
Handling omplexity and hangein grid omputing

Advanced School for Computing and ImagingThis work was arried out in graduate shool ASCI.ASCI dissertation series number 143.

This work was arried out in the ontext of Virtual Laboratory for e-Siene projet(ww.vl-e.nl). This projet is supported by a BSIK grant from the Duth Ministry ofEduation, Culture and Siene (OC&W) and is part of the ICT innovationprogram of the Ministry of Eonomi A�airs (EZ).Copyright 2007 by Gosia Wrzesi«ska

VRIJE UNIVERSITEIT
Handling omplexity and hangein grid omputingACADEMISCH PROEFSCHRIFTter verkrijging van de graad Dotor aande Vrije Universiteit Amsterdam,op gezag van de retor magni�usprof.dr. L.M. Bouter,in het openbaar te verdedigenten overstaan van de promotieommissievan de faulteit der Exate Wetenshappenop donderdag 10 mei 2007 om 10.45 uurin de aula van de universiteit,De Boelelaan 1105doorMaªgorzata Wrzesi«skageboren te Warshau, Polen

promotor: prof.dr.ir. H.E. Balopromotor: dr. J. Maassen

Czy»by mi si� udaªo?

Contents
List of Figures iiiList of Tables viAknowledgments ix1 Introdution 11.1 Motivation and goals . 11.2 Heterogeneity and hange . 31.3 Data sharing in dynami environments 41.4 Contributions . 51.5 Outline of this thesis . 62 Context: grid programming environments 72.1 Introdution . 72.2 Grid programming environments . 72.2.1 Appliation deployment tools 82.2.2 Appliation development tools 112.3 Satin: a divide-and-onquer framework 222.3.1 The divide-and-onquer paradigm 222.3.2 The Satin programming model 242.3.3 Implementation . 262.3.4 Load balaning . 282.4 Satin vs other GPEs . 293 Fault tolerane, malleability and migration 353.1 Introdution . 353.2 Bakground . 363.2.1 Failure models . 363.2.2 Fault-tolerane tehniques . 363.2.3 Malleability tehniques . 413.2.4 Migration tehniques . 423.3 Fault-tolerane for Satin . 423.3.1 Failure detetion . 44

ii CONTENTS3.3.2 Reomputing jobs stolen by leaving proessors 443.3.3 Orphan jobs . 453.3.4 Orphan propagation . 463.3.5 Handling rashes of the master proessor 513.3.6 Job identi�ers . 513.3.7 Alternative orphan saving shemes 553.4 Malleability and migration for Satin 573.4.1 Adding proessors . 573.4.2 Saving partial results from the leaving proessors 583.4.3 Using malleability to implement migration 613.5 Total rashes . 613.5.1 The basi hekpointing algorithm 623.5.2 Restoring the omputation after an abort or total rash 623.5.3 The hekpoint �le . 663.5.4 The oordinator . 663.6 Performane evaluation . 673.6.1 Overhead during rash-free exeution 703.6.2 Performane in the presene of rashes 703.6.3 Performane of migration . 733.6.4 Performane of the abort/restore mehanism 733.7 Comparison with related work . 763.8 Conlusion . 774 Self-adaptation 794.1 Introdution . 794.2 Bakground . 804.2.1 Resoure seletion . 804.2.2 Adaptation . 814.3 Avoiding performane models . 824.3.1 Appliation requirements . 834.3.2 Resoure model . 844.3.3 Weighted average e�ieny . 844.3.4 Adaptation oordinator . 854.3.5 Colleting performane statistis 854.3.6 Adaptation strategy . 874.3.7 Further improvements of the adaptation strategy 904.3.8 Implementation . 914.4 Performane evaluation . 914.4.1 Senario 0: adaptivity overhead 924.4.2 Senario 1: expanding to more nodes 944.4.3 Senario 2: overloaded proessors 944.4.4 Senario 3: overloaded network link 944.4.5 Senario 4: overloaded proessors and an overloaded network link 954.4.6 Senario 5: rashing nodes . 964.5 Comparison with related work . 97

CONTENTS iii4.6 Conlusion . 1005 Data sharing in dynami environments 1035.1 Introdution . 1035.2 Bakground . 1045.2.1 Shared data paradigms . 1045.2.2 Algorithms implementing data sharing 1075.2.3 Consisteny models . 1095.3 The divide-and-share programming model 1155.4 Programming interfae and examples 1165.5 Implementation . 1195.6 Divide-and-share appliations . 1235.6.1 Traveling Salesman Problem 1235.6.2 LousRoute . 1235.6.3 Barnes-Hut N-body simulation 1245.6.4 SAT solver . 1255.7 Performane evaluation . 1265.8 Comparison with related work . 1295.9 Conlusions . 1316 Summary and onlusions 133Bibliography 137Samenvatting 153Publiations 157

iv CONTENTS

List of Figures
2.1 The lassi�ation of the grid programming environments 82.2 The quiksort algorithm . 232.3 Raytraer: an example divide-and-onquer appliation in Satin 252.4 Compiling Satin appliations . 262.5 The design of Ibis . 273.1 An example omputation tree before and after the rash of proessor 3 473.2 The rash handling proedure . 483.3 Restoring the parent-hild link . 493.4 Proessor 4 returns the result of the orphan to proessor 2 503.5 Orphan propagation . 523.6 Orphan propagation . 533.7 Handling the rash of the master (proessor 1) 543.8 Level stamps . 553.9 An example of a deadlok . 573.10 Handling graefully leaving proessors 593.11 Handling graefully leaving proessors 603.12 Proessors are taking a hekpoint . 633.13 Crash handling proedure and reading the hekpoint �le 643.14 Reusing the hekpointed results . 653.15 Raytraer, overhead during rash-free exeution 693.16 TSP, overhead during rash-free exeution 693.17 Raytraer, performane in the presene of rashes 713.18 TSP, performane in the presene of rashes 713.19 Raytraer, performane of migration 743.20 TSP, performane of migration . 743.21 Raytraer, performane of abort/restore 753.22 TSP, performane of abort/restore . 754.1 A subset of the exeution tree used as a benhmark 864.2 Adaptation strategy . 894.3 The runtimes of the Barnes-Hut appliation, senarios 0-5 92

vi LIST OF FIGURES4.4 Barnes-Hut iteration durations with/without adaptation, too few CPUs(Senario 1) . 934.5 Barnes-Hut iteration durations with/without adaptation, overloadedCPUs (Senario 2) . 954.6 Barnes-Hut iteration durations with/without adaptation, overloadednetwork link (Senario 3) . 964.7 Barnes-Hut iteration durations with/without adaptation, overloadedCPUs and an overloaded network link (Senario 4) 974.8 Barnes-Hut iteration durations with/without adaptation, rashing CPUs(Senario 5) . 985.1 Data sharing paradigms . 1055.2 Algorithms implementing data sharing 1075.3 Delaring shared objets in the TSP appliation 1175.4 Using shared objets in the TSP appliation 1185.5 Delaring a shared objet in the Barnes-Hut appliation 1205.6 Using a guard funtion to enfore shared objet onsisteny in Barnes-Hut . 1215.7 Speedups on 32 DAS-2 proessors . 1265.8 Speedups of Barnes-Hut on DAS-2 . 127

