and adaptation (runtime 1)
=  with monitoring and adaptation (runtime 2)
m  with monitoring but no adaptation (runtime 3) -
—~ 4000
]
(8]
@
£
)
£
<
2
2000 —
0
a b c
Scenario 0 Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

Figure 4.3: The runtimes of the Barnes-Hut application, scenarios 0-5

area system (DAS-2 was described in section 3.6). We used the Barnes-Hut N-body
simulation. This application simulates the evolution of an N-body system under the
influence of forces, for example gravitational or electrostatic forces. The simulation
is carried out in discrete time steps (iterations). In each iteration the velocities of all
bodies are computed and the positions of the bodies are adjusted?.

We chose the Barnes-Hut simulation because it is an iterative application. Ob-
serving the variability in the iteration duration can give us more insight into the
performance of the application under varying grid conditions and the effectiveness of
adaptation.

4.4.1 Scenario 0: adaptivity overhead

In this scenario, the application is started on 36 nodes. The nodes are equally divided
over 3 clusters (12 nodes in each cluster). On this number of nodes, the applica-
tion runs with 50% efficiency, so we consider it a reasonable number of nodes. As
mentioned above, in this scenario we measure three runtimes: the runtime of the
application without adaptation support (runtime 1), the runtime with adaptation
support (runtime 2) and the runtime with monitoring (i.e., collection of statistics
and benchmarking) turned on but without allowing it to change the number of nodes
(runtime 3). These runtimes are shown in figure 4.3, the first group of bars. The
comparison between runtime 3 and 1 shows the overhead of adaptation support. In
this experiment it is around 15%. Almost all overhead comes from benchmarking.
The benchmark is run 1-2 times per monitoring period. This overhead can be made

LA more detailed description of the Barnes-Hut application can be found in section 5.6.3.



4.4. PERFORMANCE EVALUATION 93

600 —

--- starting on 8 nodes
--+- starting on 16 nodes } no adaptation
--a- starting on 24 nodes

—e— starting on 8 nodes

—e— starting on 16 nodes }
—a— starting on 24 nodes

with adaptation

N

o

(=}
Il

o\ o

T -0-—0-0--6-9--¢-0-¢-0--0-9

iteration duration (secs.)

200

iteration number

Figure 4.4: Barnes-Hut iteration durations with/without adaptation, too few CPUs
(Scenario 1)

smaller by increasing the length of the monitoring period and decreasing the bench-
marking frequency. The monitoring period we used (3 minutes) is relatively short,
because the runtime of the application was also relatively short (approx. 30 minutes).
Using longer running applications would not allow us to finish the experimentation in
a reasonable time. However, real-world grid applications typically need hours, days
or even weeks to complete. For such applications, a much longer monitoring period
can be used and the adaptation overhead can be kept much lower. For example, with
the Barnes-Hut application, if the monitoring period is extended to 10 minutes, the
overhead drops to 6%. Note that combining benchmarking with monitoring processor
load (as described in section 4.3.5) would reduce the benchmarking overhead in this
scenario to almost zero: since the processor load is not changing, the benchmarks
would only need to be run at the beginning of the computation.

Note that runtime 2 (with adaptation) is slightly shorter than runtime 3 (without
adaptation). The reason is that during the run with adaptation turned on, a few nodes
were added to computation when at some point the measured normalized efficiency
dropped slightly below 50%.



94 CHAPTER 4. SELF-ADAPTATION

4.4.2 Scenario 1: expanding to more nodes

In this scenario, the application is started on a number of nodes that is smaller than
the application can efficiently use. This may happen because the user does not know
the right number of nodes or because a bigger number of nodes was not available
at the moment the application was started. We tried 3 initial numbers of nodes: 8
(Scenario 1a), 16 (Scenario 1b) and 24 (Scenario 1c). The nodes were located on 1
or 2 clusters. In each of the three sub-scenarios, the application gradually expanded
to 36-40 nodes located in 4 clusters. This allowed to reduce the application runtimes
by 50% (Scenario 1a), 35% (Scenario 1b) and 12% (Scenario 1c) with respect to the
non-adaptive version. These runtimes are shown in figure 4.3. Since Barnes-Hut is
an iterative application, we also measured the time of each iteration. These times are
shown in figure 4.4. Adaptation reduces the iteration time by a factor of 3 (Scenario
1a), 1.7 (Scenario 1b) and 1.2 (Scenario 1c¢) which allows us to conclude that the gains
in the total runtime would be even bigger if the application were run for more than
15 iterations.

4.4.3 Scenario 2: overloaded processors

In this scenario, we started the application on 36 nodes in 3 clusters. After 200 sec-
onds, we introduced a heavy, artificial load on the processors in one of the clusters.
Such a situation might happen when an application with a higher priority is started
on some of our resources. Figure 4.5 shows the iteration durations of both the adap-
tive and non-adaptive versions. After introducing the load, the iteration duration
increased by a factor of 2 to 3. This happened in iteration 2 for the adaptive version
and iteration 3 for the non-adaptive version (since the iterations in the non-adaptive
version are slightly shorter). Also, the iteration times became very variable. The
adaptive version observed a very low weighted average efficiency (20%) and reacted
by removing the overloaded nodes (iteration 3). After removing these nodes, the
weighted average efficiency rose to around 65% which triggered adding new nodes (it-
eration 5) and the application expanded back to 38 nodes. So, the overloaded nodes
were replaced by better nodes, which brought the iteration duration back to the initial
value. This reduced the total runtime by 14%. The runtimes are shown in figure 4.3.

4.4.4 Scenario 3: overloaded network link

In this scenario, we ran the application on 36 nodes in 3 clusters. We simulated that
the uplink to one of the clusters was overloaded and the bandwidth on this uplink
was approximately 100 KB/s.

To simulate low bandwidth we use the traffic-shaping techniques described in [63]°.
To achieve the specified sending rate, the sender sleeps an appropriate time between
sending packets. The sleeping time is calculated as a difference between the time the
transmission should have taken if the link had the specified bandwidth and the time
the transmission really took. This is done both on the sending and on the receiving

2We used a traffic shaper implemented by Mathijs den Burger [68]



4.4. PERFORMANCE EVALUATION 95

--e- no adaptation

—e— with adaptation
1000 |

800 CPU load introduced

overloaded nodes removed

600

started adding nodes

iteration duration (secs.)

400

36 nodes reached

200

iteration number

Figure 4.5: Barnes-Hut iteration durations with/without adaptation, overloaded
CPUs (Scenario 2)

side. Care needs to be taken to deal with the coarse granularity of the sleep function.
More details can be found in [63].

The iteration durations in this experiment are shown in figure 4.6. The iteration
durations of the non-adaptive version exhibit enormous variation: from 170 to 890
seconds. The adaptive version observed a weighted average efficiency of 25% and a
high WAN communication overhead in one of the clusters (40%). Therefore it removed
the badly connected cluster after the first monitoring period. As a result, the weighted
average efficiency rose to around 65% and new nodes were gradually added until their
number reached 38. This brought the iteration times down to around 100 seconds.
The total runtime was reduced by 60% (figure 4.3).

4.4.5 Scenario 4: overloaded processors and an overloaded
network link

In this scenario, we ran the application on 36 nodes in 3 clusters. Again, we simulated
an overloaded uplink to one of the clusters. Additionally, we simulated processors with
heterogeneous speeds by inserting a relatively light artificial load on the processors in
one of the remaining clusters. The iteration durations are shown in figure 4.7. Again,



96 CHAPTER 4. SELF-ADAPTATION

--e- no adaptation
—e— with adaptation
1000
.
o "
n ‘|‘
n !
—~ 800 N one cluster is b'aqu connected
8 [ | |‘
I
% 1 badly conm’edted cluster removed
~ [ )
c 1o h ll
o [ | .
= 600 P H \ started adding nodes
—_ 1 | | |
> i | | |
h ro | S I
s ! A | ' i\
'g ! ! 7\ [ ‘1 Iy
S 400 ! \ ron o 36 nodes reached
Q | \ | |
= 1 | | |
I i ) |‘
1
h \
| |
200 \
0 T r '

iteration number

Figure 4.6: Barnes-Hut iteration durations with/without adaptation, overloaded net-
work link (Scenario 3)

the non-adaptive version exhibits a great variation in iteration durations: from 200
to 1150 seconds. The adaptive version removes the badly connected cluster after the
first monitoring period, which brings the iteration duration down to 210 seconds on
average. After removing one of the clusters, since some of the processors are slower
(approximately 5 times), the weighted average efficiency rises only to around 35-40%
and oscilates around those values. At some point it drops slightly below 30% which
triggers removing 2 of the slower nodes. This example illustrates what the advantages
of opportunistic migration would be. There were faster nodes available in the system.
If those nodes were added to the application (which could trigger removing more of
the slower nodes) the iteration duration could be reduced even further. Still, the
adaptation reduced the total runtime by 30% (figure 4.3).

4.4.6 Scenario 5: crashing nodes

In the last scenario, we also ran the application on 36 nodes in 3 clusters. After 500
seconds, 2 out of 3 clusters crash. The iteration durations are shown in figure 4.8.
After the crash, the iteration duration rose from a 100 to 200 second. The weighted
average efficiency rose to around 70%, which triggered adding new nodes in the adap-
tive version. The number of nodes gradually went back to 36, which brought the



4.5. COMPARISON WITH RELATED WORK 97

! .
h --e- no adaptation
| K .
" —e— with adaptation
1000 " |
|
! |
I’ |
;!
! one cluster is badly connected
—~ 8004 | “ 12 nodes lightly overloaded
: |
8 o
% : | removed badly connected cluster
= \
!
s ro :
S 600 4 I | removed 2 lightly overloaded nodes
© I
= ) {
3 |
c
§e]
=
g 400
=
200
0 T T T
0 5 10 15

iteration number

Figure 4.7: Barnes-Hut iteration durations with/without adaptation, overloaded
CPUs and an overloaded network link (Scenario 4)

iteration duration back to around 100 seconds. The total runtime was reduced by
13% (figure 4.3).

4.5 Comparison with related work

A number of Grid projects address the question of resource selection and adaptation.
In most of these projects, resource selection and adaptation depend on performance
models that allow predicting application runtime on a given resource set. The Grid
Application Development System (GrADS) [172] uses performance models to select
the set of resources with the minimal predicted runtime. During the computation,
the application performance is monitored using the Autopilot infrastructure [151].
If the ratio between the predicted and the actual application performance exceeds
a certain threshold, migration is requested. Upon a migration request, the resource
selection phase is repeated - possible resource sets are re-evaluated and if a better set
of resources is found, migration is considered. A distinguishing feature of the GrADS
environment is that it takes into account the remaining execution time of the appli-
cation when considering migration. Migration is performed only when the predicted
remaining execution time on the new set of resources plus the worst case migration



98 CHAPTER 4. SELF-ADAPTATION

--e- no adaptation
—e— with adaptation
1000
—~ 800+ 2 out of 3 clusters crash
]
o
@ started adding nodes
N
s
% 600 36 nodes reached
o
=1
k=]
c
i)
=
g 400
=
200 +
0 T T T T T U T 1
0 5 10 15

iteration number

Figure 4.8: Barnes-Hut iteration durations with/without adaptation, crashing CPUs
(Scenario 5)

time is smaller than the predicted remaining execution time on the current set of
resources. This approach allows to avoid costly migrations when the application is
close to completion. GrADS also supports opportunistic migration. If some other
application has recently completed, the GrADS rescheduler determines whether per-
formance benefits can be obtained for a currently executing application by migrating
it to use the resources freed by the completed application.

The main difference between the GrADS environment and our approach is the use
of performance models. The main advantage is that once the performance model is
known, the system is able to take more accurate migration decisions than with our
approach. However, even if the performance model is known, the problem of finding
an optimal resource set (i.e. the resource set with the minimal execution time) is NP-
complete. Currently, GrADS examine only a subset of all possible resource sets and
therefore there is no guarantee that the resulting resource set will be optimal. As the
number of available grid resources increases, the accuracy of this approach diminishes,
as the subset of possible resource sets that can be examined in a reasonable time
becomes smaller.

Unlike GrADS we are not able to predict the remaining execution time and take
it into account when deciding on adaptation. For divide-and-conquer this is of lit-



4.5. COMPARISON WITH RELATED WORK 99

tle importance, however, since adding and removing resources to divide-and-conquer
computations has small overhead. GrADS supports opportunistic migration while our
implementation currently does not. However, we plan to add support for opportunis-
tic migration in the future. Finally, GrADS is suitable for iterative MPI applications
while we are targeting at divide-and-conquer applications.

Cactus is a Grid-enabled computational framework for the construction of parallel
solvers for partial differential equations. Cactus is suitable only for single-site (super-
computer or cluster) applications. No performance model is used. The available sites
are ranked and the site with the highest rank is selected for execution. The rank of
a site is its number of processors multiplied by the processor speed. The application
can be migrated if a higher-ranked site is discovered or a performance degradation
is observed. The application performance is expressed as the number of application
iterations per second. The main difference between the Cactus methodology and our
approach is that Cactus is suitable for single-site applications. For such applications,
the complexity of the resource selection and adaptation problems is many orders of
magnitude smaller than for multi-site applications: the set of possible resource sets
is much smaller, the bandwidth between the sites does not have to be taken into ac-
count etc. Moreover, resource selection based on clock speed is not always accurate.
Finally, performance degradation detection is suitable only for iterative applications
and cannot be used for irregular computations such as search and optimization prob-
lems. We use performance degradation detection based on weighted average efficiency
which can be applied to any parallel application.

The GridWay framework [102] has many similarities with the Cactus approach.
It is targeted at sequential applications. In the resource selection phase, not only the
speed of a candidate host but also its proximity to the application files, checkpoint
files and the current host (in case of migration) is taken into account. Migration
is performed when a better host is discovered or when performance degradation is
detected. The application performance can be measured, for example, by counting the
number of application iterations per second. The main differences with our approach
are that we target multi-cluster, parallel applications while GridWay supports only
sequential ones. Also, GridWay’s performance degradation method is suitable only
for iterative applications.

The resource selection problem was also studied by the AppLeS project [37]. In
the context of this project, a number of applications were studied and performance
models for those applications were created. Based on such a model a scheduling agent
is built that uses the performance model to select the best resource set and the best
application schedule on this set. AppLeS scheduling agents are written on case-by-
case basis and cannot be reused for another application. Two reusable templates were
also developed for specific classes of applications, namely master-worker (AMWAT
template) and parameter sweep (APST template) applications. Migration is not
supported by the AppLeS software.

In [100], the problem of scheduling iterative master-worker applications is stud-
ied. The authors assume homogeneous processors (i.e., with the same speed) and
do not take communication costs into account. Therefore, the problem is reduced to
finding the right number of workers. The approach here is similar to ours in that



100 CHAPTER 4. SELF-ADAPTATION

no performance model is used. Instead, the system tries to deduce the application
requirements at runtime and adjusts the number of workers to approach the ideal
number. The adjustment is done on a per-iteration basis: the observations from the
previous iteration are used to adjust the number of workers for the following itera-
tion. Our approach supports a much wider variety of scenarios, i.e., heterogeneous
node and network speeds. Also, our approach does not assume that the application
is iterative.

Aldinucci et al. [19] present an abstract model of activities that need to be per-
formed in order to handle adaptivity in distributed applications. They apply this
model to the ASSIST framework for creating high-level, component-based applica-
tions. An ASSIST application consists of multiple modules which can themselves be
parallel programs. It is possible to specify a Quality of Service contract for each mod-
ule or for the whole application (similar to performance contracts in GrADS). If such
a QoS contract is violated, adaptation is performed. The adaptation strategy for a
component is based on the performance model of this component. ASSIST can auto-
matically provide performance models for components that have a master-worker or
a data-parallel structure. For other types of components, a performance model must
be provided by the user.

4.6 Conclusion

In this chapter, we investigated the problem of resource selection and adaptation in
grid environments. Existing approaches to those problems typically assume the exis-
tence of a performance model that allows predicting application runtimes on various
sets of resources. However, creating performance models is inherently difficult and
requires knowledge about the application.

We proposed an approach that does not require in-depth knowledge about the
application. We start the application on an arbitrary set of resources and monitor
its performance. The performance monitoring allows us to learn certain application
requirements such as the number of processors needed by the application or the ap-
plication’s bandwidth requirements. We use this knowledge to gradually refine the
resource set by removing inadequate nodes or adding new nodes if necessary. This
approach does not result in the optimal resource set, but in a reasonable resource set,
i.e. a set free from various performance bottlenecks such as slow network connections
or overloaded processors. Our approach also allows the application to adapt to the
changing grid conditions.

We implemented this approach in the Satin framework. We added an extra process
called the adaptation coordinator, which collects the runtime statistics (i.e. the idle
time, the local and wide-area communication time) and decides on adding or removing
nodes. The decisions are based on the weighted average efficiency — an extension of the
concept of parallel efficiency defined for traditional, homogeneous parallel machines. If
the weighted average efficiency drops below a certain level, the adaptation coordinator
starts removing ‘worst’ nodes. The ‘badness’ of the nodes is defined by a heuristic
formula. If the weighted average efficiency raises above a certain level, new nodes are



4.6. CONCLUSION 101

added.

This simple strategy allows us to handle multiple scenarios typical for grid envi-
ronments: expand to a bigger number of nodes or shrink to a smaller number of nodes
if the application was started on an inappropriate number of processors, remove in-
adequate nodes and replace them with better ones, replace crashed processors, avoid
slow networks, etc. The application adapts fully automatically to changing conditions.
We tested our approach on the DAS-2 distributed supercomputer and demonstrate
that our approach can yield significant performance improvements (up to 60% in our
experiments).