List of Tables
2.1 Nodes used in the GridLab experiment 292.2 The omparison of Satin and other grid programming environments . 322.3 The omparison of Satin and other grid programming environments . 333.1 Chekpoint �le sizes . 683.2 Orphan saving statistis . 723.3 Crash performane statistis . 733.4 Chekpoint �le size while aborting and restoring appliations 765.1 Proessor on�gurations in the Grid'5000 testbed 1285.2 Nodes used in the Grid'5000 experiment 1285.3 Test results the Grid'5000 testbed . 1305.4 Statistis for Grid'5000 runs . 1305.5 Statistis for Grid'5000 runs - ont. 130

viii LIST OF TABLES

AknowledgmentsEven though only a single name is listed on the over of this thesis, many people haveontributed to it. I would like to use this setion to aknowledge these ontributions.Henri Bal and Jason Maassen were the supervisors of my PhD projet. Most of theideas presented in this thesis were inspired by the disussions with them. Apart fromthese ountless disussions they also invested muh time into reading and orretingmy papers and this thesis.Rob van Nieuwpoort is the author and implementor of the prototype Satin sys-tem. The work desribed in this thesis is based on his researh and the urrentimplementation of Satin is based on his prototype.Rob van Nieuwpoort and Jason Maassen are the designers and implementors ofthe Ibis ommuniation library on top of whih Satin is built.Ceriel Jaobs onstantly works on keeping the Ibis and Satin soure ode omplete,orderly and, most importantly, e�ient. He orreted the ountless bugs I introduedinto Satin and implemented many features, for whih I ould not �nd time or simplywas not skilled enough. He also helped to keep to my soure ode onsistent in themost busy period of my PhD.Niels Drost drank hetoliters of o�ee with me while disussing many ideas de-sribed in this thesis. He is also the author of Zorilla, whih was used to implementthe adaptivity omponent from hapter 4.Kees Verstoep is the administrator of the DAS-2 superomputer whih was usedfor the experiments presented in this thesis. Kees was always very helpful when I hadproblems with node reservations. He also wrote the SAT solver appliation I use inhapter 5.Maik Nijhuis wrote the �rst version of the Barnes-Hut appliation whih was lateroptimized by Ceriel and Rob and used in hapter 4 of this thesis.Kris Borg implemented the �rst version of hekpointing desribed in hapter 3.This work was his Master's projet.Thilo Kielmann o-supervised the hekpointing projet together with myself.Thilo also inspired the adaptivity work desribed in hapter 4.Mathijs den Burger allowed me to use his tra� shaper for the experiments inhapter 4.Ana Opresu helped with the performane evaluation setion in hapter 3.The over of this thesis was designed by Wouter Gransbergen (Mi±) and the bak-ground photo was taken by Grumpy.

Chapter 1Introdution1.1 Motivation and goalsGrid environments integrate heterogeneous and geographially-distributed omputingresoures into a single system. Many appliations an bene�t from suh environments,for example ollaborative appliations, whih enable remote ollaborations and shar-ing of omputational resoures or data-intensive appliations, whih proess dataloated on geographially distributed resoures. In this thesis, we fous on anotherinteresting lass of appliations: distributed superomputing appliations. Distributedsuperomputing appliations use omputational grids to solve omputational hal-lenges that ould not be takled on a traditional parallel systems. Grids provideomputational power many times larger than that of a traditional superomputer.However, the omplexity of Grid environments also is many times larger than that oftraditional parallel mahines. Grid environments are inherently heterogeneous. Gridsonsist of mahines with various proessor arhitetures and various operating sys-tems. Proessor speeds vary dramatially. Finally, the quality of network onnetionsvaries from low-lateny Loal Area Networks (LANs) to high-lateny and possiblylow-bandwidth Wide Area Networks (WANs). Grid environments are also inherentlydynami. The availability of resoures is onstantly hanging. Proessors may rashor beome unavailable beause they are laimed by a higher-priority appliation orbeause a reservation has ended. New proessors may beome available. Also, theload on the resoures, both network links and proessors, is onstantly hanging.In order to ahieve good performane, grid appliations need to be able to toleratehigh wide-area latenies (i.e., they need to be lateny insensitive) and possibly lowbandwidths. They need to be portable (i.e., able to run on multiple arhitetureswithout the need of reompilation) and able to e�iently utilize proessors with vari-ous speeds (i.e. the fast proessors should not have to wait for the slow ones. Finally,they need to adapt to dynami harateristis of the environment.Writing grid-enabled appliations is therefore an inherently omplex task. Theprogrammer does not only need to have deep understanding of the appliation problemdomain, but also of the omplex parallel and distributed programming issues suh

2 CHAPTER 1. INTRODUCTIONas: optimizing the inter-proessor ommuniation, load balaning, fault tolerane,adaptivity et. Beause of this omplexity, few grid-enabled appliations have beendeveloped until now and the tremendous power of grid environments is still mostlyunused. Therefore, the proess of reating grid appliations needs to be simpli�ed.We believe that this goal an be ahieved with grid programming frameworks(high-level grid programming environments). A framework is a set of tools (suh asompiler, runtime system, libraries et.) that forms a layer of abstration between theappliation and the low-level grid infrastruture. Frameworks present a programmerwith a high-level programming model that abstrats away the details of the underly-ing platform. Beause the programming model is high-level, it does not support allpossible appliations, but only a ertain lass of appliations. However, the advan-tage of narrowing the supported appliation set is that most of the grid related issuesan be resolved automatially by the framework software. In ontrast, low-level pro-gramming environments (e.g., message-passing environments suh as MPICH [112℄)support a wider range of appliations, but the appliation programmer is responsiblefor dealing with grid issues.In this work we fous on the lass of divide-and-onquer appliations. Divide-and-onquer is a popular and e�ient paradigm for writing grid appliations [32, 139℄.Divide-and-onquer algorithms operate by splitting the problem into subproblems andthen solving them reursively. The divide-and-onquer paradigm is a generalizationof the popular master-worker paradigm. The task graph of a divide-and-onquerappliation is hierarhially strutured. Therefore, suh appliations an be exeutedwith exellent ommuniation loality in grid environments, whih are usually alsohierarhial: they onsist of multiple lusters or superomputers with low-latenyintra-luster ommuniation and high-lateny inter-luster links.The divide-and-onquer paradigm has broad appliability in many �elds suh asastrophysis, bioinformatis, omputational geometry, numerial methods, games andother searh and optimization problems. Also, all master-worker omputations anbe expressed in the divide-and-onquer model.In earlier work by Rob van Nieuwpoort [175℄ a prototype divide-and-onquerframework alled Satin was designed and implemented. The Satin framework on-sists of a ompiler and a runtime system, both written entirely in Java. Java is alsoused to write appliations with Satin. This allows the appliation to run over het-erogeneous arhitetures without the need of reompilation (thanks to Java's `writeone, run anywhere' property). Satin extends the sequential Java language with twosimple divide-and-onquer primitives: spawn and syn. The programmer writes theappliation in a reursive way and annotates the sequential ode with those primitivesto reate a grid appliation. The Satin ompiler generates the neessary ommunia-tion and load-balaning ode. Satin uses a grid-aware load-balaning strategy alledCluster-aware Random Work Stealing (CRS) [176℄ whih allows Satin appliationsto run very e�iently in a wide-area setting [178℄. Also, beause work stealing isa dynami load balaning strategy [175℄, it allows e�ient usage of proessors withvarious speeds and/or variable load.The ombination of Java and CRS allows Satin to resolve a number of grid issues,namely the heterogeneity of proessor arhitetures, the heterogeneity of proessor

1.2. HETEROGENEITY AND CHANGE 3speeds and large wide-area latenies. However, there is still a large number of problemsthat need to be solved before Satin beomes a mature grid programming framework.In the following setions, we will desribe those problems and sketh the solutionswhih will be presented in more detail in the remaining part of this thesis. Theresult of the work presented in this thesis is a full-�edged, mature grid programmingframework.1.2 Heterogeneity and hangeAn important problem in grid omputing is resoure seletion: whih resoures andhow many resoures should we use to ahieve good performane? Even in traditionalparallel environments (single luster or superomputers) �nding the optimal numberof proessors is a di�ult task and is often solved in a trial-and-error fashion. In gridenvironments, this problem is an order of magnitude harder beause of the hetero-geneity of resoures. Even though Satin an handle the heterogeneity of proessorarhitetures and speeds and an run e�iently on high-lateny networks, there arestill ombinations of resoures that will result in very poor performane. For example,when some very slow proessors are used, the performane gain they might provide willnot outweigh the load-balaning and ommuniation overhead they introdue. Also,if bandwidth on a ertain link is lower than a ertain minimal bandwidth (whih isdi�erent for eah appliation) the performane of the appliation dramatially de-teriorates. Finally, using more proessors than the appliation's level of parallelismallows will result in poor resoure utilization.Another problem is the dynami harateristis of the grid environment. Theavailability of resoures onstantly hanges. Grids are inherently more unreliable thantraditional parallel omputers or lusters. The number of proessors and network linksis muh larger and therefore the mean-time-to-failure beomes muh shorter. There isno entralized ontrol, so (a part of) our resoures an be turned o� for maintenaneor simply given to another user. The resoures are shared by many users, so theyan beome overloaded. To survive in suh an environment, the appliation needs tobe fault tolerant, that is, able to ontinue working in the presene of proessor andnetwork failures. In order to not only survive but also ahieve good performane, theappliation needs to adapt to hanging onditions. This involves malleability, whihis the ability to hange the number of proessors used on the �y and migratability,whih is the ability to transfer to another set of resoures during the appliation run.In hapters 3 and 4 we will disuss the solutions to those problems. First, wedisuss the question of providing fault tolerane, malleability and migratability todivide-and-onquer appliations. In hapter 3, we will present a simple algorithmthat provides fault tolerane, malleability and migratability to divide-and-onquerappliations. Using this algorithm, the appliations an handle joining/leaving pro-essors and migrate with an overhead that is lose to zero.In hapter 4, we will show how to use malleability to provide a solution to theadaptation and the resoure seletion problem. Existing solutions to those problemsrequire providing a performane model for an appliation. Suh a performane model

4 CHAPTER 1. INTRODUCTIONis used to predit the running time of the appliation on a given set of resoures.Various resoure sets are ompared using the performane model and the resoureset whih yields the shortest runtime is seleted for exeution. To provide adaptiv-ity, this resoure seletion phase is repeated during appliation exeution, either atregular intervals or when performane degradation is deteted. Construting per-formane models, however, is inherently di�ult. Creating suh a model requiresexpertise whih an appliation programmer might not have. In hapter 4, we disussan alternative approah to appliation adaptation and resoure seletion. We start anappliation on any set of resoures. During the appliation run, we ollet statistisabout the run and use them to dedue the resoure requirements of the appliation.Next, we adjust the resoure set the appliation is running on by adding or remov-ing nodes. Thus, we are using malleability to ahieve adaptivity. This approahdoes not neessarily result in the optimal resoure set. However, it allows avoidingvarious performane bottleneks, suh as slow WAN links or overloaded proessors.We demonstrate the working of this approah in various senarios typial for gridenvironments and show that signi�ant performane improvements an be ahieved.1.3 Data sharing in dynami environmentsDivide-and-onquer is a paradigm with a broad range of appliations. However, animportant disadvantage is the lak of global state. The only way of sharing databetween tasks is by expliit parameter passing and returning results. This modelturns out to be insu�ient for many appliations. One lass of suh appliationsonsists of programs that pass large data strutures as parameters. With pure divide-and-onquer, those large parameters need to be opied eah time a task is exeutedremotely (stolen), while opying the parameters one and reusing them later wouldbe more e�ient. Another lass of appliations onsists of programs that need toshare data between independent tasks. In pure divide-and-onquer, this form of datasharing is not possible. Branh-and-bound appliations belong to this lass. Sharingthe best known solution between all the proessors taking part in the omputationallows pruning large parts of the searh tree. Another example is game-tree searhwhere a transposition table is shared to avoid evaluating the same position twie.In hapter 5, we investigate the possibility of extending the divide-and-onquermodel with a shared data abstration. We propose a divide-and-share model: thedivide-and-onquer model extended with a shared data abstration � shared objets.Implementing a shared data abstration on the Grid is a hallenging problem. Pro-viding strong onsisteny while maintaining high performane is infeasible even ontightly onneted systems like lusters of workstations. In grid environments, it iseven harder due to large wide-area latenies and due to the fat that grid environ-ments are inherently dynami. Lukily, many appliations an tolerate weaker on-sisteny models. In fat, only appliations that an tolerate weaker onsisteny willbe able to e�iently run in grid environments. Many onsisteny models have beenproposed but none of them are suitable for divide-and-onquer grid appliations. Aswe will explain in more detail in hapter 5, they are either too expensive to imple-