Future work will involve extending our adaptation strategy to support oppor-
tunistic migration. This, however, requires grid schedulers with more sophisticated
functionality than the functionality of the existing schedulers. Further research is also
needed to decrease the benchmarking overhead. For example, the information about
CPU load could be used to decrease the benchmarking frequency. Another line of
research that may be investigated is using feedback control to refine the adaptation
strategy during the application run. For example, the node ‘badness’ formula could
be refined at runtime based on the effectiveness of the previous adaptation decisions.
Finally, the centralized implementation of the adaptation coordinator might become
a bottleneck for applications which are running on very large numbers of nodes (hun-
dreds or thousands). This problem can be solved by implementing a hierarchy of
coordinators: one sub-coordinator per cluster which collects and processes statistics
from its cluster and one main coordinator which collects the information from the
sub-coordinators.



102 CHAPTER 4. SELF-ADAPTATION




Chapter 5

Data sharing in dynamic
environments

5.1 Introduction

An important disadvantage of the divide-and-conquer paradigm is its limited ap-
plicability due to the lack of global state. The only way of sharing data between
divide-and-conquer tasks is by explicit parameter passing. This model is insufficient
for many applications [107]. One class of such applications consists of programs that
pass large data structures as parameters. With pure divide-and-conquer, those large
parameters need to be copied each time a task is executed remotely, while copying the
parameters once and reusing them later would be more efficient. Another class of ap-
plications consists of programs which need to share data between independent tasks.
In pure divide-and-conquer, this form of data sharing is not possible. Branch-and-
bound applications belong to this class. Sharing the best known solution between all
the processors taking part in the computation allows pruning large parts of the search
trees. Another example is game-tree search where a transposition table is shared to
avoid evaluating the same position twice.

In this chapter, we will extend the divide-and-conquer model with a shared data
abstraction — shared objects. We will call the extended model divide-and-share. Im-
plementing a shared data abstraction in a distributed system is a challenging problem.
Providing a strong form of consistency (e.g., sequential consistency [119]) while main-
taining high performance is infeasible even on tightly connected systems like clusters
of workstations. In grid environments this problem is even harder. One problem is
the high wide-area latencies. Another problem is that grids are inherently dynamic.
The set, of processors on which the application is running constantly changes. Most
consistency protocols have been designed with a fixed set of processors in mind. Dy-
namic processor sets make consistency more complicated and expensive and therefore
impractical for grid environments.

Many relaxed consistency models have been proposed (e.g., causal consistency [104],



104 CHAPTER 5. DATA SHARING IN DYNAMIC ENVIRONMENTS

DAG-consistency [45]), but none of them are suitable for grid-enabled divide-and-
conquer grid applications, as they are either too expensive to implement in grid en-
vironments, or do not fit the needs of our applications.

Therefore, we designed a new, relaxed consistency model, which we call guard
consistency. A programmer can define the consistency requirements of an application
by means of guard functions. A guard function is associated with a divide-and-conquer
task and defines whether the shared objects accessed by this task are in a consistent
state. The runtime system allows the replicas to become inconsistent as long as the
guards are satisfied. If a guard is not satisfied, the runtime system brings the local
replicas into a correct state.

The rest of this chapter is structured as follows. In section 5.2, we present back-
ground information on data sharing. In section 5.3, we describe the shared objects
model. In section 5.4, we describe the shared objects APT and illustrate it with a num-
ber of code examples. In section 5.5, we describe the implementation of the shared
objects model. In section 5.6, we discuss our experiences with programming applica-
tions with the new model. In section 5.7, we evaluate the performance of our model,
and in section 5.8, we compare it with related work. We conclude in section 5.9.

5.2 Background

Shared data is an attractive model for expressing communication and synchronization
in distributed applications. It is at a higher level of abstraction than explicit message
passing and therefore significantly simplifies programming and debugging distributed
applications. In this section, we will present background information on data sharing
in distributed systems. We will discuss different programming models using the shared
data abstraction: Shared Virtual Memory, shared object models and distributed tuple
space models. Next, we will discuss the algorithms used to implement shared data
abstractions. Finally, we will discuss the problem of shared data consistency and
review a number of consistency models.

5.2.1 Shared data paradigms

Data sharing paradigms can be roughly divided into two categories: unstructured and
structured paradigms [122]. Unstructured paradigms present the programmer with a
flat address space similar to how the actual physical memory is seen by applications.
With structured paradigms, the shared data is organized into user-defined abstract
data structures. In this section we will describe both the unstructured (the Shared
Virtual Memory) and structured approaches (shared objects and tuple spaces). The
classification of shared data paradigms is shown in figure 5.1.

Shared Virtual Memory

Shared Virtual Memory (SVM) [123] simulates a real physical shared memory: the
processes have an illusion of seeing a single shared address space. Processes can access
the shared memory using simple read, write and lock operations.



5.2. BACKGROUND 105

data sharing

paradigms
unstructured structured
Shared shared tuple
Virtual objects space

Memory

Figure 5.1: Data sharing paradigms

The address space of a SVM is partitioned into pages (blocks, segments). When
a processor tries to access a page which is not present in its physical memory, the
operating system or runtime system fetches the page from a remote processor and
stores a copy of the page in the local memory.

The granularity of data sharing, that is the size of the page, varies in different
systems. In some systems the unit of sharing is a multiple of the hardware page size
(Ivy [123]), in others the unit of sharing is much smaller, for example 32 bytes (Mem-
net [67]). The choice of the granularity can have a large impact on the performance
of the system. If the granularity is too small, many page transfers might occur within
a short period. However, if the granularity is large, the probability of false sharing
increases. False sharing occurs when two variables used by two different processes are
allocated on one page. In this case, the page will be constantly moved between the
two processes even though the variables are not shared. This problem results from
the fact that the structure of the shared memory does not reflect the structure of the
application. Therefore, Shared Virtual Memory is called an unstructured Distributed
Shared Memory (DSM) [122].

Ivy [123] was the first implementation of Shared Virtual Memory. Later, many
other systems were implemented, for example Memnet [67], Mirage [84], Plus [42],
Shiva [125], TreadMarks [113], Mether [135], Mermera [98], Munin [36] etc. (see [140]
for a detailed overview of a part of those systems). Shared Virtual Memory systems
were targeted at tightly-coupled systems, such as multicomputers or small networks
of workstations (typically 8 nodes, in some cases up to 64).

To avoid the mismatch between the structure of the application and of the shared
data, structured shared data models were introduced [122]. In structured data models,
the shared data appears to the application as a set of user-defined data structures.
In the following sections, we will describe two structured approaches to data sharing;:
shared objects and tuple spaces.



106 CHAPTER 5. DATA SHARING IN DYNAMIC ENVIRONMENTS

Shared objects

Structured approaches to data sharing allow tailoring the granularity of data sharing
to the application needs. Many such systems use the concept of a shared data-object
or a shared object. Shared objects encapsulate shared data. They are user-defined
abstract data structures that can be accessed by user-defined operations.

Encapsulating shared data into objects has many advantages. Sharing granularity
depends on the application structure, as the unit of data sharing is a shared ob-
ject instead of a page. This excludes the possibility of false sharing. Shared data
is accessed using high-level, composite operations rather than low-level read/write
operations, which reduces the communication overhead. Finally, shared objects allow
synchronizing accesses to the shared data. The runtime system can take care that the
high-level operations are executed indivisibly. This simplifies the programming task
as the programmer does not need to use semaphores or locks [31].

Many Distributed Shared Memory systems based on the shared object model have
been implemented. Some examples include: Orca [31], CRL [116], DiSOM [58], Am-
ber [59], SAM [153], Agora [41], Clouds [148], GARF [147], Emerald [109], RepMI [130]
and many others.

Tuple space

Another structured approach to data sharing is the concept of a tuple space. This
concept was first introduced in the parallel language Linda [18]. Tuple space is a
distributed datastructure, that is a datastructure that can be modified by multiple
processes. A tuple space consists of tuples — ordered sequences of values. There are
three operations that can be performed on tuples: out, in and read. Out adds a
tuple to the tuple space. In reads a tuple and removes it from the tuple space. Read
reads a tuple without removing it from the tuple space. Tuple space is an associative
memory, meaning that the tuples do not have addresses but they are denoted by the
values they contain.

Tuples residing in the tuple space are immutable. The only way of modifying a
tuple is by taking it out of the tuple space, modifying it in the local memory of a
processor and putting it back into the tuple space. This provides a natural way of
serializing operations on the tuple space: if two or more processes want to modify the
same tuple, only one process will succeed in taking the tuple out of the tuple space.
The remaining processes will block until the first process finishes its modifications
and puts the tuple back in the tuple space. However, this model might be inefficient
if tuples contain large amounts of data, as in that case the whole tuple needs to be
sent back and forth.

Many implementations of tuple spaces have been developed. Besides the im-
plementation in the Linda programming language, implementations for Java (Java-
Spaces [87] and TSpaces [121]), Smalltalk [132] and SML [156] exist.



5.2. BACKGROUND 107

single—writer multiple—writer
(primary—copy)
static migrating
owner ownership
Munin Munin
single-reader
data Ivy, Linda, | lvy TreadMarks
multiple-reader shipping | CRL
replication
(rep ) function Orca, RepMI
shipping

Figure 5.2: Algorithms implementing data sharing

5.2.2 Algorithms implementing data sharing

In this section, we will discuss a number of algorithms implementing shared data ab-
stractions. Such algorithms can be divided in three categories: single-reader/single-
writer, multiple-readers/single-writer and multiple-readers/multiple-writers ! [146] (a
similar classification can be found in [161]). In the single-reader/single-writer proto-
cols, only one copy of each data item exists in the system. In the multiple-reader/*
protocols, the data items are replicated, i.e. they exist in multiple copies. An overview
of the algorithms discussed in this section and example systems using those algorithms
are shown in figure 5.2.

In the single-reader/single-writer type algorithms, only one processor at a time has
a copy of the data. We call such a process the owner of the data. It can be a static
manager process (i.e., the owner of the data does not change during the computation)
or the data might be migrated between the processes.

With the static manager approach, all operations on the shared data are for-
warded to the manager which applies the operations on the data and sends back the
results. This approach has two major drawbacks. First, each operation on the data
performed by a process other than the manager requires communication over the net-
work. Therefore, this approach is suitable only for tightly-coupled systems with low
network latencies or for applications which access shared data infrequently. Another

IThe */single-writer algorithms are also known as primary-copy algorithms



108 CHAPTER 5. DATA SHARING IN DYNAMIC ENVIRONMENTS

drawback of the central manager approach is the fact the manager will become a
bottleneck if access to data is performed frequently. This problem can be alleviated
by partitioning the data and assigning a different manager to each partition.

With data-migration, data is migrated to the processor that needs to access this
data. The advantage of this approach over the previous one is that when the memory
accesses exhibit good locality, only the first in a series of accesses requires network
communication. Subsequent memory accesses can be performed locally. However,
this algorithm is susceptible to thrashing: if two processes access the same data item
or data items on the same memory page, the data will be transferred back and forth
between the two processors. Finding the previous owner of a certain data item to
request migration is also an issue. This can be done by broadcasting a migration
request to all processors. An alternative solution is maintaining a manager process
which keeps track of the data locations.

An important problem in all single-reader/single-writer algorithms is the inherent
lack of fault tolerance. Since only one version of each data item exists in the system,
if the processor owning this data item crashes, the data is lost. Another problem is
that these algorithms can severely limit parallelism as only a single process at a time
can access shared data.

When multiple processors need to access the same data at the same time, repli-
cation can improve the system performance. When data is replicated on multiple
hosts, read operations can be performed locally and are therefore very efficient. How-
ever, write operations become more expensive. Therefore, replication is a good design
choice if the read/write ratio in the application is relatively large.

When one of the replicas is modified, other replicas can be either invalidated (i.e.
removed) or updated. Updating can be done either by data-shipping, that is sending
the new value of the data item (page, object, depending on the sharing granularity)
to all replicas, or by function shipping, that is forwarding the operation that modifies
the data to all replicas and applying this operation on each replica.

The data might be either fully or partially replicated. In the first case, each
processor taking part in the computation has a copy of the data, regardless of whether
it ever accesses it or not. In the second case, only part of the processors have a copy of
the data. One option is to create a replica on a certain processor when it first accesses
a certain shared data item. Another option is to create replicas on processors that
frequently read certain data items [31]. Partial replication saves resources — memory
needed to store replicas and network bandwidth needed to update/invalidate those
replicas. However, it often requires complex administration protocols that keep track
of which data is replicated on which processors. This problem becomes particularly
difficult in dynamic systems, where processors can join or leave the computation at
any time.

The replication protocols come in two basic variants: multiple-readers/single-
writer and multiple-readers/multiple-writers. With the single-writer variant, only
one process at a time has a write-access to the data. Again, we call this process the
owner of the data. All write requests must be forwarded to the owner. The owner
updates its local copy and invalidates or updates other replicas. This operation must
be performed indivisibly. The owner can be either the same process throughout the



5.2. BACKGROUND 109

whole computation, or the ownership can migrate to a process that wants to perform
a write operation. In variants of this protocol, different data items (pages, objects)
might have different owners.

The multiple-readers/single-writer replication algorithms have a higher degree of
fault tolerance than the single-reader/single-writer approaches. If one replica of the
data crashes, the data might still be available at other replicas. However, if the owner
of certain data crashes, a special recovery phase is needed before any of the remaining
processors can perform write operations on this data.

With the multiple-writers variant, each process might perform write operations
on its replica of the data. After updating the local replica, the updates are forwarded
to other replicas. This, however, introduces the inconsistency problem: different
processors might see different versions of the same shared data. The system must
take care that the updates are applied in the proper order. This order depends on the
consistency model supported by the given Distributed Shared Memory system. An
overview of consistency models will be given in the following section.

The multiple-writer replication algorithm also has a higher degree of fault toler-
ance than the central and migrating manager approaches. However, the possibility of
crashes and the dynamic characteristics of the underlying platform introduce a diffi-
cult problem: if a processor crashes while performing an update, the update might
be forwarded to only a part of the remaining processors which results in inconsistent
data. If a processor joins the computation while another processor is updating the
data, it may miss the updates performed by this processor. This problem is known
as the atomic multicast problem. Atomic multicast is non-trivial to implement [165].

5.2.3 Consistency models

A consistency model specifies the behavior of the memory subsystem. Ideally, dis-
tributed shared memory on a parallel machine should exhibit behavior identical to
that of memory on a sequential machine. The consistency model observed by sequen-
tial machines is known as strict consistency and states that:

Any read on a data item x returns a value corresponding to the result
of the most recent write on x [165].

Implementing strict consistency in distributed systems, however, is impossible
due to the lack of absolute global time on which the definition of ‘most recent’ de-
pends [165]. Therefore, more relaxed consistency models have been designed which
provide shared data semantics very close to those of a sequential machine, but are
still possible to implement: sequential consistency [119] and linearizability [99]. Even
though possible to implement, those models were still hard to implement efficiently,
especially in wide-area systems. Therefore, weaker consistency models allowing more
efficient implementations have been proposed. In this section, we describe sequential
consistency, linearizability and a number of weaker models.

Traditionally, consistency models have been defined in terms of processors op-
erating on memory. In this section, we discuss a different way of specifying mem-
ory consistency models: computation-centric consistency models. We also discuss



110 CHAPTER 5. DATA SHARING IN DYNAMIC ENVIRONMENTS

DAG-consistency — a computation-centric model designed specifically for divide-and-
conquer applications.

None of the many existing consistency models can meet the needs of all applica-
tions — consistency requirements are different for different applications or even differ-
ent data items within one application. The idea of tailoring consistency to the appli-
cation needs in order to improve performance was first proposed by David Cheriton
in 1986 [62]. Since then, many systems with multiple consistency models have been
implemented. We provide an overview of such systems in this section.

Finally, we discuss continuous consistency models, which allow the programmer
to quantify the amount of inconsistency the application can tolerate. These models
provide another way of customizing consistency to the application requirements.

Traditional consistency models

The most popular consistency model is sequential consistency defined by Lamport
in [119]. Sequential consistency states that all processors see the operations on data
in the same sequential order and the operations by each process appear in this se-
quence in the order specified by this process’ program. Sequential consistency closely
resembles the semantics of a sequential data store and is therefore easy to use. It
has been implemented in early Distributed Shared Memory systems [123]. However,
sequential consistency has a problem of poor performance, especially in wide-area
systems.

Linearizability [99] (also known as atomic consistency) is stronger than sequential
consistency. It assumes that all operations on data receive a timestamp using a
global clock with a finite precision (thus not an absolute clock as in strict consistencys;
a Lamport clock [118] can be used for this purpose). Linearizability extends the
conditions of sequential consistency with the requirement that if the timestamp of an
operation is smaller than the timestamp of another operation, the former operation
should precede the latter operation in the operation sequence seen by the processes.
Linearizability is even more expensive to implement than sequential consistency [28§].

Causal consistency [104] is based on the notion of potential causality introduced by
Lamport in [118]. Under causal consistency, all processors must agree on the order of
operations that are causally related. Causally unrelated (concurrent) operations can
be seen in different orders by different processes. Causal consistency is relatively hard
to implement. It requires keeping track of which processes has seen which operations.
This can be done using vector timestamps [82, 133]. However, vector-timestamp based
protocols require large datastructures when large numbers of processors are used.
Additionally, support for processors dynamically joining and leaving the computation
makes such protocols very complex [105].