1.4. CONTRIBUTIONS 5ment in grid environments, or do not �t the needs of our appliations. Therefore,we will introdue a new, relaxed onsisteny model, whih we all guard onsisteny.With guard onsisteny, the programmer an de�ne the onsisteny requirements ofan appliation by means of boolean guard funtions. A guard funtion is assoiatedwith a divide-and-onquer task and de�nes whether the shared data aessed by thistask are in a orret state from the appliation's point of view. The runtime systemuses an inexpensive optimisti protool whih allows the objet replias to beomedi�erent as long as guards are satis�ed. Only when a guard beomes unsatis�ed, doesthe runtime system bring the loal replia into onsistent state whih is a potentiallyexpensive operation.Using the divide-and-share model we implement a number of new appliations andevaluate them in a real grid environment. We demonstrate that our appliations anahieve high e�ienies in suh environments.1.4 ContributionsThe starting point for this work was a prototype divide-and-onquer framework im-plemented by Rob van Nieuwpoort. In this thesis, we will show how we turned it intoa mature, full-�edged grid omputing environment. The ontributions made in thisthesis an be summarized as follows:1. We have designed and implemented a set of algorithms that provide fault tol-erane, malleability and migratability to divide-and-onquer appliations. Theresulting system an handle a vast variety of senarios typial for the Grid:� rashing proessors, inluding a total rash an be handled� proessors joining and leaving an on-going omputation an be handledwith high e�ieny� an appliation an be e�iently migrated� an appliation an be stopped and restarted later on a possibly di�erentset of resoures2. We propose a novel approah to resoure seletion and adaptation that doesnot require onstruting analytial performane models for appliations. Ourapproah improves appliation performane in many di�erent situations thatare typial for grid omputing. It handles all of the following ases:� automatially adapting the number of proessors to the degree of paral-lelism in the appliation, even when this degree hanges during the om-putation� migrating (part of) a omputation away from overloaded resoures� removing resoures with poor ommuniation links that slow down theomputation

6 CHAPTER 1. INTRODUCTION� adding new resoures to replae resoures that have rashed3. We have improved the appliability of the Satin framework by extending thedivide-and-onquer programming model with a shared data abstration: sharedobjets. Shared objets provide a novel onsisteny model alled guard on-sisteny. We have shown that a shared data abstration an be implementede�iently in dynami grid environments.1.5 Outline of this thesisThe rest of this thesis is strutured as follows. In hapter 2, we lassify and reviewexisting grid programming environments. Further, we desribe the prototype Satinframework designed and implemented by Rob van Nieuwpoort. We outline the is-sues that need to be resolved to turn the prototype Satin into a full-�edged, maturegrid programming environment. Finally, we ompare both the prototype and thefull-�edged Satin with other grid programming environments. In hapter 3, we willpresent an algorithm that provides fault tolerane, malleability and migratability todivide-and-onquer appliations. We will desribe its implementation in Satin andits performane evaluation. In hapter 4, we will address the problems of resoureseletion and adaptation to hanges in grid environments. We will present a simpleapproah to those problems and we will evaluate it in a number of senarios typialfor grid environments. In hapter 5, we will show how we an improve the appliabil-ity of the Satin framework by extending its programming model with a shared-dataabstration. We will draw our onlusions in hapter 6.

Chapter 2Context: grid programmingenvironments2.1 IntrodutionIn this hapter, we review the related work. We propose a lassi�ation of the existinggrid programming environments (GPEs) and disuss the most important of thosetools. Further, we will desribe the Satin programming environment and programmingmodel and illustrate it with a number of ode samples. We explain the Cluster-awareRandom Work Stealing algorithm and brie�y desribe the implementation of Satin.Finally, we will ompare Satin to other grid programming models. The remaininghapters will give more spei� related work onerning the topis desribed in thosehapters (fault tolerane, adaptivity and data sharing).2.2 Grid programming environmentsProgramming grid appliations onsists of two major tasks: appliation developmentand appliation deployment. Appliation development onsists of dividing the probleminto tasks that an be done in parallel, mapping those tasks to physial proessors,providing inter-proessor ommuniation and synhronization. Appliation deploy-ment involves resoure seletion, disovery and reservation, spawning proesses andproviding �le I/O. Grid programming tools an be roughly divided into two lasses:tools that support appliation development (grid programming models) and environ-ments that support appliation deployment. Typially, a grid programming modelis ombined with an appliation deployment tool to ahieve full funtionality. Somegrid programming models (e.g., Proative [30℄) provide also appliation deploymentfuntionality.In the rest of this setion, we will review a number of grid programming tools. Wedo not attempt to present all existing grid programming tools. We seleted those thatin our opinion have the biggest impat on the grid omputing ommunity. We will

8 CHAPTER 2. CONTEXT: GRID PROGRAMMING ENVIRONMENTS
grid programming
environments

application
development

low−level
(explicit parallelization)

high−level
(semi−implicit parallelization)

application
deployment

Globus
Toolkit

Java CoG
Kit

superscalar
GRID workflow

systems

RPCHPJavaMW

ProActive MPI

Satin

KOALA

GAT

P2P supercomputing

XtremWebZorillaFigure 2.1: The lassi�ation of the grid programming environmentsstart with appliation deployment tools and desribe the Globus Toolkit [86℄ whih isde fato a standard in grid omputing, Java Commodity Grid (CoG) Kit [180℄ whihprovides among others a Java binding to Globus tools, KOALA [136℄ whih provideso-alloation of multiple sites, Grid Appliation Toolkit (GAT) [23℄ whih an belayered on top of Globus, CoG Kit or other middleware and provides higher-levelappliation deployment funtionality, and grid middlewares based on peer-to-peertehnology: Zorilla [72℄ and XtremWeb [54℄.Next, we will desribe appliation development tools � grid programming models.We will divide the grid programming models into high-level programming models andlow-level, expliit ommuniation models. With high-level models, the programmeronly needs to be onerned with deomposing the problem into tasks that an be donein parallel. The programming environment (the ompiler and/or the runtime system)will take are of low-level issues suh as mapping tasks to physial proessors (loadbalaning), inter-proessor ommuniation, fault tolerane et. The high-level modelswe disuss inlude: grid supersalar [29℄, a master-worker framework (MW) and work-�ow systems. Expliit ommuniation programming models typially provide only aommuniation abstration. The programmer needs to not only take are of theproblem deomposition but also of the low-level issues. The expliit ommuniationmodels we disuss inlude: HPJava, MPI, ProAtive and Remote Proedure Calls.The lassi�ation of all grid programming environments disussed in this hapter isshown in Figure 2.1.2.2.1 Appliation deployment toolsThe funtionalities that appliation deployment tools need to provide inlude:

2.2. GRID PROGRAMMING ENVIRONMENTS 9� Resoure disovery: �nding ompute nodes suitable for the exeution of ourappliation.� Resoure reservation: reserving ompute nodes, network links and possiblyother resoures.� Remote exeution: reating proesses on remote resoures.� File I/O: Staging of the exeutable, input and output �les. Remote �le aess.Appliation deployment tools an be divided into low-level middleware that ex-poses the omplexity of the grid to the programmer and higher-level tools that hidethe grid omplexity. The Globus Toolkit and Java CoG Kit belong to the former lasswhile the Grid Appliation Toolkit belongs to the latter group.GlobusGlobus Toolkit is a set of libraries and programs that address ommon problems thatour when building grid appliations [86℄. Globus is beoming a standard in gridomputing. The most important omponents on the Globus Toolkit are:� The Monitoring and Disovery Servie (MDS) whih provides information aboutgrid resoures. MDS an be used by appliations for resoure disovery.� The Globus Resoure Alloation Manager (GRAM) whih provides resourealloation and remote exeution funtionalities.� The Globus Aess to Seondary Storage (GASS) whih provides aess to re-mote �les. GASS is typially used for exeutable, input and output �le staging.� GridFTP whih provides data transfer funtionality.The Globus Toolkit provides relatively low-level support for grid programming,i.e. it exposes the omplexity of the grid to the programmer instead of hiding it. Theprogrammer must be aware of many details of the underlying platform, for example,he must expliitly state whih loal resoure managers have to be used (e.g., PBSor Condor) when alloating resoures or he must selet the appropriate �le transferprotool (e.g., FTP, HTTP et.).Java CoG KitThe Java Commodity Grid (CoG) Kit provides aess to grid servies for Java appli-ations. Java CoG Kit is a mapping between Java and the Globus Toolkit. Therefore,Java CoG Kit provides similar funtionality as the Globus Toolkit: resoure manage-ment and remote exeution, �le I/O and information servies. Additionally, CoGprovides a number of simple GUI omponents that an be used as building bloksfor grid portals. CoG has a layered arhiteture (similar to the GAT below), whihallows shielding the appliation programmer from the onstant hanges the GlobusToolkit is undergoing.

10 CHAPTER 2. CONTEXT: GRID PROGRAMMING ENVIRONMENTSKOALAAn important problem of tools suh as Globus Toolkit or Java CoG Kit is the lakof o-alloation, that is, the ability to shedule an appliation on multiple sites (lus-ters or superomputers) simultaneously. For example, using the Globus Toolkit, theprogrammer an submit an appliation to multiple sites, but there are no guaranteesthat all parts of the appliation will be started at the same time.This problem is addressed by the KOALA sheduler [136℄. KOALA builds on topof the Globus Toolkit � it uses Globus tools to submit jobs to the individual exeutionsites and to stage in �les. KOALA makes sure that all job omponents loated ondi�erent sites start simultaneously. To ahieve this goal, KOALA repeatedly triesto laim proessors. If not enough idle proessors are available on one or more sites,laiming is repeated until suessful. This strategy an be optimized if a site supportsadvane reservations.GATGrid Appliation Toolkit (GAT) [23℄ provides a simple API to grid appliations. WhileGlobus and CoG Kit expose the omplexity of the grid to the appliation programmer,the GAT hides the details of the underlying platform. GAT an be layered on top ofthe lower-level grid middleware suh as Globus, as will be explained below. The GATonsists of the following subsystems:� Resoure Management Subsystem allows the appliation to disover resoures,reserve them and submit and manage jobs. An important omponent of thissubsystem is the Resoure Broker. The Resoure Broker an �nd resouresbased on the hardware and software requirements spei�ed by the appliationprogrammer (e.g., the amount of memory, minimal CPU speed, operating sys-tem). The Resoure Broker an also reserve the resoures and spawn remoteproesses. The appliation programmer does not need to be onerned aboutdetails suh as loal resoure managers types. Suh issues are resolved auto-matially by the GAT Resoure Broker.� File Subsystem provides the appliation with aess to �les. Using this subsys-tem the appliation an reate, destroy, move, read or write �les. The API isbased on POSIX and is very simple to use. The appliation programmer needsonly to speify the �le name and loation and the GAT will take are of seletingthe appropriate aess protool (e.g., FTP, HTTP, GridFTP et.) and auto-matially optimize the adjustable parameters based on the available informationabout the environment. The File Subsystem also provides a logial �le abstra-tion. A logial �le is a set of �le replias that are geographially distributed. Ifan appliation attempts to use a logial �le, the GAT will automatially seletthe losest replia.� Monitoring and Event Subsystem provides utilities for appliation and grid re-soure monitoring.