Under PRAM consistency [127], operations performed by a single process must be
seen by all processors in the order they were performed, while operations performed
by different processes can be seen in arbitrary order. PRAM consistency can be
implemented efficiently in multiprocessor systems because operations can be pipelined
(hence the name: PRAM - Pipelined Random Access Memory). However, in dynamic
systems the implementation becomes more complex, since special care needs to be



5.2. BACKGROUND 111

taken that updates are not lost or duplicated when processors are joining or leaving
the computation.

Cache consistency [94] (or coherence [91]) is a relaxation of sequential consistency.
Under cache consistency, operations on each memory location have to be sequentially
consistent, as opposed to all operations. Processor consistency [94, 17] is a combi-
nation of PRAM and cache consistency: processors might disagree on the order of
operations if and only if the operations were performed by different processors and
operate on different memory locations. Operations issued by a single processor must
be seen in the order imposed by this processor’s program. Slow memory [127] is a
weaker version of PRAM consistency. It requires that operations on a single memory
location performed by a single processor are seen by all processors in the same order.

All consistency models described so far enforce a specific order of individual op-
erations on the shared data. However, such models might be too restrictive and too
inefficient for many applications. Weak consistency [73], release consistency [91] and
entry consistency [38] allow the programmer to group the operations on the shared
data and enforce ordering between the groups of operations rather than between indi-
vidual operations [165]. This is done by introducing synchronization variables. Weak
consistency introduces one type of operation on synchronization variables: synchro-
nize(var). On invoking this operation, the shared data is synchronized: that is, all
local operations performed by the invoking process are propagated to other processes
and all operations performed by other processes are applied to the local copy of the in-
voking process. Accesses to synchronization variables are sequentially consistent. Re-
lease consistency distinguishes two types of synchronization operations: acquire(var)
and release(var). On acquire, all operations performed by local processes are applied
to the local copy. On release, local operations are forwarded to other processes. Entry
consistency differs from release consistency in that it requires that each shared data
item is associated with a synchronization variable. On acquire or release, only data
items associated with the synchronization variable are synchronized.

Computation-centric consistency models

While traditional consistency models are processor-centric, that is, are expressed in
terms of processors operating on a memory, computation-centric memory models are
expressed in terms of tasks (threads) operating on a memory [89]. Computation-
centric specification abstracts away the way tasks are mapped to physical processors
and is therefore especially suitable for computations is which tasks are dynamically
mapped onto available processors. Computation is modeled as a directed acyclic
graph (DAG) in which vertices represent tasks and edges represent data-dependencies
between tasks.

The computation centric approach makes it possible to express a number of in-
teresting consistency models. One such model is DAG-consistency [45] — a consis-
tency model designed especially for divide-and-conquer applications. Under DAG-
consistency, tasks may see operations on shared data in different orders but each of
those orders must be consistent with the dependencies enforced by the computation
DAG. Informally, in divide-and-conquer terms DAG-consistency can be defined re-



112 CHAPTER 5. DATA SHARING IN DYNAMIC ENVIRONMENTS

cursively in the following way: a task must see all writes its parent must have seen,
plus the writes issued by the parent. A task may, but does not have to, see the writes
issued by its siblings. A formal definition of DAG-consistency can be found in [45].

DAG-consistency has been implemented in the Cilk divide-and-conquer frame-
work [46] using the Backer algorithm [45] which performs well on a tightly coupled
machine like the CM-5, but is not suitable for wide-area systems. Moreover, Cilk’s
shared memory was developed for pure divide-and-conquer applications which use
large data structures, and not for applications that need to share data between sib-
ling tasks (such as branch-and-bound computations). With the Backer algorithm,
updates of shared data are passed only along the edges of the execution tree, but not
to sibling tasks. Only sibling tasks that execute on the same machine can see each
other’s updates. Therefore Cilk’s shared memory is unsuitable for applications such
as branch-and-bound algorithms or game-tree search.

Mixed consistency models

One way of tailoring the consistency criteria to the application needs is proposing
multiple consistency models to choose from and/or combine. In such systems, the pro-
grammer can choose the consistency level on per-application, per-object, per-replica
or per-access basis.

Hybrid consistency [88], mixed consistency [16] and Mether [135] allow the pro-
grammer to combine two consistency models. Hybrid consistency allows for strong
and weak operations. Different levels of consistency can be mixed within one appli-
cation, but accesses to the same data item must be of the same consistency level.
Strong operations appear to be executed in some sequential order. Operations in-
voked by the same process of which one is strong appear to be executed in the order
they were invoked. Agrawal et al. [16] describe mixed consistency in which causal and
PRAM memories are combined. In this model, reads are labeled as causal or PRAM.
In Mether [135], memory can be accessed in two modes: read-write mode (strongly
consistent) and read-only mode (weakly consistent). This is specified when a process
maps a shared memory segment into its address space. The programmer can choose
to enforce consistency at any point in the program.

The designers of Mermera [98] argue that more levels of consistency are needed
in order to better tune the system to the needs of applications. Mermera allows the
programmer to choose from four types of memory semantics: sequentially consistent,
PRAM, slow and local. Local consistency is a very weak consistency criterion where
writes only have to be visible to the process that performed those writes. The con-
sistency level is specified on per access basis: memory writes are labeled with their
consistency level. Reads are not labeled, and the semantics of each read is the same:
the local copy of an object is returned. Different consistency levels can be mixed
within one application and accesses to one object can have different consistency lev-
els. The semantics of such mixed accesses is as follows: sequential writes are totally
ordered and this order is consistent with each process’ program and with the infor-
mation flow through weaker writes. PRAM writes and sequential writes satisfy the
PRAM order, that is the order consistent with each process’ program. Slow, PRAM



5.2. BACKGROUND 113

and sequential writes satisfy Slow consistency. Local, slow, PRAM and sequential
writes satisfy local consistency. Maya [15] also supports four consistency models: se-
quentially consistent, causal, PRAM and entry consistency [38]. Contrary to other
systems, however, Maya does not allow mixing consistency models. The programmer
must choose one consistency criterion for the whole application.

GARF [147] is an object-oriented framework which supports five consistency mod-
els: slow, PRAM, causal, sequential and linearizability. With GARF, the programmer
first describes application functionalities using passive data objects. This is done in a
centralized and sequential environment. The next step is adapting the application to
the distributed environment. Data objects are dynamically bound to encapsulator ob-
jects which control how data objects send and receive invocations, and mailer objects
which control the communication between encapsulators. GARF provides a library
of encapsulator and mailer objects. Encapsulator objects for handling asynchrony
(asynchronous invocations), concurrency control and replication (active and passive)
are provided. Among mailer classes provided by GARF, some represent consistency
criteria — those are the classes extending the Mcast (multicast) class. GARF sup-
ports the following types of multicast: slow, PRAM, causal, atomic, sequential and
CAtomic (which corresponds to linearizability).

Continuous consistency models

In some systems, consistency requirements are expressed as the maximal allowed dis-
tance between the result observed (read) by the application and the ideal result — the
result that would be observed with strong consistency (e.g. sequential consistency).
This approach is called continuous consistency [186], because it explores the contin-
uum between strong consistency, where the difference between the observed and ideal
result is zero, and optimistic consistency, where this difference is unbounded.

With N-ignorant transactions [117], the number of updates missed by a replica is
bounded — N is a user-defined parameter and an N-ignorant transaction is a transac-
tion that may be ignorant of the results of at most N prior transactions.

With quasi-copies [24] the application programmer can define how much a sec-
ondary copy, called a quasi-copy in this context, can diverge from the primary copy.
The programmer can choose from three types of consistency conditions: delay condi-
tion specifies how much time the quasi-copy can lag behind the primary copy. Version
condition defines how many updates the quasi-copy can miss. This criterion is similar
to the N parameter in N-ignorant transactions. Arithmetic condition specifies how
much the numerical values of the quasi-copy and the primary-copy can differ (for
objects with numerical values).

Beehive [158] introduces delta consistency — a consistency criterion similar to the
delay condition of quasi copies. With delta consistency a read returns a value that
was produced at most delta time units preceding the read. Delta is an application-
specified parameter.

Timed consistency [170] requires that if the time of a write is ¢, the value written by
this operation must be visible to all sites in the distributed system by time t+delta,
where delta is an application specific parameter. This criterion is similar to delay



114 CHAPTER 5. DATA SHARING IN DYNAMIC ENVIRONMENTS

condition of quasi-copies and to delta consistency.

InterWeave [60] supports the notion of a recent enough copy. Recent enough comes
in six flavours: full coherence — always obtain the most recent version of the object
and exclude any concurrent writers, null coherence — always accept the currently
cached version, delta coherence guarantees that the object is no more than z versions
out of date (similar to N-ignorant transactions and version condition in quasi-copies),
temporal coherence guarantees that the object is no more than z time units out of date
(similar to delay condition of quasi-copies, delta consistency and timed consistency),
finally diff-based coherence guarantees that no more than 2% of the object is out of
date.

The most general approach was proposed by Yu and Vadhat in [186], and we
describe this approach in more detail here. In their conit-based continuous consistency
model, applications can define their consistency requirements as conits (consistency
units). Formally, a conit is a function that maps the shared data state to a real
number. Each read depends on a number of conits and each write affects a number
of conits. Each conit has a consistency level, quantified along a three-dimensional
vector:

Consistency = (numerical error, order error, staleness)

Numerical error is the difference between the observed value of a conit and its ideal
value if strong consistency was enforced. Order error is the weighted out-of-order
writes (i.e., writes that might be rolled back and applied in a different order). Stal-
eness is the age of the oldest write affecting the conit that has not been seen by
the local replica. For each read, the application can specify the required consistency
level of each conit the read depends on. For each write, the application specifies how
it affects each conit, that is, how it changes the value of each conit, and what is
its order weight with respect to each conit. The conit-based consistency model was
implemented in TACT. TACT exports a simple API for defining consistency require-
ments: the DependonConit() function to declare the required consistency level and
the AffectConit() function to tell the system how a write affects each conit.

Note that, although conits were defined as functions mapping the shared data
state to real numbers, the programmer does not need to define such functions. It is
enough to specify how each write affects each conit and how each read depends on
conits.

The conit-based model elegantly unifies all the models described in this section.
Timed consistency can be expressed using the staleness metric. Version and diff-based
consistency can be expressed using the numerical error metric. Also, traditional con-
sistency models (e.g., sequential consistency, causal consistency etc.) can be expressed
in conit theory. However, it requires conits to be dynamically defined (one conit per
access) and the number of conits can be quite large, making the implementation im-
practical. Moreover, conit-based consistency was not designed with high-performance
applications in mind, but applications such as message boards or airline reservation
systems. The protocols used in TACT are heavy-weight and less suitable for high
performance applications.



5.3. THE DIVIDE-AND-SHARE PROGRAMMING MODEL 115

5.3 The divide-and-share programming model

To increase the applicability of the Satin framework, we extended the divide-and-
conquer model with a shared-data abstraction. We chose a shared objects model
since it fits naturally into object-oriented Java and it is possible to implement it
efficiently in distributed systems [31]. In the rest of this thesis, we will refer to
the divide-and-conquer model extended with shared objects as the divide-and-share
model.

Shared objects are passed by reference to all or part of the divide-and-conquer
tasks. Updates performed on a shared object are visible to all tasks holding a reference
to this object. Shared objects are automatically replicated on processors that execute
tasks accessing those objects. We use replication on demand: a replica is created on
the first access to the object.

Replication is implemented using an update protocol with function shipping:
methods that modify the state of the objects are forwarded to other processors, which
apply them on their local replicas, other methods are executed only locally. However,
distinguishing between the two types of methods is the responsibility of the program-
mer. The programmer marks part of the methods in the shared object as shared
methods, and those methods are propagated to other replicas. If a method is not
marked as shared, it will not be propagated even if it changes the object state. Auto-
matically distinguishing between local and shared methods is very complex and incurs
considerable runtime overhead. Due to Java’s support for inheritance, the read-write
analysis of methods would have to be performed at runtime (as explained in [130])
which causes performance overhead. Also, many restrictions have to be imposed on
the use of shared objects to prevent the programmer from changing the object state
in an uncontrolled way. For example, shared object fields cannot be accessed directly
(only through methods), shared object methods cannot return an object reference,
static fields in shared objects are disallowed, etc. [130].

Because distinguishing between shared and local methods is the responsibility
of the programmer, the runtime system cannot guarantee that replicas will remain
consistent. However, implementing strong consistency models, such as sequential con-
sistency is not efficient in grid environments anyway. Moreover, many applications do
not need strong consistency guarantees. For example, branch-and-bound applications
typically do not need any consistency guarantees, as the shared data is used to opti-
mize the search process. Other applications need only very weak guarantees. For such
applications, protocols implementing strong consistency would impose an unnecessary
performance penalty. Finally, having explicitly inconsistent replicas can be useful for
some applications. One example is a replicated transposition table: replicas may con-
tain different numbers of entries depending on the amount of memory available on a
processor.

Therefore, Satin’s shared objects provide a user-controlled, relaxed consistency
model called guard consistency. Under guard consistency, the user can define the
application consistency requirements using guard functions. Guard functions are as-
sociated with divide-and-conquer tasks. Conceptually, a guard function is executed
before each divide-and-conquer task. A guard checks the state of the shared objects



116 CHAPTER 5. DATA SHARING IN DYNAMIC ENVIRONMENTS

accessed by the task and returns true if those objects are in a correct state, or false
otherwise. Using guards, the programmer can enforce only as much consistency as
the application really needs.

Not every consistency criterion can be implemented using guards. The criteria can-
not be stronger than DAG-consistency. As mentioned above, under DAG-consistency,
a child task must see updates that its parent has seen, as well as updates made by the
parent. It may but need not see updates made by its siblings. A guard has exactly
the same parameter list as the function implementing the divide-and-conquer task.
Therefore, the guard has access to the shared objects used by this task and to the
task parameters which depend on the state of the parent that has spawned that task.
Therefore the guard can ensure that the state seen by a task is consistent with the
state seen by its parent.

The runtime system allows replicas to become inconsistent as long as guards are
satisfied: the updates are propagated to remote replicas on a best-effort basis. The
runtime system does not guarantee that the updates will not be lost or duplicated.
Updates may be applied in a different order on different replicas. This makes using
scalable but unreliable broadcasting techniques such as gossiping possible. Also, nodes
dynamically joining or leaving the computation are supported. When a guard is not
satisfied, the runtime system invalidates the local replicas of shared objects used by
the task and fetches a consistent replica from another processor. This will be explained
in more detail in section 5.5.

Operations on shared objects are executed atomically. The runtime system guar-
antees that shared object operations do not run concurrently with each other or with
divide-and-conquer tasks. An operation performed by a task becomes visible to other
tasks only when the system reaches a so-called safe point: when a task is creating
(spawning) subtasks, when a task is waiting for its subtasks to finish, or when a
task completes. Tasks can also explicitly poll for shared object updates. This makes
the model clean and easy to use, as the programmer does not need to use locks and
semaphores to synchronize access to shared data.

5.4 Programming interface and examples

In this section, we describe the shared objects programming interface and use simple
examples to demonstrate how to write parallel applications with the divide-and-share
model.

To define a shared object in Satin, the programmer has to write a class that
extends the special class satin.so.SharedObject. The programmer also needs to use
the special interface satin.so.SharedMethodsInterface to mark shared methods. This
mechanism is similar to the use of the satin.Spawnable interface: shared methods must
be declared in an interface that extends the empty satin.so.SharedMethodsInterface.

Figures 5.3 and 5.4 show an example application that uses shared objects: the
Traveling Salesman Problem (TSP). TSP searches for the shortest path through a set
of cities. Figure 5.3 shows how the shared objects are declared. TSP uses two shared
objects: the Min (line 7) object holds the length of the shortest path found so far and



5.4. PROGRAMMING INTERFACE AND EXAMPLES 117

1: interface MinInterface extends satin.so.SharedMethodsInterface {
2:

3: public void set (int val);

4:

5: }

6:

7: final class Min extends satin.so.SharedObject
8: implements MinInterface {

9:

10: int val = Integer .MAX VALUE;

11:

12: public void set (int new val) {

13: if (new_val < val) val = new_val;

14: }

15:

16: public int get () {

17: return val;

18: }

19:

20: }

21:

22: final class DistTable extends satin.so.SharedObject {
23: JE

24:

Figure 5.3: Declaring shared objects in the TSP application

the DistTable (line 22) object contains a table with distances between each pair of
the cities. The Min object has two methods: get() and set(). Set() is declared in the
MinInterface (line 1), which extends the special satin.so.SharedMethodsInterface and
is therefore a shared method. Get() is not declared in this interface and is therefore
a local method. The DistTable is a constant object — it does not change during the
execution. Therefore, all its methods are local (not shown).

Figure 5.4 shows how the shared objects are used in the application. The tsp()
method (lines 3,10) is a spawnable method, since it is declared in the TspInterface
(line 1) which extends the satin.Spawnable interface. All shared objects accessed by
a divide-and-conquer task must be passed to this task as parameters. Therefore tsp()
has the Min and DistTable objects in its parameter list. In line 22, the tsp() function
updates the Min object by calling its set() method. Since set() is a shared method,
this invocation will be forwarded to other replicas of the object.

Shared objects are always passed by-reference, unlike ‘normal’ parameters in Satin
which can be passed by-reference or by-value depending on whether the task is exe-
cuted locally or remotely. When a task is executed remotely, only the shared object
reference is transferred to the remote machine, instead of a copy of the object. The
task will then access the replica of the object present at the remote machine. If
necessary, a new replica will be created.

For each spawnable function, the programmer may define a guard function, in the
same class. The name of the guard function is ‘guard <spawnable function>’. Tt
must have exactly the same parameter list as the spawnable function and return a



118 CHAPTER 5. DATA SHARING IN DYNAMIC ENVIRONMENTS

1: public interface Tsplnterface extends satin.Spawnable {
2:

3: public int tsp(int hops, byte[] path,

4: int len, Min min, DistTable dist);

5:

6: }

7:

8: public class Tsp extends satin.SatinObject implements TspInterface {
9:

10: public int tsp(int hops, byte[] path,

11: int len, Min min, DistTable dist) {
12:

13: int [] mins = new int [NRTOWNS];

14:

15: /*xuse the shared object to generate a cutoffx/

16: if (len >= min.get ()) {

17: return len;

18: }

19:

20: /*update minimums/

21: if (hops == NrTowns) {

22: min.set (len);

23: return len;

24: }

25:

26: for (int city : getCitiesNotOn (path)) {

27: /xspawn a new task for each city not on initial pathx/
28: mins[i++] = tsp(hops+1, extendPath (path, city),
29: len + dist.getDist (path[path.length —1],city),
30: min, dist);

31: }

32: sync ()3

33:

34: /*return the shortest routex/

35: return getMinimum(mins);

36: }

37:

38: public static void main(String args[]) {

39:

40: Min min = new Min();

41: DistTable dist = new DistTable();

42: Tsp tsp = new Tsp();

43: int result = tsp.tsp (0, new byte[0], 0, min, dist);
44: tsp.sync ();

45: System.out.println (‘“ Shortest path:’’ 4+ result);
46:

47:

48: }

Figure 5.4: Using shared objects in the TSP application



5.5. IMPLEMENTATION 119

boolean value.

Since TSP does not need any consistency guarantees, we use a different application
as an example: the Barnes-Hut N-body simulation. This application simulates the
behavior of N bodies under influence of forces (e.g., gravitational or electrostatic).
The pseudo-code for this application is shown in figures 5.5 and 5.6. The positions of
all bodies are stored in a shared object Bodies. Figure 5.5 shows the declaration of this
object. This object contains the positions and masses of all bodies (bodyArray, line
11) and an octagonal tree which represents the space the bodies are in (bodyTreeRoot,
linel2).

Figure 5.6 shows how the shared object is used. The application performs a number
of iterations. At the end of each iteration, the root task updates the positions of the
bodies and the body tree (figure 5.6, line 52). Before a processor starts executing a
task belonging to a certain iteration, it has to make sure that it received the updates
belonging to the previous iteration, that is, it checks if its shared object replica is
consistent with the replica accessed by the root task. This is done by means of a guard
function. The guard function (guard_ computeForces()) is shown in figure 5.6, line 35.
Its signature is identical to the signature of the spawnable function (computeForces(),
lines 3,12) except for the return type.

Because shared object invocations are serialized and sent over the network to
remote processors, all the parameters of shared methods must be either of basic types
or must be serializable. Also shared objects themselves must be serializable, because
they are sent to remote processors while creating new replicas. This is, however,
ensured by inheriting from the satin.so.SharedObject class which is serializable (in
Java, all subclasses of a serializable class are serializable as well). The programmer is
allowed to use standard Java serialization mechanisms, for example he can provide his
own serialization and deserialization methods: readObject() and writeObject(). Also,
the keyword transient can be used to declare that certain fields should not be sent
over the network. This mechanism can be used to decrease the amount of data sent.
For example, in Barnes-Hut, the shared object Bodies contains not only the positions
of the bodies, but also the body tree. Sending the entire body tree is very expensive,
while it can be reproduced using the body positions. Therefore, the programmer can
declare the body tree as transient and write a readObject() method which creates the
body tree after reading the positions of the bodies (figure 5.5, line 26).

5.5 Implementation

We have extended the Satin bytecode rewriter and the Satin runtime system to sup-
port shared objects. The bytecode rewriter searches for interfaces extending the
special satin.so.SharedMethodsInterface. It generates the necessary communication
code for all methods found in such interfaces (shared methods).

Uunlike the implementation of Java RMI or RepMI [130], we do not use stubs:
special proxy objects through which all accesses to shared objects must go. Instead,
the Satin bytecode rewriter rewrites the shared methods in such a way that before
calling the method locally, it is first marshaled (i.e., its identifier and parameters)



120 CHAPTER 5. DATA SHARING IN DYNAMIC ENVIRONMENTS
1: public interface BodiesInterface

2: extends satin.so.SharedMethodsInterface {

3:

4: public void update(LinkedList results, int iteration);

5:

6: }

7:

8: public class Bodies extends satin.so.SharedObject

NN DN DN NN N = = = = = = e e
DU WN = OO0 WD~ OO

27:
28:
29:

31:
32:
33:
34:
35: }

implements BodiesInterface {
Body|[] bodyArray;

transient BodyTreeNode bodyTreeRoot ;
public int iteration;

public void update(LinkedList results, int iteration) {
this.iteration = iteration;
/xupdate the body array and the body treex/

}

/xredefine standard deserialization methodx/
private void readObject(java.io.ObjectInputStream in)
throws java.io.IOException, ClassNotFoundException {

/xset all non—transient fields=x/
in.defaultReadObject ();

/«xrebuild the body tree using the bodyArrays/
bodyTreeRoot = buldBodyTree (bodyArray);

Figure 5.5: Declaring a shared object in the Barnes-Hut application



5.5. IMPLEMENTATION 121

1: public interface BarnesHutInterface extends satin.Spawnable {
2:

3: public LinkedList computeForces (byte[] nodeld,

4: int iteration, Bodies bodies);
5:

6: }

7:

8: public class BarnesHut extends satin.SatinObject

9: implements BarnesHutInterface {

10:

11: /*spawnable functionx/

12: public LinkedList computeForces (byte[] nodeld,

13: int iteration, Bodies bodies) {
14:

15: LinkedList res|[] = new LinkedList[8];

16: BodyTreeNode treeNode = bodies.findTreeNode (nodeld );

17:

18: if (treeNode.children = null) {

19: /xleaf node, do sequential computation*/

20: return treeNode.computeForcesSeq (bodies);

21: } else {

22: for (int i = 0; i < 8; i++) {

23: if (treeNode.children[i] != null) {

24: /xspawn child taskssx/

25: byte[] newNodeld = createNewNodeld (nodeld, i);

26: res|[i] = computeForces (newNodeld, iteration,h bodies);
27: }

28:

29: sync ()3

30: return combineResults(res);

31: }

32: }

33:

34: /*guard functionx/

35: public boolean guard computeForces(byte[] nodeld,

36: int iteration, Bodies bodies) {
37:

38: return (bodies.iteration+1 == iteration);

39:

40: }

41:

42: /*main function, in which the body positions are updatedsx/
43: public static void main(String [] args) {

44: BarnesHut barnesHut = new BarnesHut ();

45: Bodies bodies = new Bodies (NUMBODIES);

46: for (int iteration = 0; iteration < ITERATIONS; iteration++) {
47: /*xspawn s/

48: LinkedList results = barnesHut.computeForces (rootNodeld,
49: iteration, bodies);
50:

51: sync ()3

52: bodies.update (results, iteration);

53: }

54: }

Figure 5.6: Using a guard function to enforce shared object consistency in Barnes-Hut



122 CHAPTER 5. DATA SHARING IN DYNAMIC ENVIRONMENTS

and sent to remote replicas. The advantage of this solution is that the programmer
can access the fields of a shared object directly which makes the programming model
more flexible and easy to use. With stubs, the shared objects could only be accessed
through methods. A disadvantage is that shared object references must be handled in
a special way. With RMI and RepMI stubs serve as object references. Stubs contain
special serialization and deserialization routines which take care that after being sent
to a remote machine, the stub points to the right (replica of the) object. Since we do
not use stubs, the Satin runtime system must search for shared object references in the
data structures sent to remote machines, and ensure that each such reference points
to the right replica on the remote machine. This complicates the implementation
of the runtime system. Currently, we restrict the way shared object references can
be used: shared objects cannot be passed as parameters of shared methods of other
shared objects. Shared objects cannot have fields of the SharedObject type. Creating
data structures (such as arrays, graphs) with shared object references and passing
them as parameters to spawnable methods is also forbidden. Shared objects must be
included explicitly in the parameter list of a spawnable method. In the future, we
want to extend the Satin bytecode rewriter and runtime system to handle also more
advanced usages of shared object references.

Replicas of shared objects are created in the following way. If a processor receives
a task with a shared object as a parameter, it checks if it has a replica of this object.
If it does not have the replica, it copies the object from the machine it received the
task from. This way of creating replicas fits the open world model well: a processor
can join the computation at any moment and receives up-to-date replicas of all shared
objects it needs.

Updates to shared objects are forwarded to remote replicas asynchronously. We
do not try to prevent updates from getting lost or being duplicated. We do use
reliable communication, but since processors can join or leave the computation at any
moment, also while a broadcast takes place, a processor can miss an update or receive
it twice. The updates may also arrive in a different order at different machines.

Guard consistency is implemented in the following way. Conceptually, a guard
function is evaluated for each task (if a guard function is defined). The implementa-
tion, however, can make an important optimization. The Satin runtime system only
needs to evaluate guards for remote tasks which were obtained from other machines.
This approach can be used because the strongest consistency model a divide-and-
conquer application may need is DAG-consistency. When a parent and child tasks
are executed on the same machine, if a shared object was in a consistent state when
the parent was executed, it will also be consistent when the child is executed. Thus,
it is sufficient to check the consistency of shared objects for remote tasks.

If a guard evaluates to false, the following actions are taken. First the system
waits a certain amount of time for late updates to arrive. If after this time the guard
still evaluates to false, the runtime system contacts the processor from which the task
was received and requests the replicas of the shared objects used by this task. The
machine from which a task was received is the machine on which the parent of this
task was executed. So, this machine certainly contains replicas of shared objects that
are consistent for this task.



5.6. DIVIDE-AND-SHARE APPLICATIONS 123

5.6 Divide-and-share applications

In this section, we will describe our experiences with programming grid applications
using the divide-and-share model. For each of the applications, we also discuss if it
is possible to program it in a pure divide-and-conquer style (i.e., without the shared
data abstraction). For the applications that can be implemented without a shared
data abstraction, we discuss the benefits of using shared objects. Performance results
will be given in section 5.7.

5.6.1 Traveling Salesman Problem

The Traveling Salesman Problem (TSP) application computes the shortest path through
a set of cities. Each city should be visited exactly once. We use a branch-and-bound
algorithm which recursively searches all possible paths and prunes large parts of the
search space by maintaining a global variable containing the length of the shortest
path found so far. If the length of a partial path is bigger than the current minimal
length, this path is not expanded further and a part of the search space is pruned.

The implementation of TSP in Satin is straightforward (see figures 5.3 and 5.4).
A new task is spawned for each partial path. The global minimum is implemented
as a shared object. Also the static datastructure containing the distances between
all cities is implemented as a shared object to reduce communication overhead. The
shared object does not need to be consistent to ensure the correctness of the algorithm.
However, delays in update propagation may lead to search overhead.

Implementing TSP in a pure divide-and-conquer style, that is, without a shared
data extension, is possible but inefficient, because the possibility of pruning parts of
the search space is very limited. Below a certain depth in the search tree, subtrees
are evaluated sequentially and within those subtrees sharing of the minimum value
and pruning is possible. However, solutions cannot be propagated between those
subtrees. This leads to enormous search overhead and slows down the execution of
the program by a factor of 100 or even 1000, depending on the problem size and the
number of processors used. Using the Younger Brothers Wait Concept (YBWC) [81]
can improve the performance. With YBWC, the second and subsequent, subproblems
are not spawned until the first subproblem is finished. The result returned by the first
subproblem is passed to the subsequent subproblems and is likely to cause pruning
in those subproblems. This technique reduces the search overhead but also decreases
the amount of parallelism and causes load imbalance. Therefore, a pure divide-and-
conquer version of TSP with YBWC optimization is still around 40% slower than the
divide-and-share version.

5.6.2 LocusRoute

LocusRoute is a VLSI standard cell router. It routes wires between endpoints so as
to minimize the total area of the layout. To minimize the area, the algorithm tries to
route wires through regions (routing cells) that have few other wires running through
them. It calculates a cost function for each route: the number of wires in the routing



124 CHAPTER 5. DATA SHARING IN DYNAMIC ENVIRONMENTS

cells the route passes, and uses the route with the lowest cost. The total cost of the
circuit is the sum of the number of wires running through each routing cell. Because
the order of placement of the wires affects the total cost, the program performs a
number of iterations. On every iteration except the first one, each wire is ‘ripped out’
and re-routed. The LocusRoute application is a part of the SPLASH suite [157, 182].

LocusRoute was implemented in Satin by recursively splitting the set of wires into
two subsets. The subsets are routed in parallel. A shared object is used for storing
the cost array - a data structure that keeps track of the number of wires running
through each routing cell in the circuit. The data need not be consistent. However,
a delay in update propagation may diminish the quality of the resulting circuit.

Implementing LocusRoute in a pure divide-and-conquer style is not possible.
Without a shared data abstraction it is not possible to implement the cost array
data structure on which the placement of wires depends.

5.6.3 Barnes-Hut N-body simulation

Barnes-Hut simulates the evolution of a large set of bodies under the influence of
forces, for example gravitational or electrostatic forces. The evolution of N bodies
is simulated in iterations of discrete time steps. If all pairwise interactions between
bodies were computed, the complexity of the algorithm would be O(N?). The Barnes-
Hut algorithm reduces this complexity by approximating far away groups of bodies
by a single body at the center of the mass of the group of bodies. The precision factor
theta indicates if a group of bodies is far enough to use this optimization. With a
small theta the algorithm is faster while with a big theta it is more accurate. For the
purpose of this optimization, the simulated bodies are organized in a tree structure
that represents the space the bodies are in. The root node represents the whole space,
its children the subspaces of this space, etc. For each body, the algorithm traverses
the body tree. If a body tree node is far away from the given body, all bodies in this
node are approximated with a large body in the center of the node and the force is
computed. After computing forces for all bodies, the positions of the bodies and the
body tree are updated.

In the Satin implementation of the algorithm, a new task is spawned for each node
in the body tree. The task calculates forces for all bodies contained in this node. The
positions of the bodies and the tree node are stored in a shared object, so that this
enormous data structure does not have to be sent over the network each time a task
is executed remotely. The shared object is updated at the end of each iteration. The
application does have consistency constraints: the updates must be propagated to a
processor before it can start working on the next iteration. The consistency of the
data is ensured by means of guards, as described above (see figure 5.6).

The Barnes-Hut application can be also implemented in a pure divide-and-conquer
style. In that case, the positions of the bodies and the body tree have to be passed
as task parameters. This means, however, that the body tree has to be sent over the
network each time a task is stolen, which typically is thousands to tens of thousands
times during the application run. This would cause significant overhead, as the body
tree is a large data structure. The amount of data sent over the network can be



5.6. DIVIDE-AND-SHARE APPLICATIONS 125

decreased by passing only a necessary tree instead of the full body tree as a parameter.
A necessary tree contains only those parts of the body tree that are needed for the
bodies in the task’s part of the tree. However, even with this optimization, the amount
of communication in the pure divide-and-conquer version is still larger than in the
divide-and-share version.

5.6.4 SAT solver

The satisfiability problem (SAT), that is the problem of deciding whether a given
boolean formula is satisfiable, is an important NP-complete problem. The solution of
a SAT problem is either a boolean variable assignment that makes the given formula
true, or the result ‘unsatisfiable’ meaning that no such assignment exists. Solving
a SAT problem requires a systematic search over a potentially huge solution space.
Various techniques have been developed to make this search more efficient for practical
problems, but it is inherently difficult. Satisfiability solvers are commonly used in
industry to verify the correctness of complex digital circuits, such as out-of-order
execution units in modern processors.

The SAT solver used for this thesis is based on SAT4J [6], a reimplementation
in Java of MiniSAT [75]. Both MiniSAT and SAT4J are ‘industry strength’ solvers,
that are competitive with other state-of-the-art implementations. The solver uses a
backtracking search that speculatively assigns boolean values to variables until the
problem is satisfied or a conflict is encountered. Upon a conflict the solver backtracks.
Parallelizing SAT4J with Satin was relatively easy. For each speculative assignment
a task is spawned so that alternative assignments are evaluated in parallel.

A challenging issue in parallelizing SAT solvers arises from the fact that it is hard to
predict how much execution time is needed to solve a spawned subproblem. For some
subproblems, the costs of spawning may even exceed the execution time. Therefore, in
our implementation we use the approach taken in the GridSAT solver [64]: each task
first performs a certain amount of sequential search before splitting up the remaining
search problem. This guarantees that only ‘hard’ tasks will be split.

SAT solvers often implement an iterative strategy to go down the search tree.
The purpose of this is to avoid spending too much time in very deep subtrees that
might have been cut off more easily if an alternative branch was chosen earlier. In
sequential SAT solvers, this can easily be implemented by choosing a certain bound on
the total number of assignment conflicts found, and increasing that bound gradually
by a certain factor. However, implementing a similar conflict bound with a parallel
version is harder, since without communication, a particular branch does not know
how many conflicts are generated in other branches, and how the conflicts add up
globally. It is possible to make some assumption about the number of conflicts still
allowed in a particular subbranch, but this can easily be over- or underestimated,
leading either to more iterative restarts, or more searching in fruitless subtrees than
the sequential version does. With shared objects, up-to-date knowledge about the
global number of conflicts remaining can be obtained almost trivially.