2.2. GRID PROGRAMMING ENVIRONMENTS 11� Information Exhange Subsystem whih allows advertising and searhing forappliation metadata.The arhiteture of GAT is based on the priniple that the API layer should beindependent of the underlying middleware. GAT features a three-layer arhiteture:the API layer, the GAT engine layer and the GAT adaptors layer. GAT adaptors arebindings of the GAT API to various grid middlewares, e.g. Globus, UNICORE [11℄,Zorilla. GAT adaptors are dynamially interhangeable at runtime. The GAT enginedispathes API alls to the adaptor layer. This layered arhiteture ensures that appli-ations using GAT an run without modi�ations on top of various grid middlewares.The appliations are also immune to hanges in the grid middleware.Peer-to-Peer SuperomputingPeer-to-peer superomputing middlewares are an alternative to traditional deploy-ment tools. Peer-to-peer superomputing middlewares are haraterized by the lakof entralized omponents. Therefore, they are inherently more resilient to failuresand easier to set up and maintain than traditional, entralized tools.Zorilla [72℄ is one suh grid middleware based on peer-to-peer tehnology. Zorillaimplements all funtionalities needed by grid appliations in a fully deentralized fash-ion. Those funtionalities inlude resoure disovery and reservation, remote proessreation and �le staging. Zorilla does not provide remote �le aess.The Zorilla system onsists of a number of Zorilla nodes whih form a peer-to-peernetwork. Nodes an be added and removed at any moment. A grid appliation diretsits requests to its loal Zorilla node whih ooperates with other nodes to grant therequests. Zorilla is implemented entirely in Java and provides a Java API to gridappliations.Another example of a peer-to-peer superomputing middleware is XtremWeb [54℄.XtremWeb has a three-tier arhiteture: it onsists of lients, workers and the oordi-nation servie whih mediates between lients and workers. The oordination servieaepts task requests from lients and launhes the tasks on the available workers.2.2.2 Appliation development toolsAppliation parallelization an be lassi�ed into three approahes: impliit, expliitand semi-impliit [159℄. With impliit parallelization, the programmer writes a se-quential appliation whih is automatially parallelized by the environment. Auto-mati parallelization is not used in grid omputing beause it is hard to get satisfatoryperformane with this approah.With semi-impliit parallelization, the programmer identi�es the parts of the prob-lem whih an be solved in parallel. However, the environment takes are of mappingtasks to physial proessors, load balaning and inter-proessor ommuniation. Thesemi-impliit approah is very popular in grid omputing. It allows ahieving high-performane while hiding most of the grid omplexity from the programmer. The pro-grammer is provided with a high-level and easy to use programming model. Examplesof environments supporting the semi-impliit approah are: grid supersalar [29℄ (a

12 CHAPTER 2. CONTEXT: GRID PROGRAMMING ENVIRONMENTSform of fork-join or divide-and-onquer parallelism), MW [95℄ (a master-worker frame-work), work�ow systems and our Satin framework (divide-and-onquer). Below, wewill refer to those environments as high-level programming models or frameworks.With expliit parallelization, the programmer is responsible not only for identi-fying work that an be done in parallel, but also for mapping the tasks to physi-al proessors, load balaning and ommuniations. Examples are: HPJava [120℄,MPI [96℄, ProAtive [30℄ and Remote Proedure Calls [154℄. Environments that sup-port this approah typially provide only some ommuniation abstration. Addition-ally, some implementations of MPI provide transparent fault tolerane and/or migra-tion [106℄, however, no grid-enabled implementation urrently provides this funtion-ality. ProAtive provides migration support and transparent fault tolerane. Below,we will refer to those models as expliit ommuniation models.For eah programming model, we will disuss a number of non-funtional proper-ties that are vital in grid environments:� Performane: One of the major driving fores behind grid omputing is ahiev-ing higher performane than on traditional parallel systems. However, ahiev-ing high performane in grid environments is a hallenging task whih requiresomplex tehniques, suh as lateny hiding or dynami load balaning. Typ-ially, high-level programming environments apply suh tehniques automati-ally while expliit ommuniation models require the programmer to take areof performane. On the other hand, the expliit ommuniation models, bygiving the programmer full ontrol over performane optimizations, often allowa more e�ient implementation.� Ease of use: A grid programming environment should hide as muh grid om-plexity from the programmer as possible. High-level programming models arelearly easier to use than expliit ommuniation models as they relieve the pro-grammer from dealing with omplex issues suh as inter-proess ommuniation,load balaning, fault tolerane et. Expliit ommuniation models require theprogrammer to deal with suh issues expliitly.� Appliability: It is important that a grid programming environment supportsa broad variety of appliations. High-level programming models typially re-quire the appliation programmer to use a spei� programming paradigm whihmight not be suitable for all appliations. Expliit ommuniation models anbe used for any type of appliation.� Support for fault tolerane, malleability, migratability: Fault tolerane, mal-leability and migratability are essential features of a grid appliation. On sys-tems onsisting of hundreds or thousands of mahines, the mean-time-to-failuremay beome shorter that the lifetime of an appliation. Moreover, grid envi-ronments lak entralized ontrol and situations in whih part of the omputingresoures is suddenly rebooted or laimed by a higher-priority appliation arenot rare. Therefore, without support for fault tolerane, malleability and mi-gration, the hane that a grid appliation would ever omplete would be small.

2.2. GRID PROGRAMMING ENVIRONMENTS 13High-level programming models typially provide transparent support for faulttolerane, malleability and migration. Expliit ommuniation models oftenrequire the programmer to take are of those issues.� Adaptivity: Grid environments are inherently dynami. Not only the availabil-ity of resoures hanges onstantly, but also the performane harateristis ofavailable resoures vary. On time-shared mahines the proessors may beomeoverloaded by another, higher-priority appliation. Also network links may be-ome overloaded and the available bandwidth may derease dramatially. Inorder to ahieve a reasonable performane, an appliation onstantly has toadapt to hanges in the grid environment. The adaptation support may beprovided by the programming environment or may be added by the appliationprogrammer. Currently, few programming environments and appliations haveadaptation support.� Portability: Grids are inherently heterogeneous. Therefore, a grid programmingenvironment should not be tied to any spei� platform. It should abstrataway various platform-spei� issues from the appliation. Another importantissue is the programming language supported by a grid programming environ-ment. Therefore, languages suh a Java are beoming popular in grid omputing.Thanks to the virtual mahine tehnology, Java appliations an run on hetero-geneous arhitetures without the need of reompilation and porting. Thanksto JIT tehnology, the performane of Java appliations is urrently omparablewith the performane of C appliations [51℄.Grid supersalarWhen programming with the grid supersalar model [29℄, the programmer has tostruture the appliation as a set of possibly repetitive, sequential tasks. Suh tasksan be exeuted in parallel on the grid. The programmer must provide an IDL �lespeifying whih tasks should be onsidered for a parallel exeution. The IDL usedin grid supersalar is based on CORBA IDL.Eah task operates on a set of �les. Tasks that operate on the same �le an havea data dependeny. The grid supersalar ompiler analyzes the data dependeniesautomatially. The grid supersalar runtime system maintains a graph of tasks. Edgesof this graph denote data dependenies. When a task is ompleted, it is removed fromthe graph and the graph is searhed for tasks with no inoming edges (i.e., no datadependenies). Suh tasks are submitted for exeution. The user is required to speifya �le with a list of nodes that will be used for the exeution. The runtime system usesthe Globus Toolkit (see setion 2.2.1) to exeute tasks on those servers. However, theore of grid supersalar is independent of the grid middleware and an be ombinedwith any software from setion 2.2.1.� Performane: No extensive performane evaluation of the grid supersalar sys-tem has been performed yet. In [29℄ experiments on up to 8 CPUs (on 2 nodes)are reported. A 6-fold speedup was the maximal speedup ahieved on this