Other aspects that are currently implemented using shared objects are the prun-
ing of subproblems in case a truth assignment is found by one of the searches, and



126 CHAPTER 5. DATA SHARING IN DYNAMIC ENVIRONMENTS

40
= divide-and-conquer
m divide-and-share

304

20
10_ |_I
0
TSP

LocusRoute SAT solver Barnes-Hut

speedup on 32 cpus

Figure 5.7: Speedups on 32 DAS-2 processors

an implementation of global learning [64]. In global learning, information about con-
flicting assignments learned locally in one branch of the search tree is made available
to other branches in order to potentially cut off related subtrees. As reported else-
where [43, 64], sharing these learned clauses can indeed potentially help, but also
introduces some overhead that has to be earned back. A simple way to decrease
the overhead is by restricting the use of global learning to clauses up to a certain
length (in general, the shorter the learned clause, the higher its potential impact). It
appears that a good maximal length for learned clauses is rather SAT problem de-
pendent; currently we limit it to clauses of up to ten literals. Since knowledge gained
by global learning is basically an additional source of information, it does not have to
be implemented with strong consistency.

It is possible to implement the SAT solver in a pure divide-and-conquer style.
Such an implementation, however, is less efficient. The main reason for this ineffi-
ciency is that independent branches cannot share the global number of conflicts found,
as described above. Also, global learning is not used in the pure divide-and-conquer
version. However, global learning appears to have less influence on the performance
of the solver on the SAT problem used by us in this thesis. Finally, instead of using
a shared object to notify other branches that a solution has been found and the com-
putation should terminate, the special abort mechanism would have to be used [175].

5.7 Performance evaluation
In this section we will evaluate the performance of the shared objects extension. The

first part of the evaluation was carried out on the DAS-2 cluster computer (for a de-
scription of DAS-2 see section 3.6). To demonstrate that our model is also suitable for



5.7. PERFORMANCE EVALUATION 127

linear

—e— divide-and-share, single cluster
—e— divide-and-share, wide area

- —+-- divide-and-conquer, single cluster
— x- - divide-and-conquer, wide area

speedup

T T T — 1T T 1
0 20 40 60 80 100 120
number of processors

Figure 5.8: Speedups of Barnes-Hut on DAS-2

grid environments, the second part of our experiments is performed on the Grid’5000
testbed [8]. Grid’5000 is a wide-area and heterogeneous system which currently con-
sists of 7 clusters located across France.

In the first part of our experiments, we tested the performance of the applica-
tions on a single DAS-2 cluster. For those applications which can be programmed
in pure divide-and-conquer style, that is, without shared objects, we compared the
performance of the divide-and-conquer version with the performance of the divide-
and-share version. We always chose the most efficient divide-and-conquer version,
that is, for TSP we chose the Young Brothers Wait version and for Barnes-Hut we
chose the Necessary Tree version. We used 32 processors in a single cluster. Fig-
ure 5.7 shows the speedups the applications achieved on the DAS-2 cluster. The
divide-and-share versions of TSP, SAT solver and Barnes-Hut perform much better
than their divide-and-conquer versions. LocusRoute cannot be programmed without
shared objects.

For TSP and SAT solver, this performance improvement results from the fact
that sharing data allows to diminish the amount of computation. For Barnes-Hut,
the performance improvements results from optimizing the communication, which
makes the divide-and-share application scale better than the pure divide-and-conquer
version. To further study the scalability of both version, we performed an extra
experiment with Barnes-Hut. We measured the speedups of both versions on 2 to 128
processors. We tried both a single cluster setting (up 96 processors, because we could
not allocate 128 processors on a single cluster) and a wide-area, multi-cluster setting.
The results are shown in figure 5.8.



128 CHAPTER 5. DATA SHARING IN DYNAMIC ENVIRONMENTS

location processor cache size
Sophia AMD Opteron 246 2 GHz 1024 KB
Rennesl Intel Xeon 2.4 GHz 512 KB

Rennes2 | AMD Opteron 250 2.4 GHz | 1024 KB
Bordeaux | AMD Opteron 248 2.2 GHz | 1024 KB
Orsay AMD Opteron 246 2 GHz 1024 KB
Lille Intel Xeon 3.0 GHz 1024 KB

Table 5.1: Processor configurations in the Grid’5000 testbed

normalized
nr CPUs

total
nr CPUs

clusters and
nr CPUs used
Sophia 50
Rennes1 40
Bordeaux 30 120 115
Sophia 50
Rennes1 40
Bordeaux 30 120 94
Orsay 40
Rennes1 32

TSP

LocusRoute

SAT solver

Bordeaux 40

112

98

Barnes-Hut
theta 5.0

Sophia 50
Rennes2 50
Lille 20

120

136

Barnes-Hut
theta 7.0

Sophia 50
Rennes2 50
Lille 20

120

126

Table 5.2: Nodes used in the Grid’5000 experiment

The divide-and-share version scales much better that the pure divide-and-conquer
version in both single cluster and wide-area, multi-cluster setting.

The second part of the experiments we carried out on the Grid’5000 system. This
experiment shows that our model works well in a real grid environment. The latency
between the clusters used by us ranges from 4 to 10 milliseconds and bandwidth
from 200 to 1000 Mbit/s. Grid’5000 is also heterogeneous: it contains machines with
different architectures and different speeds. Table 5.1 lists the configuration of the
Grid’5000 processors we used.

For each experiment, we use 3 clusters. Table 5.2, lists the clusters and numbers
of nodes we used for each experiment.

We compared the performance of our applications in the wide-area, heterogeneous
setting with the performance of the same application on a single cluster. To make
this comparison meaningful, we need to use the same amount of computational power



5.8. COMPARISON WITH RELATED WORK 129

in both wide-area and single-cluster experiments. This is not trivial to achieve due to
the heterogeneous processor speeds in the grid environment. We used the following
methodology. We computed the relative speeds of the processors in each cluster by
running a smaller benchmark problem on a single processor in each cluster. We
normalized the runtimes of the benchmark problems relative to the runtime on a
single processor of the Sophia (for TSP, LocusRoute and Barnes-Hut) or Orsay (for
SAT solver) cluster. Next, we computed the normalized number of CPUs. Those
numbers are listed in table 5.2. Then, in the single cluster run, we used the same
number of processors as the normalized number in the grid runs.

The runtimes and speedups of the applications are listed in table 5.3. TSP and
LocusRoute achieve high speedups on the Grid’5000 testbed. The SAT solver performs
slightly worse than LocusRoute and TSP. The reason for that is a highly unbalanced
search tree which makes it harder to balance the load in the application. Also, the
cost of spawning in SAT solver is higher than in the other applications because the
whole data structure containing the description of the SAT problem is cloned for each
spawned job.

For Barnes-Hut, we experimented with two values of the theta constant: 5.0
(which we also used in the DAS-2 experiment) and 7.0. For theta=5.0 the speedup is
mediocre: 25 which is much smaller than the speedup on a similar number of nodes on
DAS-2. This is because the processors in the Grid’5000 testbed are significantly faster
than the DAS-2 processors, while the communication speed is similar. Therefore, it
is more difficult to achieve high speedups on the Grid’5000 testbed. When theta=7.0
the application computes the forces with more accuracy and therefore has a higher
computation-to-communication ratio. Thus, the speedup of this version is higher: 89.

For all four applications, the speedups in the wide-area setting were very close to
the speedups on a single cluster. This indicates that our algorithms can be run effi-
ciently on wide-area systems even though the applications share significant amounts
of data. The amount of data sent by each application is shown in tables 5.4 and 5.5.
Column 5 of table 5.4 lists both local-area and wide-area point-to-point traffic. The
last column of table 5.5 lists the amount of broadcast traffic.

5.8 Comparison with related work

Few other divide-and-conquer frameworks provide shared data abstractions. Cilk [46]
provides a shared memory abstraction for divide-and-conquer computations on the
Connection Machine CM-5. Cilk’s shared memory implements DAG-consistency using
the Backer algorithm [45] which performs well on a tightly coupled machine like the
CM-5, but is not suitable for wide-area systems. Moreover, Cilk’s shared memory was
developed for pure divide-and-conquer applications which use large data structures
(such as Barnes-Hut) and not for applications that need to share data between sibling
tasks (such as TSP). Updates of shared data are passed only along the edges of the
execution tree, but not to sibling tasks. Only sibling tasks that execute on the same
machine can see each other’s updates. Therefore Cilk’s shared memory is unsuitable
for applications such as TSP and SAT solver with learned clause sharing.



130 CHAPTER 5. DATA SHARING IN DYNAMIC ENVIRONMENTS

runtime runtime grid single cluster
Grid single CPU | speedup speedup
TSP 200s 5.4h 97 99
LocusRoute 951s 21.5h 81 89
SAT solver 113s 1.7h 54 59
Barnes-Hut (0 5.0) 226s 1.6h 25 31
Barnes-Hut (0 7.0) 390s 9.6h 89 89

Table 5.3: Test results the Grid’5000 testbed

amount of data sent

nr tasks nr steal nr tasks for work stealing

executed requests stolen | local-area/wide-area
TSP 2 000 000 800 000 8 000 33MB/4MB
LocusRoute 160 000 | 40 000 000 | 3 000 1.4GB/22MB
SAT solver 160 000 2 000 000 4 000 1.8GB/1GB

Barnes-Hut (6 5.0) | 335 000 5 600 000 18 000 800MB/300MB
Barnes-Hut (6 7.0) | 335 000 6 500 000 | 20 000 800MB/400MB

Table 5.4: Statistics for Grid’5000 runs

amount of data
nr shared object broadcast,
invocations for object updates

TSP 50 5KB

LocusRoute 120 000 23MB
SAT solver 130 000 17MB
Barnes-Hut (6 5.0) 4 200MB
Barnes-Hut (6 7.0) 4 200MB

Table 5.5: Statistics for Grid’5000 runs - cont.



5.9. CONCLUSIONS 131

Peng et al. [143] noticed this shortcoming of Cilk and implemented SilkRoad — an
extension to Cilk that provides global user locks and shared memory with lazy release
consistency [114]. SilkRoad was designed to run in a single cluster environment and
is not suitable for wide-area grid environments.

Javelin [139] is a framework for writing branch-and-bound applications. Branch-
and-bound is similar to divide-and-share but more restrictive. Javelin provides a very
limited possibility of sharing data between tasks for bound propagation. All tasks
are sharing the current bound, usually an integer or real number, but Javelin allows
it to be of any object type. When a task finds a new bound, it broadcasts it to all
processors. This is, in fact, replication with data shipping which has been shown to
be less efficient than function shipping for object-based shared data models. Javelin
does not provide any means of enforcing consistency.

The function shipping approach to object replication in Satin was inspired by
Orca [31]. Orca provides sequential consistency which is implemented using totally
ordered broadcast. Orca applications achieve good performance on a single cluster,
but because of the restrictive consistency model, Orca is less suitable for wide-area
systems.

RepMI [130] offers object replication in Java with sequential consistency. The
APT of RepMTI is similar to our API: the programmer uses inheritance and marker
interfaces to define replicated objects. The local and shared methods (read and write
methods in RepMDI’s terminology), however, are distinguished automatically by the
compiler and runtime system. To prevent the programmer from uncontrolled access
to replicated objects, RepMI imposes many restrictions on the programming model,
for example, it does not allow direct access to the fields of a shared object. RepMI
achieves good performance on a cluster of machines connected with Myrinet [48].
Similar to Orca, however, its restrictive consistency model makes it unsuitable for
wide-area computing. Also, read/write analysis, thread scheduling, and indirection
in accessing replicated objects adds overhead which is not justified for applications
that do not need strong consistency.

5.9 Conclusions

We presented a divide-and-share programming model which combines the divide-
and-conquer paradigm with a shared data abstraction — shared objects. The new
divide-and-share model has a broader applicability than the pure divide-and-conquer
model.

Shared objects implement a new consistency model, guard consistency, designed
especially for grid-enabled divide-and-conquer applications. Under guard consistency,
the programmer can define the consistency requirements of the application using guard
functions associated with divide-and-conquer tasks. A guard function specifies what
the status of an object should be for a task to execute correctly. The runtime system
allows replicas of shared objects to become inconsistent as long as their guards are
satisfied. When a guard is unsatisfied, the system brings the local replica into a
consistent state. The guard consistency model is easy to use and allows for efficient



132 CHAPTER 5. DATA SHARING IN DYNAMIC ENVIRONMENTS

implementation in grid environments. In particular, nodes dynamically joining or
leaving the ongoing computation can be tolerated.

We implemented a number of divide-and-share applications using the Satin frame-
work: Locus Route (VLSI routing), SAT solver, Barnes-Hut (N-body simulation) and
Traveling Salesman Problem. We evaluated the performance of our applications on
the DAS-2 supercomputer and showed that they achieve good speedups on a single
cluster. To demonstrate that our model is suitable for real Grid environments, we
tested it on the wide-area, heterogeneous Grid’5000 testbed and showed that appli-
cations using shared data can achieve high speedups in a real grid environment.



Chapter 6

Summary and conclusions

The goal of the research presented in this thesis was simplifying the process of creating
grid enabled applications. We proposed that this goal can be achieved by creating
a grid programming framework — a set of tools that forms a layer of abstraction
between the application and the Grid. A framework provides a high-level and easy to
use programming model and transparently resolves many grid programming issues.

We started with a prototype divide-and-conquer framework (Satin) designed and
implemented by Rob van Nieuwpoort. Thanks to an efficient, grid-aware load-balancing
algorithm, the original system could run efficiently over wide-area, heterogeneous sys-
tems. However, many issues still needed to be addressed before Satin would become
a mature grid programming framework. Those issues we address in this thesis.

In chapter 3, we investigated the problem of fault tolerance, malleability and mi-
gration. Grid environments are inherently dynamic, nodes can become available or
unavailable at any moment and the application must be able to cope with it. We
designed a simple and efficient fault-tolerance algorithm based on recomputing work
lost in crashes and restructuring the execution tree to minimize the amount of recom-
putation. We extended this algorithm to be able to reuse work done by the leaving
processors, if they leave gracefully. We also added a simple checkpointing facility
that stores intermediate results on a stable storage. This set of algorithms allows
divide-and-conquer applications to handle a number of grid scenarios. Applications
can tolerate processor crashes and processors dynamically joining and leaving an on-
going computation. Applications can be efficiently migrated or stopped and restarted
later on the same or a different set of resources.

In chapter 4, we have investigated the problems of resource selection and adaptive
execution. Existing solutions to those problems require that a performance model for
an application is known. However, constructing performance models is an inherently
difficult task. Therefore, we investigated if it is possible to provide a solution that does
not require a performance model. We propose an approach in which an application
is started on an arbitrary set of resources. Some simple heuristics can be used to
select this initial set (e.g., the fastest available processors), but no advanced models
are needed. During the run, we monitor the application performance by collecting



134 CHAPTER 6. SUMMARY AND CONCLUSIONS

statistics about how much time processors spend communicating or being idle. We
use those statistics to deduce the application requirements and adjust the resource
set to better fit the application needs. This adjustment is performed by adding or
removing nodes to/from the running application. To implement this approach, we
added an extra process — an adaptation coordinator, which collects the application
statistics and controls adding and removing nodes. We evaluated our approach in a
number of scenarios typical for grid environments and we have shown that we can
achieve significant performance improvements (10-60% in our experiments).

In chapter 5, we have extended the programming model of our framework. The
original Satin framework provided the divide-and-conquer model. A limitation of this
model is the lack of a data-sharing abstraction. Therefore, we have extended the
divide-and-conquer model with a shared-object abstraction. The APT of the shared-
object extension is similar to the original Satin API: the programmer uses standard
Java mechanisms such as inheritance and marker interfaces to define shared objects
and operations on them. The compiler generates the necessary communication code.
Therefore, the shared-object model is extremely easy to use.

Implementing a shared-data abstraction in grids is a challenging task due to the
distributed and dynamic nature of such environments. Traditional consistency mod-
els such as sequential consistency are not suitable for wide-area, dynamic systems.
We have designed a novel consistency model, guard consistency, which is suitable for
divide-and-conquer applications and allows for efficient implementation in grid envi-
ronments. Under guard consistency, the programmer defines the application consis-
tency requirements using boolean guard functions associated with divide-and-conquer
tasks. The runtime system propagates updates to remote replicas optimistically, that
is, without guaranteeing that updates will be applied in a certain order, will not be
lost, or duplicated. The replicas are allowed to become inconsistent as long as guards
are satisfied. When a guard becomes not satisfied, the runtime system brings the
local replica into a consistent state.

We implemented a number of applications using shared object abstraction and
have shown that it simplifies the programming task, improves application performance
and extends the applicability of the Satin framework. We have tested our model both
in a single cluster environment and in a wide-area, heterogeneous grid environment
and have shown that shared-data applications can achieve high efficiencies in such
environments.

The Satin framework that is the result of the work described in this thesis can
handle a vast number of scenarios typical for grid environments. Below, we list a
number of such scenarios.

e A Satin application can tolerate crashing nodes with minimal loss of work. If the
number of crashed nodes is substantial, the adaptation component will attempt
to replace the crashed nodes.

e The user can add or remove nodes to a running application. The user can also
migrate a running application to a different set of resources.

e The user can stop a Satin application and restart it at a later time on a possibly



135

different set of resources.

A Satin application can run in a cycle-stealing environment, that is, expand
to new processors if they are idle and release them if another higher-priority
application arrives.

If the user starts a Satin application on an inappropriate set of resources, the
resource set will be adjusted. For example, if the initial number of processors
is smaller than the application degree of parallelism would allow, the applica-
tion will automatically expand to more processors. If one of the sites is badly
connected, the application will be automatically migrated away from this site.

If during the application run part of the resources become overloaded (e.g.,
processors or network links) to an extent that the application performance suf-
fers, the application will be automatically migrated away from the overloaded
resources. New resources may be added to replace the removed resources.

If the application degree of parallelism is changing during the run, the number
of processors the application is running on will be automatically adjusted.

The resulting Satin system has also improved applicability. Below, we list appli-
cation classes that can be programmed using the Satin framework.

Search and optimization problems, for example the satisfiability problem, the
Traveling Salesman Problem, the Knapsack problem, N Queens, etc.

Astrophysical simulations, for example the Barnes-Hut N-body algorithm [34].
Grammar based learning [12].

Parallel rendering (raytracing).

Bioinformatics computations, for example sequence alignment.

VLSI routing.

Game tree searching, for example Othello or Awari.

Numerical applications, for example matrix multiplication or Fast Fourier Trans-
form.

To summarize, in this thesis we have demonstrated that it is indeed possible to
simplify the task of creating grid applications by providing a high-level grid pro-
gramming framework. The Satin framework that is the result of the work presented
in this thesis allows rapid development of grid enabled applications. The program-
mer expresses the problem at hand in a divide-and-conquer fashion and annotates the
sequential code with divide-and-conquer and data-sharing primitives. The Satin byte-
code rewriter generates the communication, load-balancing and fault-tolerance code.
All grid-related issues are resolved by the framework transparently to the application



136 CHAPTER 6. SUMMARY AND CONCLUSIONS

programmer. Therefore, the application programmer needs to focus his attention only
on the problem domain of the application and not on the complexity of the platform
the application will be running. We believe that our approach will lead to making
the tremendous power of the Grid more accessible and will therefore allow tackling
grand computational challenges that could not be solved before.



Bibliography

[1] Einstein@home website. http://einstein.phys.uwm.edu.
[2] Folding@home website. http://folding.stanford.edu.

[3] Java GAT API Description. Online: http://www.cs.vu.nl/ rob/JavaGAT-
javadoc/.

[4] LHC@home website. http://lhcathome.cern.ch.

[5] Predictor@home website. http://predictor.scripps.edu.
[6] SAT4J website: http://www.sat4j.org.

[7] SETI@home website. http://setiathome.berkeley.edu.
[8] The Grid’5000 Project. http://www.grid5000.fr.

[9] Distributed Resource Management System (DRMS) User’s Guide. Online:
http://www.research.ibm.com/drms/api.html, 1995.

[10] Sun Microsystems. Java Remote Method Invocation Specification. Online at
http://java.sun.com, 2003.

[11] Unicore plus final report — uniform interface to computing resources. Online:
http://www.unicore.org/documents/ UNICOREPIlus-Final-Report.pdf, 2003.

[12] P. Adriaans and C. Jacobs. Using MDL for grammar induction. In 8th Inter-
national Colloquim on Gramaticla Inference (ICGI'06), Tokyo, Japan, 2006.

[13] H. Afsarmanesh, R. G. Belleman, A. S. Z. Belloum, A. Benabdelkader, J. F. J.
van den Brand, G. B. Eijkel, A. Frenkel, C. Garita, D. L. Groep, R. M. A.
Heeren, Z. W. Hendrikse, L. O. Hertzberger, J. A. Kaandorp, E. C. Kaletas,
V. Korkhov, C. T. A. M. de Laat, P. M. A. Sloot, D. Vasunin, A. Visser, and
H. H. Yakali. VLAM-G: A grid-based virtual laboratory. Scientific Program-
ming, 10(2):173-181, 2002.

[14] A. Agbaria and R. Friedman. Starfish: Fault-tolerant dynamic MPI programs
on clusters of workstations. Cluster Computing, 6(3):227-236, 2003.



138

BIBLIOGRAPHY

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

D. Agrawal, M. Choy, H. V. Leong, and A. K. Singh. Evaluating Weak Memories
with Maya. Technical Report TRCS93-23, 30, 1994.

D. Agrawal, M. Choy, H. V. Leong, and A. K. Singh. Mixed Consistency:
A Model for Parallel Programming (Extended Abstract). In Symposium on
Principles of Distributed Computing, pages 101-110, 1994.

M. Ahamad, R. A. Bazzi, R. John, P. Kohli, and G. Neiger. The power of
processor consistency. In 5th Annual ACM Symposium on Parallel Algorithms
and Architectures (SPAA’93), pages 251-260, 1993.

S. Ahuja, N. Carriero, and D. Gelernter. Linda and friends. IEEE Computer,
19(8):26-34, August 1986.

M. Aldinucci, F. Andre, J. Buisson, S. Campa, M. Coppola, M. Danelutto, and
C. Zoccolo. Parallel program/component adaptivity management. In ParCo
2005, Malaga, Spain, September 2005.

M. Aldinucci, S. Campa, P. P. Ciullo, M. Coppola, S. Magini, P. Pesciulle-
sio, L. Potiti, R. Ravazzolo, M. Torquati, M. Vanneschi, and C. Zoccolo. The
implementation of ASSIST, an environment for parallel and distributed pro-
gramming. In 9th International Euro-Par: Parallel and Distributed Comput-
ing, volume 2790 of LNCS, pages 712-721, Klagenfurt, Austria, August 2003.
Springer Verlag.

G. Allen, D. Angulo, I. Foster, G. Lanfermann, C. Liu, T. Radke, E. Seidel, and
J. Shalf. The cactus worm: Experiments with resource discovery and allocation
in a grid environment. International Journal of High Performance Computing
Applications, 15(4):345-358, 2001.

G. Allen, W. Benger, T. Goodale, H. Hege, G. Lanfermann, A. Merzky,
T. Radke, E. Seidel, and J. Shalf. The Cactus Code: A problem solving environ-
ment for the grid. In 9th IEEE International Symposium on High Performance
Distributed Computing (HPDC’00), page 253, Pittsburgh, August 2000.

G. Allen, K. Davis, T. Goodale, A. Hutanu, H. Kaiser, T. Kielmann, A. Merzky,
R. van Nieuwpoort, A. Reinefeld, F. Schnitke, T. Schutt, E. Seidel, and
B. Ullmer. The Grid Application Toolkit: Towards Generic and Easy Ap-
plication Programming Interfaces for the Grid. Submitted to IEEE.

R. Alonso, D. Barbara, and H. Garcia-Molina. Data caching issues in an infor-
mation retrieval system. ACM Transactions on Database Systems, 15(3):359—
384, 1990.

I. Altintas, A. Birnbaum, K. K. Baldridge, W. Sudholt, M. Miller, and C. Amor-
eira. A framework for the design and reuse of grid workflows. In st Interna-
tional Workshop on Scientific Applications of Grid Computing (SAG 2004),
pages 120-133. Springer-Verlag, LNCS 3458, September 2004.



BIBLIOGRAPHY 139

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

K. Amin, G. von Laszewski, M. Hategan, N. J. Zaluzec, S. Hampton, and
A. Rossi. GridAnt: A client-controllable grid workflow system. In 37th An-
nual Hawaii International Conference on System Sciences (HICSS 04), January
2004.

D. Arnold, S. Agrawal, S. Blackford, J. Dongarra, M. Miller, K. Seymour,
K. Sagi, Z. Shi, and S. Vadhiyar. Users’ guide to NetSolve V1.4.1. Techni-
cal Report ICL-UL-02-05, University of Tennessee, Knoxville, TN, USA, June
2002.

H. Attiya and J. L. Welch. Sequential consistency versus linearizability. ACM
Transactions on Computer Systems (TOCS), 12(2):91-122, May 1994.

R. M. Badia, J. Labarta, R. Sirvent, J. M. Perez, J. M. Cela, and R. Grima.
Programming Grid Applications with GRID Superscalar. Journal of Grid Com-
puting, 1(2), 2003.

L. Baduel, F. Baude, D. Caromel, A. Contes, F. Huet, M. Morel, and R. Quilici.
Grid Computing: Software Environments and Tools, chapter Programming,
Composing, Deploying, for the Grid. Springer Verlag, January 2006.

H. E. Bal, R. Bhoedjang, R. Hofman, C. Jacobs, K. Langendoen, T. Ruehl, and
M. F. Kaashoek. Performance Evaluation of the Orca Shared Object System.
ACM Transactions on Computer Systems, 16(1), February 1998.

J. Baldeschwieler, R. Blumofe, and E. Brewer. ATLAS: An Infrastructure for
Global Computing. In 7th ACM SIGOPS European Workshop on System Sup-
port for Worldwide Applications, pages 165-172, Connemara, Ireland, Septem-
ber 1996.

A. Baratloo, M. Karaul, Z. M. Kedem, and P. Wyckoff. Charlotte: Metacom-
puting on the Web. In 9th International Conference on Parallel and Distributed
Computing Systems (PCDS-96), pages 181-188, Dijon, France, September 1996.

J. Barnes and P. Hut. A hierarchical O(NlogN) force-calculation algorithm.
Nature, 324:446-449, 1986.

L. Baudel, F. Baude, and D. Caromel. Object-oriented SPMD. In 5th Inter-
national Symposium on Cluster Computing and the Grid (CCGrid05), Cardiff,
UK, May 2005.

J. K. Bennett, J. B. Carter, and W. Zwaenepoel. Munin: Distributed shared
memory based on type-specific memory coherence. In 2nd Symposium on Princi-
ples and Practice of Parallel Programming (PPoPP’90), pages 168-176, Seattle,
WA, USA, March 1990.

F. Berman, R. Wolski, H. Casanova, W. Cirne, H. Dail, M. Faerman, S. Figueira,
J. Hayes, G. Obertelli, J. Schopf, G. Shao, S. Smallen, N. Spring, A. Su, and
D. Zagorodnov. Adaptive Computing on the Grid Using AppLeS. IEEE Trans-
actions on Parallel and Distributed Systems, 14(4):369-382, April 2003.



140

BIBLIOGRAPHY

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

B. N. Bershad and M. J. Zekauskas. Midway: Shared memory parallel program-
ming with entry consistency for distributed memory multiprocessors. Technical
Report CMU-CS-91-170, 1991.

R. Bhoedjand, T. Ruhl, R. Hofman, K. Langendoen, H. E. Bal, and M. F.
Kaashoek. Panda: A portable platform to support parallel programming lan-
guages. In Symposium on Experiences with Distributed and Multiprocessor Sys-
tems, pages 213-226, September 1993.

A. D. Birrel and B. J. Nielson. Implementing Remote Procedure Calls. ACM
Transactions on Computer Systems (TOCS), 2(1):39-59, February 1984.

R. Bisiani and A. Forin. Multilanguage parallel programming on heterogeneous
machines. IEEFE Transactions on Computers, 37:930-945, August 1998.

R. Bisiani and M. Ravishankar. Plus: a distributed shared-memory system. In
17th Annual International Symposium on Computer Architecture (ISCA’90),
pages 115-124, New York, NY, USA, 1990. ACM Press.

W. Blochinger, C. Sinz, and W. Kiichlin. A Universal Parallel SAT Check-
ing Kernel. In International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA’03), volume 4, pages 17201725, Las Ve-
gas, Nevada, USA, 2003. CSREA Press.

R. Blumofe and P. Lisiecki. Adaptive and Reliable Parallel Computing on Net-
works of Workstations. In USENIX 1997 Annual Technical Conference on UNIX
and Advanced Computing Systems, pages 133-147, Anaheim, California, Jan-
uary 1997.

R. D. Blumofe, M. Frigo, C. F. Joerg, C. E. Leiserson, and K. H. Randall. Dag-
Consistent Distributed Shared Memory. In 10th International Parallel Process-
ing Symposium (IPPS ’96), pages 132-141, Honolulu, Hawaii, April 1996.

R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall,
and Y. Zhou. Cilk: An Efficient Multithreaded Runtime System. Journal of
Parallel and Distributed Computing, 37(1):55-69, 1996.

R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded computations by
work stealing. In 85th Annual Symposium on Foundations of Computer Science
(FOCS’94), pages 356-368, November 1994.

N. Boden, D. Cohen, R. Felderman, A. Kulawik, C. Seitz, J. Seizovic, and
W. Su. Myrinet: A Gigabit-per-second Local Area Network. IEEE Micro,
15(1):29-36, February 1995.

A. Bouteiller, T. Herault, G. Krawezik, P. Lemarinier, and F. Cappello. MPICH-
V: A multiprotocol fault tolerant MPI. International Journal of High Perfor-
mance Computing and Applications, to appear, 2006.



BIBLIOGRAPHY 141

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

D. M. Breuker. Memory versus Search in Games. PhD thesis, Universiteit
Maastricht, 1998.

J. M. Bull, L. A. Smith, M. D. Westhead, D. S. Henty, and R. A. Dawey. A
benchmark suite for high-performance Java. Concurrency: Practice and Expe-
rience, 12(6):375-388, 2000.

R. Buyya, D. Abramson, and J. Giddy. Nimrod/G: An architecture for a re-
source management and scheduling system in a global computational grid. In
4th International Conference on High Performance Computing in Asia-Pacific
Region, Beijing China, 2000.

J. Cao, S. A. Jarvis, S. Saini, and G. R. Nudd. Gridflow: Workflow management
for grid computing. In 8rd International Symposium on Cluster Computing and
the Grid (CCGrid03), pages 198-205, May 2003.

F. Cappello, S. Dijilali, G. Fedak, T. Herault, F. Magniette, V. NAIri, and
O. Lodygensky. Computing on large scale distributed systems: XtremWeb
architecture, programming models, security, tests and convergence with grid.
Future Generation Computer Science, to appear, 2005.

B. Carpenter, V. Getov, G. Judd, A. Skjellum, and G. Fox. MPJ: MPI-like
message passing for Java. Concurrency: Practice and Experience, 12(11):1019—
1038, 2000.

N. Carriero, E. Freeman, D. Gelernter, and D. Kaminsky. Adaptive parallelism
and Piranha. Computer, 28(1):40-49, January 1995.

H. Casanova, D. Zagorodnov, F. Berman, and A. Legrand. Heuristics for
scheduling parameter sweep applications in grid environments. In 9th Het-
erogeneous Computing Workshop, pages 349-363, 2000.

M. Castro, M. Sequeira, M. Costa, and P. Guedes. Efficient and flexible object
sharing. In International Conference on Parallel Processing, pages 128—-137,
Bloomingdale, TL, USA, August 1996.

J. S. Chase, F. G. Amador, E. D. Lazowska, H. M. Levy, and R. J. Littlefield.
The Amber system: Parallel programming on a network of multiprocessors.
In 15th ACM Symposium on Operating Systems Principles (SOSP’89), pages
147-158, 1989.

D. Chen, C. Tang, B. Sanders, S. Dwarkadas, and M. Scott. Exploiting High-
level Coherence Information to Optimize Distributed Shared State. In 9th ACM
Symposium on Principles and Practice of Parallel Programming (PPoPP’03),
San Diego, CA, June 2003.

A. Cherif. Replication for Fault Tolerant Software Using a Functional and At-
tribute Grammar Based Computational Model. PhD thesis, School of Informa-
tion Science, Japan Advanced Institute of Science and Technology, 1998.



142 BIBLIOGRAPHY

[62] D. R. Cheriton. Preliminary thoughts on problem-oriented shared memory: a
decentralized approach to distributed systems. ACM SIGOPS Operating Sys-
tems Review, 19(4):26-33, 1985.

[63] D.-M. Chiu, M. Kadansky, J. Provino, and J. Wesley. Experiences in program-
ming a traffic shaper. In 5th IEEE Symposium on Computers and Communi-
cations (ISCC 2000), pages 470476, 2000.

[64] W. Chrabakh and R. Wolski. GridSAT: A Chaff-based Distributed SAT Solver
for the Grid. In 2003 ACM/IEEE conference on Supercomputing (SC ’03),
page 37, Washington, DC, USA, 2003. IEEE Computer Society.

[65] H. Dail, H. Casanova, and F. Berman. A decoupled scheduling approach for the
GrADS program development environment. In 2002 ACM/IEEE Conference
on Supercomputing (SC’02), pages 1-14, Baltimore, Maryland, USA, November
2002.

[66] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi, K. Blackburn,
A. Lazzarini, A. Arbree, R. Cavanaugh, and S. Koranda. Mapping abstract com-
plex workflows onto grid environments. Journal of Grid Computing, 1(1):25-39,
2003.

[67] G. S. Delp. The architecture and implementation of MEMNET: a high—speed
shared-memory computer communication network. PhD thesis, University of
Delaware, Newark, DE, USA, 1988.

[68] M. den Burger, T. Kielmann, and H. E. Bal. Balanced multicasting: High-
throughput communication for grid applications. In Supercomputing 2005
(SC05), page 46, Seattle, USA, November 2005.

[69] S. Djilali, T. Herault, O. Lodygensky, T. Morlier, G. Fedak, and F. Capello.
RPC-V: Towards fault-tolerant RPC for internet connected desktop grids with
volatile nodes. In 2004 ACM/IEE Supercomputing Conference (SC’04), page 39,
November 2004.

[70] M. Dobber, G. Koole, and R. van der Mei. Dynamic load balancing experiments
in a grid. In 5th International Symposium on Cluster Computing and the Grid
(CCGrid05), pages 1063—1070, May 2005.

[71] J. J. Dongarra, S. W. Otto, M. Snir, and D. Walker. A message passing standard
for MPP and workstations. Communications of the ACM, 39:84-90, July 1996.

[72] N. Drost, R. V. van Nieuwport, and H. E. Bal. Simple locality-aware co-
allocation in peer-to-peer supercomputing. In 6th International Workshop on
Global Peer-2-Peer Computing (GP2P), Singapore, May 2005.

[73] M. Dubois, C. Scheurich, and F. Briggs. Memory access buffering in multipro-
cessors. ACM SIGARCH Computer Architecture News, pages 434-442, 1986.



BIBLIOGRAPHY 143

[74]

[75]

[76]

[77]

78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

D. L. Eager, J. Zahorjan, and E. D. Lazowska. Speedup versus efficiency in
parallel systems. IEEE Transactions on Computers, 38(3):408-423, March 1989.