14 CHAPTER 2. CONTEXT: GRID PROGRAMMING ENVIRONMENTStestbed. At the moment, it is not lear how muh performane an be ex-peted from the grid supersalar appliations. However, sine a GRAM all isperformed to spawn eah task, �ne-grained appliations will not perform well,sine the ost of the GRAM all will not be amortized by the exeution time ofthe task. Therefore, grid supersalar is only suitable for oarse-grained applia-tions.� Ease of use: Grid supersalar provides a high-level programming model whihhides most of the grid omplexity and parallel-programming issues from theprogrammer.� Appliability: The fork-join/divide-and-onquer parallelism supported by thegrid supersalar is appliable to a large lass of problems. However, onlyoarse-grained parallel appliations an be implemented e�iently with gridsupersalar, as explained above.� Fault tolerane, malleability, migration: Currently grid supersalar does notsupport fault tolerane, malleability and migration. Adding transparent supportfor fault tolerane is planned in the future.� Adaptivity: Currently, grid supersalar does not provide support for adap-tation. In the future, a sheduling poliy that takes into aount dynamiinformation on the system load will be used.� Portability: Grid supersalar appliations are written in C++ or Perl. Appli-ations written in C++ need to be reompiled for eah arhiteture/operatingsystem and therefore their portability is limited. Perl is an interpreted languageand therefore appliations written in Perl an be run on di�erent systems with-out the need of reompilation, as long as a Perl interpreter is available on agiven system.MW � a master-worker frameworkMW [95℄ is a framework for writing grid-enabled master-worker appliations. Inmaster-worker appliations, a single proess alled the master divides the problem tobe solved into independent tasks and dispathes those tasks to the worker proesses.After solving a task, a worker proess returns the result to the master and requests anew task. The master-worker paradigm is very popular in grid omputing. Sine thetasks are independent, little ommuniation is needed and high performane an beahieved even on wide-area networks.The MW API is extremely simple: the programmer needs to provide only a smallnumber of funtions: a funtion to split up work, worker initialization routine, afuntion performing the atual task et. The runtime system takes are of loadbalaning, inter-proessor ommuniation and fault-tolerane. MW also abstratsan Infrastruture Programming Interfae (IPI) whih allows to port the frameworkto di�erent Grid middleware. MW was implemented on top of Condor [169℄ andPVM [162℄. In the future, it will be ported to Globus Toolkit [86℄

2.2. GRID PROGRAMMING ENVIRONMENTS 15� Performane: Master-worker appliations typially ahieve high performaneon the grid. MW has been reported to ahieve high e�ienies. It has beenused to solve a ombinatorial optimization problem on a heterogeneous, wide-area testbed onsisting of 502 proessors in 7 lusters. A parallel e�ieny of80% was ahieved on this testbed.� Ease of use: MW provides a very high-level programming model and is thereforeextremely easy to use. The appliation programmer is shielded both from theomplexity of the grid environment and from omplex parallel programmingissues suh as load balaning and ommuniation.� Appliability: MW supports only embarrassingly parallel appliations. However,many useful problems exhibit this struture.� Fault tolerane, malleability, migration: MW transparently handles worker rashes.If a worker fails, the task exeuted by this worker is re-assigned to anotherworker by the runtime system. A failure of the master has to be treated in aspeial way. MW o�ers a feature to hekpoint the state of the master. Theprogrammer, however, needs to provide funtions that write and read the stateof the master. MW is also malleable. Leaving workers are handled using thefault-tolerane mehanism. Joining workers reeive tasks from the work queueof the master.� Adaptivity: Master-worker appliations use dynami load-balaning whih al-lows them to adapt to varying proessor speeds: slower proessors get fewertasks to proess.� Portability: MW appliations are written in C++ and they have to be ompiledseparately for eah platform, whih limits their portability.Work�ow systemsGrid work�ows are meta-appliations running on the omputational grid. A work�owis an aggregation of multiple sequential or parallel appliations (alled omponentsin this ontext) whih ooperate by passing �les or data. The simplest work�ow is apipeline in whih omponents are arranged in a hain and eah omponent reeivesdata from the previous omponent in the hain, proesses the data and passes it tothe following omponent. In general, a work�ow is a direted graph of omponents,in whih edges express data dependenies between the omponents.Work�ow systems are environments whih allow building work�ows out of indi-vidual omponents. Work�ow systems often provide a graphial user interfae thatallows rapid development of work�ow appliations. Alternatively, the programmeran use tehnologies suh as XML to de�ne the dependenies between the ompo-nents. Work�ow systems automatially map work�ow omponents onto the availablegrid resoures. This mapping is performed in suh a way that the runtime of thework�ow appliation is minimized and/or other user onstraints are met (e.g., the a-uray of the result). Work�ow systems typially use appliation development tools,

16 CHAPTER 2. CONTEXT: GRID PROGRAMMING ENVIRONMENTSsuh as the Globus Toolkit or GAT, to �nd the appropriate grid resoures, sheduleand exeute work�ow appliations.A vast number of work�ow systems exist, for example: DAGMan [166℄, Pega-sus [66℄, Triana [168℄, ICENI [134℄, GridAnt [26℄, GridFlow [53℄, Gridbus work-�ow [187℄, Kepler [25℄, Taverna [141℄, Askalon [79℄, VLAM-G [13℄, GrADS [172℄ andASSIST [20℄ (see [188℄ for a detailed overview of many of those systems).� Performane: Work�ow systems automatially map work�ow omponents ontothe Grid to maximize the performane of the work�ow. To ahieve this goal,stati and/or dynami information about the grid environment (e.g. the numberof available proessors, estimated data transfer times et.) is used.� Ease of use: Work�ow systems are extremely easy to use. The appliationprogrammer needs to speify only the data dependenies between work�ow om-ponents. The programmer does not need to expliitly deal with the omplexityof the grid environment.� Appliability: The work�ow model is suitable only for oarse-grained parallelappliations.� Fault tolerane, malleability and migration: Most work�ow systems supportfault tolerane. A vast variety of tehniques is used. Most ommonly, fault tol-erane is provided transparently to the appliation programmer. For example,a failed omponent an restarted on the same or alternative resoure. Com-ponents an be also repliated on multiple resoures or hekpointed. Somesystems provide support for migration, for example the GrADS systems.� Adaptivity: Most work�ow systems maps work�ow appliation to grid re-soures statially, i.e., after the exeution of the appliation has started, themapping annot be hanged. Suh systems, therefore, do not support adaptiv-ity. Pegasus [66℄ handles dynami hanges in grid environment using just-in-timesheduling. With just-in-time sheduling, rather than mapping all omponentsat one, eah omponent is mapped to a physial resoure only after all its datadependenies have been resolved, that is, after all omponents it depends onhave �nished exeution. Just-in-time sheduling performs better in dynamienvironments than stati sheduling. However, one a omponent is startedit annot be remapped to a di�erent resoure, whih an result in poor per-formane. GrADS [172℄ and ASSIST [20℄ support adaptivity by monitoringperformane of the appliation omponents and migrating them to better re-soures if a performane degradation is required. Those systems assume thata performane model (i.e., a mathematial formula that allows to predits theruntime of a omponent of a given resoure) is known for eah omponent.� Portability: The portability of work�ow systems varies greatly. Many of thosesystems are based on the Java tehnology whih enhanes their portability.