N. Eén and N. Sorensson. An Extensible SAT-solver. In 6th International Con-
ference on Theory and Applications of Satisfiability Testing (SAT 2008), volume
2919 of Lecture Notes in Computer Science, pages 502—-518, Santa Margherita
Ligure, Italy, 2003. Springer.

T. Eickermann, H. Grund, and J. Henrichs. Performance issues of distributed
MPI applicatins in a German gigabit testbed. In 6th European PVM/MPI Users’
Group Meeting on Recent Advances in Parallel Virtual Machine and Message
Passing Interface, pages 3—10. Springer-Verlag, LNCS 1697, 1999.

E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson. A survey
of rollback-recovery protocols in message-passing systems. ACM Computing
Surveys, 34(3):375-408, September 2002.

G. E. Fagg and J. J. Dongarra. FT-MPI: Fault tolerant MPI, supporting dy-
namic applications in a dynamic world. In 7th European PVM/MPI Users’
Group Meeting on Recent Advances in Parallel Virtual Machine and Message
Passing Interface, pages 346-353, Balatonfured, Hungary, September 2000.
Springer-Verlag, LNCS 1908.

T. Fahringer, A. Jugravu, S. Pllana, R. Prodan, C. S. Jr., and H.-L. Truong.
ASKALON: A tool set for cluster and grid computing. Concurrency and Com-
putation: Practice and Experience, 17(2-4):143-169, February 2005.

S. Feldman and C. Brown. Igor: A system for program debugging via reversible
execution. In ACM SIGPLAN Notices, Workshop on Parallel and Distributed
Debugging, pages 112-123, 1989.

R. Feldmann, P. Mysliwietz, and B. Monien. Game Tree Search on a Massively
Parallel System. In H. J. van den Herik, I. S. Herschberg, and J. W. H. M.
Uiterwijk, editors, Advances in Computer Chess7, pages 203218, Maastricht,
The Netherlands, 1994. University of Limburg.

C. J. Fidge. Time stamps in message-passing systems that preserve the partial
ordering. Australian Computer Science Communications, 10(1):56-66, 1988.

R. Finkel and U. Manber. DIB — A Distributed Implementation of Backtrack-
ing. ACM Transactions of Programming Languages and Systems, 9(2):235-256,
April 1987.

B. Fleisch and G. Popek. Mirage: a coherent distributed shared memory design.
In 12th ACM Symposium on Operating Systems Principles (SOSP’89), pages
211-223, New York, NY, USA, 1989. ACM Press.

I. Foster. Designing and Building Parallel Programs, chapter High Performance
Fortran. Addison Wesley, 1995.



144

BIBLIOGRAPHY

[36]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

I. Foster. Globus Toolkit Version 4: Software for Service-Oriented Systems. In
IFIP International Conference on Network and Parallel Computing, pages 2—13.
Springer-Verlag LNCS 3779, 2005.

E. Freeman, S. Hupfer, and K. Arnold. JavaSpaces(TM) Principles, Patterns,
and Practice. June 1999.

R. Friedman. Implementing hybrid consistency with high-level synchroniza-
tion operations. In 12th Annual ACM symposium on Principles of Distributed
Computing (PODC’93), pages 229-240. ACM Press, 1993.

M. Frigo and V. Luchango. Computation-centric memory models. In 10th
ACM Symposium on Parallel Algorithms and Architectures (SPAA’98), pages
240-249, Puerto Vallarta, Mexico, 1998.

E. Gabriel, M. Resch, T. Beisel, and R. Keller. Distributed computing in a het-
erogeneous computing environment. In 5th European PVM/MPI Users’ Group
Meeting on Recent Advances in Parallel Virtual Machine and Message Passing
Interface, pages 180-187. Springer-Verlag, LNCS 1497, 1998.

K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hen-
nessy. Memory consistency and event ordering in scalable shared-memory mul-
tiprocessors. In International Conference on Computer Architecture, pages 376—
387, 1998.

A. Gianelle, M. Sgaravatto, and R. Peluso. DataGrid: Job partitioning and
checkpointing, 2003.

E. Godard, S. Setia, and E. L. White. DyRecT: Software support for adap-
tive parallelism on NOWSs. In 15th IPDPS 2000 Workshops on Parallel and
Distributed Processing, pages 1168—1175. Springer-Verlag, LNCS 1800, 2000.

J. R. Goodman. Cache consistency and sequential consistency. Technical Re-
port 61, March 1989.

J.-P. Goux, S. Kulkarni, M. Yoder, and J. Linderoth. An Enabling Framework
for Master-Worker Applications on the Computational Grid. In 9th IEEFE Inter-
national Symposium on High Performance Distributed Computing (HPDC’00),
pages 43-50, Pittsburgh, Pennsylvania, USA, August 2000.

W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance, portable
implementation of the MPI message passing interface. Parallel Computing,
22(6):789-828, September 1996.

J. Gu, P. W. Purdom, J. Franco, and B. W. Wah. Algorithms for the satisfia-
bility (SAT) problem: A survey. DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, 35:19-153, 1996.

A. Heddaya and H. Sinha. Distributed Parallel Computing in Mermera: Mixing
Noncoherent Shared Memories. Technical Report 1996-005, 7, 1996.



BIBLIOGRAPHY 145

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

M. P. Herlihy and J. M. Wing. Linearizability: a correctness condition for
concurrent objects. ACM Transactions on Programming Languages and Systems
(TOPLAS), 12(3):463-492, July 1990.

E. Heymann, M. A. Senar, E. Luque, and M. Livny. Adaptive scheduling for
master-worker applications on the computational grid. In 1st IEEE/ACM In-
ternational Workshop on Grid Computing (Grid 2000), pages 214-227, London,
UK, 2000. Springer Verlag LNCS 1971.

C. Huang, G. Zheng, S. Kumar, and L. V. Kale. Performance evaluation of
Adaptive MPI. In ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP’06), March 2006.

E. Huedo, R. S. Montero, and I. M. Llorente. A framework for adaptive execu-
tion in grids. Software — Practice & Experience, 34(7):631-651, 2004.

F. Huet, D. Caromel, and H. E. Bal. A high performance Java middleware with
a real application. In 2004 ACM/IEEE conference on Supercomputing (SC ’04),
Pittsburgh, Pennsylvania, USA, November 2004.

P. W. Hutto and M. Ahamad. Slow memory: Weakening consistency to enhance
concurrency in distributed shared memories. In 10th International Conference
on Distributed Computing Systems, pages 302-311. IEEE Computer Society,
1990.

G. G. R. III. Efficient vector time with dynamic process creation and termina-
tion. Journal of Parallel and Distributed Computing, 55(1):109-120, 1998.

K. A. Iskra, F. van der Linden, Z. W. Hendrikse, B. J. Overeinder, G. D. van
Albada, and P. M. A. Sloot. The implementation of Dynamite: An environment
for migrating PVM tasks. ACM SIGOPS Operating Systems Review, 34:40-55,
July 2000.

C. F. Joerg. The Cilk System for Parallel Multithreaded Computing. PhD thesis,
MIT Departement of Electrical Engineering and Computer Science, 1996.

D. B. Johnson. Distributed System Fault Tolerance Using Message Logging and
Checkpointing. PhD thesis, Rice University, 1989.

E. Jul, H. Levy, N. Hutchinson, and A. Black. Fine-grained mobility in the
Emerald system. ACM Transactions on Computer Systems, 6:109-133, 1988.

Y. F. K. Aida, W. Natsume. Distributed computing with hierarchical master-
worker paradigm for parallel branch and bound algorithm. In 8rd International
Symposium on Cluster Computing and the Grid (CCGrid03), pages 156—163,
Tokyo, Japan, May 2003.

L. V. Kale, S. Kumar, and J. DeSouza. A malleable-job system for timeshared
parallel machines. In 2nd IEEE/ACM International Symposium on Cluster
Computing and the Grid (CCGrid02), pages 230-237, May 2002.



146

BIBLIOGRAPHY

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

N. T. Karonis, B. Toonen, and I. Foster. MPICH-G2: A grid-enabled imple-
mentation of the Message Passing Interface. Journal of Parallel and Distributed
Computing, 63(5):551-563, May 2003.

P. Keleher, A. L. Cox, S. Dwarkadas, and W. Zwaenepoel. TreadMarks: Dis-
tributed shared memory on starndard workstations and operating systems. In
Winter 1994 USENIX Conference, pages 115-131, 1994.

P. Keleher, A. L. Cox, and W. Zwaenepoel. Lazy Release Consistency for
Software Distributed Shared Memory. In 19th Annual International Symposium
on Computer Architecture (ISCA’92), pages 13-21, 1992.

T. Kielmann, R. F. Hofman, H. E. Bal, A. Plaat, and R. A. Bhoedjang. MagPTe:
MPT’s collective communication operations for clustered wide area systems. In
ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming (PPoPP’99), pages 131-140, Atlanta, Georgia, USA, March 1999.

M. F. K. Kirk L. Johnson and D. A. Wallach. CRL: High-performance all-
software distributed shared memory. In 15th ACM Symposium on Operating
Systems Principles (SOSP’89), pages 213-228, Copper Mountain Resort, CO,
USA, 1995.

N. Krishnakumar and A. J. Bernstein. Bounded ignorance: a technique for
increasing concurrency in a replicated system. ACM Transactions on Database
Systems, 19(4):586—625, 1994.

L. Lamport. Time, clocks and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558-565, July 1978.

L. Lamport. How to make a correct multiprocess program execute correctly on
a multiprocessor. IEEE Transactions on Computers, 46(7):779-782, July 1997.

H.-K. Lee, B. Carpenter, G. Fox, and S. B. Lim. HPJava: Programming Sup-
port for High-Performance Grid-Enabled Applications. International Journal
of Parallel Algorithms and Applications (to appear).

T. J. Lehman, S. W. McLaughry, and P. Wyckoff. T Spaces: The next wave.
In Hawaii International Conference on System Sciences (HICSS-32), January
1999.

W. G. Levelt, M. F. Kaashoek, H. E. Bal, and A. S. Tanenbaum. A compari-
son of two paradigms for distributed shared memory. Software — Practice and
Ezperience, 22(11):985-1010, 1992.

K. Li and P. Hudak. Memory coherence in shared virtual memory systems. In
5th ACM Symposium on Principles of Distributed Computing (PODC), pages
229-239, New York, NY, 1986. ACM Press.



BIBLIOGRAPHY 147

[124] K. Li, J. F. Naughton, and J. S. Plank. Real-time, concurrent checkpointing
for parallel programs. In 2nd ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP’90), pages 79-88, March 1990.

[125] K. Li and R. Schaefer. A hypercube shared virtual memory system. In Inter-
national Conference on Parallel Processing, pages 125-131, August 1989.

[126] F. C. H. Lin and R. M. Keller. Distributed Recovery in Applicative Systems. In
1986 International Conference on Parallel Processing, pages 405-412, University
Park, PA, USA, August 1986.

[127] R. J. Lipton and J. S. Sandberg. PRAM: A scalable shared memory. Technical
Report, CS-TR-180-88, September 1988.

[128] C. Liu, L. Yang, I. Foster, and D. Angulo. Design and evaluation of a resource
selection framework for grid applications. In 11th IEEE Symposium on High
Performance Distributed Computing (HPDC’02), pages 63-72, July 2002.

[129] D. B. Lomet. Process structuring, synchronization, and recovery using atomic
actions. ACM SIGOPS Operating Systems Review, 11(2):128-137, April 1977.

[130] J. Maassen. Method Invocation Based Communication Models for Parallel Pro-
gramming in Java. PhD thesis, Vrije Universiteit Amsterdam, 2003.

[131] J. Maassen, T. Kielmann, and H. E. Bal. GMI: Flexible and efficient group
method invocation for parallel programming. In 6th Workshop on Languages,
Compilers, and Run-time Systems for Scalable Computers (LCR-02), Washing-
ton,DC,USA, March 2002.

[132] S. Matsuoka and S. Kawai. Using tuple space communication in distributed
object-oriented languages. In Conference on Object Oriented Programming Sys-
tems, Languages and Applications, pages 276-284, San Diego, CA, USA, 1988.

[133] F. Mattern. Virtual time and global states of distributed systems. pages 215-
226, 1989.

[134] S. McGough, L. Young, A. Afzal, S. Newhouse, and J. Darlington. Workflow en-
actment in iceni. In UK e-Science All Hands Meeting, pages 894-900, September
2004.

[135] R. G. Minnich. Mether: A Memory System for Network Multiprocessors. PhD
thesis, University of Pennsylvania, 1991.

[136] H. H. Mohamed and D. H. J. Epema. Experiences with the KOALA co-
allocating scheduler in multiclusters. In 5th IEEE/ACM Symposium on Cluster
Computing and the GRID (CCGrid05), pages 784-791, May 2005.

[137] M. P. I. F. MPIF. MPI-2: Extensions to the Message-Passing Interface. Tech-
nical Report, University of Tennessee, Knoxville, 1996.



148

BIBLIOGRAPHY

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

S. Mullender, editor. Distributed Systems. Addison Wesley, 1993.

M. O. Neary and P. Cappello. Advanced Eager Scheduling for Java-Based
Adaptively Parallel Computing. In ACM Java Grande/ISCOPE Conference,
pages 56—65, November 2002.

B. Nitzberg and V. Lo. Distributed shared memory: A survey of issues and
algorithms. IEEE Computer, 24(8):52-60, August 1991.

T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood, T. Carver,
K. Glover, M. R. Pocock, A. Wipat, and P. Li. Taverna: A tool for the compo-
sition and enactment of bioinformatic workflows. Bioinformatics, 20(17):3045—
3054, November 2004.

A. Patterson and J. Hennessy. Computer Organization and Design — The Hard-
ware/Software Interface. Morgan Kaufmann Publishers, 1998.

L. Peng, W. F. Wong, M. D. Feng, and C. K. Yuen. SilkRoad: A Multithreaded
Runtime System with Software Distributed Shared Memory for SMP Clusters.
In IEEE International Conferrence on Cluster Computing (Cluster2000), pages
243-249, November 2000.

A. Petitet, S. Blackford, J. Dongarra, B. Ellis, G. Fagg, K. Roche, and S. Vad-
hiyar. Numerical libraries and the grid: the GrADS experiments with Scal.A-
PACK. In 2001 ACM/IEEE Conference on Supercomputing (SC’01), November
2001.

J. Plank. Efficient Checkpointing on MIMD architectures. PhD thesis, Princeton
University, 1993.

J. Protic, M. Tomasevic, and V. Milutinovic. Distributed shared memory: Con-
cepts and systems. IEEE Parallel and Distributed Technology: Systems and
Technology, 4(2):63-79, June 1996.

K. R. M. Rachid Guerraoui, Benoit Garbinato. The GARF Library Of DSM
Consistency Models. In 6th ACM SIGOPS European Workshop, pages 51-56,
1994.

U. Ramachandran and M. Y. A. Khalidi. An implementation of distributed
shared memory. Software — Practice and Experience, 21(5):443-464, May 1991.

B. Randell. System structure for software fault tolerance. IEEE Transactions
on Software Engineering, 1(2):220-232, 1975.

D. A. Reed, C. L. Mendes, and C. da Lu. The Grid: Bluepring for a New
Computing Infrastructure (Second Edition), chapter Application Tuning and
Adaptation. Morgan Kaufmann Publishers, 2004.



BIBLIOGRAPHY 149

[151] R. L. Ribler, J. S. Vetter, H. Simitci, and D. A. Reed. Autopilot: Adaptive con-
trol of distributed applications. In 7th IEEE Symposium on High-Performance
Distributed Computing (HPDC’98), pages 172-179, Chicago, IL, USA, July
1998.

[152] J. Robinson, S. Russ, B. Heckel, and B. Flachs. A task migration implementa-
tion of the Message-Passing Interface. In 5th IEEE International Symposium on
High Performance Distributed Computing (HPDC’96), pages 61-68, Syracuse,
NY, USA, August 1996. IEEE Computer Society.

[153] D. J. Scales and M. S. Lam. The design and evaluation of a shared object system
for distributed memory machines. In 1st USENIX Symposium on Operating
Systems Design and Implementation, pages 101-114, November 1994.

[154] K. Seymour, H. Nakada, S. Matsuoka, J. Dongarra, C. Lee, and H. Casanova.
Overview of GridRPC: A Remote Procedure Call API for grid computing. In
3rd International Workshop on Grid Computing (GRID 2002), pages 274-278,
Baltimore, MD, USA, November 2002. Springer Verlag, LCNS 2536.

[155] G. Shao, F. Berman, and R. Wolski. Master/slave computing on the grid. In
Heterogeneous Computing Workshop, pages 3—16, 2000.

[156] E. H. Siegel and E. C. Cooper. Implementing distributed Linda in Standard
ML. Technical Report CMU-CS-91-151, Carnegie Mellon University.

[157] J. P. Singh, W.-D. Weber, and A. Gupta. SPLASH: Stanford parallel applica-
tions for shared-memory. SIGARCH Computer Architecture News, 20(1):5-44,
1992.

[158] A. Singla, U. Ramachandran, and J. Hodgins. Temporal notions of synchroniza-
tion and consistency in Beehive. In 9th Annual ACM symposium on Parallel
Algorithms and Architectures (SPAA’97), pages 211-220. ACM Press, 1997.

[159] H. Soh, S. Haque, W. Liao, and R. Buyya. Advanced Parallel and Distributed
Computing, chapter Grid Programming Models and Environments. Nova Sci-
ence Publishers, 2006.

[160] G. Stellner. CoCheck: Checkpointing and process migration for MPI. In 10th

International Parallel Processing Symposium, pages 526-531. IEEE Computer
Society, 1996.

[161] M. Stumm and S. Zhou. Algorithms implementing distributed shared memory.
IEEE Computer, 23:54—64, May 1990.

[162] V. S. Sunderam. PVM:a framework for parallel distributed computing. Con-
currency: Practice and Ezperience, 2(4):315-339, December 1990.

[163] H. Tamaki and T. Sato. OLD Resolution with Tabulation. In $rd International
Conference on Logic Programming, pages 84-98, London, UK, July 1986.



150

BIBLIOGRAPHY

[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

Y. Tanaka, H. Nakada, S. Sekiguchi, T. Suzumura, and S. Matsuoka. Ninf-G:
A reference implementation of RPC-based programming middleware for grid
computing. Journal of Grid Computing, 1(1):41-51, 2003.

A. S. Tanenbaum and M. van Steen. Distributed Systems, Principles and
Paradigms. Prentice Hall, 2002.

T. Tannenbaum, D. Wright, K. Miller, and M. Livny. Condor — a distributed
job schedurer. In T. Sterling, editor, Beowulf Cluster Computing with Linuz.
MIT Press, October 2001.

K. Taura, K. Kaneda, T. Endo, and A. Yonezawa. Phoenix: A parallel pro-
gramming model for accommodating dynamically joining/leaving resources. In
ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming (PPoPP’03), pages 216-229, October 2003.

I. Taylor, M. Shields, and I. Wang. Resource management for the Triana peer-
to-peer services. In J. Nabrzyski, J. M. Schopf, and J. Weglarz, editors, Grid
Resource Management, pages 451-462. Kluwer Academic Publisher, 2004.

D. Thain, T. Tannenbaum, and M. Livny. Distributed computing in practice:
The Condor experience. Concurrency and Computation: Practice and Experi-
ence, 17(2-4):323-356, February—April 2005.

F. J. Torres-Rojas, M. Ahamad, and M. Raynal. Timed consistency for shared
distributed objects. In 18Th Annual ACM Symposium on Principles of Dis-
tributed Computing (PODC’99), pages 163-172. ACM Press, 1999.

S. S. Vadhiyar and J. J. Dongarra. SRS:a framework for developing malleable
and migratable parallel applications for distributed systems. Parallel Processing
Letters, 13(2):291-312, 2003.

S. S. Vadhiyar and J. J. Dongarra. Self adaptivity in Grid computing. Concur-
rency and Computation: Practice and Experience, 17(2—-4):235-257, 2005.

S. S. Vadhiyar and J. J. Dongarra. Self adaptivity in grid computing. Concur-
rency and Computation: Practice and Experience, 17(2—-4):235-257, 2005.

N. H. Vaidya. Impact of checkpoint latency on overhead ratio of a checkpointing
scheme. IEEE Transactions on Computers, 46(8):942-947, August 1997.

R. V. van Nieuwpoort. Efficient Java-Centric Grid Computing. PhD thesis,
Vrije Universiteit Amsterdam, 2003.

R. V. van Nieuwpoort, T. Kielmann, and H. E. Bal. Efficient load balancing for
wide-area divide-and-conquer applications. In 8th ACM SIGPLAN symposium
on Principles and practices of parallel programming (PPoPP ’01), pages 34-43,
New York, NY, USA, 2001. ACM Press.



BIBLIOGRAPHY 151

[177]

[178]

[179]

[180]

[181]

[182]

[183]

[184]

[185]

[186]

[187]

[188]

R. V. van Nieuwpoort, J. Maassen, H. E. Bal, T. Kielmann, and R. Veldema.
Wide-area parallel computing in Java. In ACM Java Grande Conference, pages
8-14, San Francisco, CA, USA, June 1999.

R. V. van Nieuwpoort, J. Maassen, T. Kielmann, and H. E. Bal. Satin: Simple
and efficient Java-based grid programming. Scalable Computing: Practice and
Ezperience, 6(3):19-32, September 2005.

R. V. van Nieuwpoort, J. Maassen, G. Wrzesinska, R. Hofman, C. Jacobs,
T. Kielmann, and H. E. Bal. Ibis: a flexible and efficient Java based grid
programming environment. Concurrency and Computation: Practice and Fzx-
perience, 17(7-8):1079-1107, June 2005.

G. von Laszewski, I. Foster, J. Gawor, and P. Lane. A Java Commodity Grid
Kit. Concurrency and Computation: Practice and Ezperience, 13(8-9):643-662,
2001.

R. Wolski, N. Spring, and J. Hayes. The network weather service: A distributed
resource performance forecasting service for metacomputing. Journal of Future
Generation Computing Systems, 15(5-6):757-768, October 1999.

S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The SPLASH-2
programs: characterization and methodological considerations. In 22nd Annual
International Symposium on Computer Architecture (ISCA ’95), pages 24-36,
New York, NY, USA, 1995. ACM Press.

N. Wooy, S. Choi, H. Jung, J. Moon, H. Y. Yeom, T. Park, and H. Park.
MPICH-GF: Providing fault tolerance on grid environments. In 3rd IEEE/ACM
Symposium on Cluster Computing and the Grid (CCGrid03), May 2003.

I.-C. Wu and H. T. Kung. Communication complexity for parallel divide-and-
conquer. In 32nd Annual Symposium on Foundations of Computer Science,
pages 151-162, San Juan, Puerto Rico, 1991.

J. W. Young. A first order approximation to the optimum checkpoint interval.
Communications of the ACM, 17(9):530-531, September 1974.

H. Yu and A. Vadhat. Design and Evaluation of a Conit-Based Continuous
Consistency Model for Replicated Services. ACM Transactions on Computer
Systems, 20(3):239-282, 2002.

J. Yu and R. Buyya. A novel architecture for realizing grid workflow using tuple
spaces. In 5th IEEE/ACM International Workshop on Grid Computing (Grid
2004), pages 119-128, November 2004.

J. Yu and R. Buyya. A taxonomy of workflow management systems for grid
computing. Journal of Grid Computing, 3(3-4):171-200, September 2005.



152 BIBLIOGRAPHY




Complexiteit en verandering in
grid computing

Het doel van grid computing is het aan elkaar koppelen en integreren van verschillende
computersystemen zodat ze gebruikt kunnen worden als een virtuele supercomputer,
die we een grid of een gridomgeving noemen. De rekenkracht van zo’n virtuele su-
percomputer is vele malen groter dan de rekenkracht van een traditionele parallelle
computer. Een grid kan daarom gebruikt worden om uitermate ingewikkelde pro-
blemen op te lossen die niet opgelost zouden kunnen worden door een traditionele
supercomputer.

De complexiteit van gridomgevingen is echter ook vele malen groter dan de com-
plexiteit van traditonele supercomputers. In de eerste plaats zijn gridomgevingen
heterogeen, dat wil zeggen dat ze uit systemen bestaan die mogelijk verschillend zijn
voor wat betreft processoren en besturingssytemen. De verschillen in processorsnel-
heden kunnen enorm zijn. Ook de kwaliteit van netwerkverbindingen varieert van
snelle LAN netwerken tot langzame WAN netwerken.

In de tweede plaats zijn gridomgevingen dynamisch. Ze bestaan uit grote hoeveel-
heden computers en daarom is de kans dat sommige computers uitvallen groot. Een
gedeelte van de door een applicatie gebruikte computers kan ook overgenomen worden
door een andere applicatie met een hogere prioriteit. Ook varieert de belasting op
computers en netwerken continu.

Daarom is het schrijven van gridapplicaties een uitermate ingewikkelde taak. De
programmeur moet een goed begrip hebben van niet alleen het applicatiedomein maar
ook van complexe problemen van het domein van parallel programmeren, zoals het
optimaliseren van de communicatie tussen de processoren, foutbestendigheid, adap-
tiviteit, enzovoort.

In deze dissertatie kijken we naar mogelijkheden om het schrijven van gridappli-
caties te vergemakkelijken. We geloven dat dit doel bereikt kan worden door gebruik
van gridprogrammeeromgevingen. Een gridprogrammeeromgeving is een verzameling
programma’s, zoals compilers en bibliotheken, die bepaalde taken van de gridpro-
grammeur overnemen, bijvoorbeeld het verdelen van taken tussen processoren, het
optimaliseren van de communicatie of het foutbestendig maken van de applicatie.

De gridprogrammeeromgeving die beschreven wordt in dit proefschrift spitst zich
toe op een bepaalde klasse van applicaties, namelijk verdeel-en-heersapplicaties. Ap-



154 SAMENVATTING

plicaties van die soort splitsen een probleem op in deelproblemen, totdat het werk
zover opgesplitst is dat het eenvoudig uitgevoerd kan worden. Tenslotte worden alle
deeloplossingen gecombineerd tot het uiteidelijke resultaat. Verdeel-en-heersapplicaties
kunnen efficiént worden uitgevoerd op parallelle computers door verschillende taken
(deelproblemen) te laten berekenen door verschillende processoren.

Onze programmeeromgeving heet Satin en is gebaseerd op een prototype dat is
ontwikkeld door Rob van Nieuwpoort. Van Nieuwpoorts prototype implementeert
een efficiént taakverdelingsalgoritme: Cluster-aware Random Work Stealing (CRS).
CRS is gebaseerd op het stelen (overnemen) van taken van willekeurige machines in
het systeem. Dankzij dit algoritme kunnen Satin-applicaties erg efficiént draaien in
omgevingen met langzame WAN netwerken.

In hoofdstuk 2 van dit proefschrift beschrijven en classificieren we de bestaande
gridprogrammeeromgevingen en beschrijven we het Satin prototype. We leggen uit
wat er nog moet gebeuren om dit prototype om te zetten in een volwaardige gridpro-
grammeeromgeving.

In hoofstuk 3 onderzoeken we hoe we verdeel-en-heersapplicaties foutbestendig en
malleable kunnen maken. We zeggen dat een applicatie foutbestendig is als zij uit-
vallende processoren kan tolereren. We noemen een applicatie malleable als ze op
een steeds veranderende verzameling processoren kan draaien, dat wil zeggen, dat
processoren kunnen komen en gaan terwijl de applicatie draait. Beide eigenschap-
pen zijn belangrijk voor applicaties die in dynamische gridomgevingen draaien. We
beschrijven een verzameling algoritmes die verdeel-en-heersapplicaties foutbestendig
en malleable maken. De basis van die algoritmes is steeds dezelfde: de resultaten die
verloren gingen door het wegvallen van een processor worden herberekend. Echter,
om de hoeveelheid werk dat herberekend moet worden te minimalizeren, gebruiken
we verschillende technieken:

e We gebruiken de resultaten van zogenaamde weestaken opnieuw. Weestaken
zijn taken (deelproblemen) die werden gestolen van weggevallen processoren.

e Als we weten dat sommige processoren binnenkort niet meer ter beschikking
van de gridapplicatie zullen staan, slaan we de door die processoren berekende
resultaten op, om ze later opnieuw te kunnen gebruiken.

e We slaan regelmatig de resultaten van deelproblemen op op een vaste schijf. Als
een processor wegvalt, kunnen wij de resultaten van deze processor terughalen
van de harde schijf en ze hergebruiken.

Dankzij deze algoritmen kan een applicatie verschillende situaties overleven die
kenmerkend zijn voor een grid omgeving:

e Een applicatie kan blijven draaien ondanks wegvallende processoren.

e Processoren kunnen worden toegevoegd aan of weggehaald van een draaiende
applicatie.

e Een applicatie kan gemigreerd worden naar een andere verzameling processoren.



155

e Een applicatie kan worden gestopt en later opnieuw gestart op een verschillende
verzameling processoren.

In hoofdstuk 4 kijken we naar het probleem van selectie van processoren en adap-
tiviteit. Om efficiént te kunnen draaien heeft een applicatie een juiste verzameling pro-
cessoren nodig. De hoeveelheid processoren moest juist zijn, de processoren moeten
niet te langzaam zijn en de netwerkverbindingen tussen processoren moeten voldoende
snel zijn. De vereisten verschillen per applicatie. Vaak moet de verzameling proces-
soren worden aangepast tijdens de berekening omdat de belasting van processoren en
netwerkverbindingen kan veranderen, een gedeelte van de processoren kan wegvallen,
of sommige fasen van de aplicatie meer rekenkracht nodig hebben.

Van oudsher werden deze problemen opgelost door middel van een performance
model. Een dergelijk model is een wiskundige formule die gebruikt wordt om te bereke-
nen hoe snel een applicatie zou draaien op een gegeven verzameling processoren. Om
de optimale verzameling processoren te selecteren worden verschillende verzamelin-
gen geévalueerd door middel van een performance model. De verzameling waarop
de applicatie het snelst zou draaien wordt gekozen. Tijdens de berekening wordt de
verzameling processoren herhaaldelijk opnieuw geévalueerd. Als er een betere verza-
meling processoren is gevonden wordt de applicatie daarnaar gemigreerd, waardoor
zij zich kan aanpassen aan de veranderingen in de gridomgeving waarin ze draait.

Het vinden van een performance model voor een applicatie is echter uitermate
gecompliceerd. Daarom wordt in dit hoofdstuk een alternative benadering gepre-
senteerd. In deze benadering wordt een applicatie op een willekeurige verzameling
processoren gestart. Terwijl de applicatie loopt worden statistische gegevens verza-
meld, onder meer over de mate waarin de applicatie een beroep doet op de processor
of het netwerk. Deze gegevens worden gebruikt om af te leiden hoe de verzameling
processoren aangepast kan worden om de applicatie efficiénter te laten draaien. We
laten zien dat we met deze benadering;:

e De verzameling processoren automatisch kunnen aanpassen aan de behoeften
van de applicatie. Als sommige fasen van de applicatie bijvoorbeeld meer
rekenkracht nodig hebben, wordt de verzameling processoren automatisch uit-
gebreid.

e De applicatie automatisch kunnen migreren van een zwaar belaste verzameling
processoren naar een andere, mogelijk minder zwaar belaste, verzameling.

e Processoren met langzame netwerkverbindingen kunnen laten weghalen.

e Nieuwe processoren kunnen toevoegen als een gedeelte van de processoren weg-
valt.

In hoofdstuk 5 kijken we naar het programmeermodel van onze omgeving. Een
belangrijk nadeel van het verdeel-en-heersmodel is het ontbreken van globale vari-
abelen. Daarom breiden we het verdeel-en-heersmodel uit met globale objecten die
door alle taken gelezen en geschreven kunnen worden. FEen belangrijk probleem
bij het implementeren van zulke globale objecten is de consistency. Traditionele



156 SAMENVATTING

consistency-modellen zijn moeilijk efficiént te implementeren in gridomgevingen om-
dat netwerkverbindingen traag zijn en omdat de verzameling processoren waarop de
applicatie draait kan veranderen. Daarom hebben wij een nieuw consistency-model
ontwikkeld onder de naam guard consistency. In dit model definieert de programmeur
wanneer de objecten consistent zijn door middel van booleaanse guard functions. De
programmeeromgeving zorgt er niet voor dat alle kopieén van een globaal object
identiek zijn. Het zorgt er alleen voor dat de guardfuncties altijd ¢rue retourneren.
In dit hoofdstuk worden globale objecten gebruikt om een aantal nieuwe applicaties
te implementeren om aan te tonen dat deze applicaties efficiént kunnen draaien in
gridomgevingen.

Het resultaat van deze dissertatie is een programmeeromgeving die het eenvoudiger
maakt om gridapplicaties te schrijven. Grid-gerelateerde problemen zoals commu-
nicatie, taakverdeling tussen processoren of foutbestendigheid worden automatisch
opgelost door de programmeeromgeving. De applicaties die geimplementeerd wor-
den binnen deze programmeeromgeving kunnen efficiént draaien in gridomgevingen
en ze zijn bestand tegen situaties die kenmerkend zijn voor dat soort omgevingen,
zoals wegvallende processoren of veranderende belasting op processoren en netwerk
verbindingen.



Publications

1. Gosia Wrzesinska, Jason Maassen and Henri E. Bal. Self-Adaptive Applications
on the Grid. ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP’07), pp. 121-129, San Jose, CA, USA, 14-17 March
2007.

2. Gosia Wrzesinska, Jason Maassen, Kees Verstoep and Henri E. Bal. Satin++:
Divide-and-Share on the Grid. 2nd IEEE International Conference on e-Science
and Grid Computing, Amsterdam, The Netherlands, 4-6 December 2006.

3. Gosia Wrzesinska, Rob V. van Nieuwpoort and Henri E. Bal. Fault-tolerance,
Malleability and Migration for Divide-and-Conquer Applications on the Grid.
19th International Parallel and Distributed Processing Symposium (IPDPS 2005),
4-8 April 2005, Denver, CO, USA.

4. Gosia Wrzesinska, Rob V. van Nieuwpoort, Jason Maassen, Thilo Kielmann,
and Henri E. Bal. Fault-tolerant Scheduling of Fine-grained Tasks in Grid
Environments. International Journal of High Performance Applications, Vol.
20, No. 1, pp. 105-114, Spring 2006.

5. Rob V. van Nieuwpoort, Jason Maassen, Gosia Wrzesiniska, Thilo Kielmann,
and Henri E. Bal. Adaptive Load Balancing for Divide-and-Conquer Grid Ap-
plications. Journal of Supercomputing, 2006.

6. Rob V. van Nieuwpoort, Jason Maassen, Gosia Wrzesiriska, Rutger Hofman,
Ceriel Jacobs, Thilo Kielmann, and Henri E. Bal. Ibis: a Flexible and Effi-
cient Java-based Grid Programming Environment Concurrency & Computation:
Practice & Experience, Vol. 17, No. 7-8, pp. 1079-1107, June—July 2005.