2.2. GRID PROGRAMMING ENVIRONMENTS 17HPJavaHPJava [120℄ is a Java-based framework supporting data-parallel programming style.It extends sequential Java with support for distributed arrays : arrays that are physi-ally distributed over the memories of the partiipating proessors. The programmermanipulates those arrays using high-level onstruts suh as the overall onstrutwhih denotes a distributed, parallel loop.The programming model of HPJava has been inspired by the High PerformaneFortran (HPF) programming model [85℄ and many onstruts look similar to theonstruts used in HPF, for example overall resembles HPF's forall. In fat, theprogramming model provided by HPJava is lower-level than that of HPF. The maindi�erene between HPJava and HPF is that with HPJava a proess an only aessloally held elements of distributed arrays. If a proess needs to aess an element heldby another proessor, expliit ommuniation must take plae. With HPF, proessesare allowed to aess any element of a distributed array and the ompiler takes areof the ommuniation.HPJava provides a ommuniation library alledAdlib whih implements olletiveommuniation primitives. Those primitives are expressed in terms of distributed-array operations. Some examples of operations provided by Adlib are: remap whihhanges the mapping of a distributed array to proessors, shift whih opies a givenarray to a new array and shifts all elements by a given number of positions, andmaxval whih returns the maximum element of a given distributed array.Currently, distributed implementations of the HPJava olletive ommuniationrely on availability of native ommuniation interfaes� Performane: No extensive performane evaluation of HPJava has been per-formed. In [120℄ experiments on up to 36 CPUs (in as single, homogeneousluster) and speedups up to 17 are reported. However, sine HPJava is anexpliit ommuniation programming model, the appliation programmer willhave to take the responsibility for grid-spei� optimizations, suh as dynamiload balaning and lateny hiding.� Ease of use: HPJava o�ers a relatively low-level programming model and there-fore burdens the programmer with tasks suh as load balaning and inter-proessommuniation. Programming the ommuniation is somewhat simpli�ed bythe array primitives provide by the Adlib ommuniation library. Also, theprogrammer has to expliitly deal with some grid-related issues.� Appliability: HPJava supports data-parallel appliations. Many importantsienti� problems an be programmed in this style.� Fault tolerane, malleability, migration: HPJava urrently does not supportfault tolerane, malleability or migration.� Adaptivity: HPJava does not provide support for adaptivity. Adaptive featuresneed to be programmed by the appliation programmer.

18 CHAPTER 2. CONTEXT: GRID PROGRAMMING ENVIRONMENTS� Portability: The use of Java tehnology enhanes the portability of HPJavaappliation. Thanks to Java's `write one, run anywhere', HPJava's appliationsan be run unmodi�ed in heterogeneous environments. However, urrently thedistributed-memory implementation of HPJava relies on native ommuniationinterfaes (MPI or LAPI) whih severely redues the portability of the system.A pure Java implementation is planned in the futureMPIExpliit message passing is a popular parallel programming paradigm. Message-passing appliations are strutured as a set of proesses ommuniating via messages.The Message Passing Interfae (MPI) [71℄ is a standard that de�nes the syntax andsemantis of a set of ommuniation primitives useful for that type of appliations.MPI features synhronous and asynhronous point-to-point ommuniation and var-ious forms of olletive ommuniation, e.g. broadast, satter, gather and all-to-allexhanges. MPI is typially used for SPMD (Single ProgramMultiple Data) style pro-grams. In SPMD programs, all proessors exeute the same program on a di�erentpart of the data.Multiple implementations of the MPI standard exist. MPICH-G2 [112℄ is a grid-enabled implementation that allows running MPI appliations aross multiple lus-ters. MPICH-G2 is an integration of the popular MPICH [96℄ implementation with theGlobus Toolkit [86℄. The Globus Toolkit is used to stage in/stage out exeutables and�les, start proesses on remote resoures and ombine di�erent ommuniation meth-ods available in a heterogeneous environment (e.g., vendor-spei� protools withinlusters with TCP/IP on the inter-luster links).Other implementations of MPI whih address some grid issues are PACX-MPI [90℄whih provide grid-aware olletive ommuniations or MetaMPI [76℄ whih supportmultiple ommuniation protools. MagPIE [115℄ is a library of MPI-like olletiveoperations optimized for hierarhial, wide-area systems.� Performane: MPI appliations typially ahieve high performane on lustersuperomputers. Ahieving high performane in grid omputing requires theprogrammer to expliitly manage heterogeneity. For example, the programmerhas to take various proessor speeds into aount when distributing work. Also,the ommuniation hierarhy has to be taken into aount. MPI provides fea-tures that make suh optimizations possible. Asynhronous operations an beused for lateny hiding. MPICH-G2 uses the ommuniator onstrut to deliverthe topology of the underlying platform to the programmer.� Ease of use: Message passing is a umbersome and error-prone programmingstyle ompared to semi-automati parallelization provided by higher-level mod-els, suh as grid supersalar or master-worker. The programmer has to expli-itly deal with load-balaning and inter-proessor ommuniation. As mentionedabove, in order to ahieve satisfying performane, the programmer also needsto expliitly manage some aspets of the underlying platform, suh as ommu-niation hierarhy and large di�erenes in proessor speeds.

2.2. GRID PROGRAMMING ENVIRONMENTS 19� Appliability: The majority of appliations an be programmed in message-passing style. MPI is espeially suitable for SPMD programs.� Fault tolerane, malleability, migration: There are two approahes to providingfault tolerane, malleability and migration in MPI appliations. One approahis providing them transparently to the appliation programmer. This is usuallydone using system-level hekpointing and/or message logging. This approahwas adopted for example in: Co-hek MPI [160℄, Star�sh [14℄ MPI and MPICH-V [49℄. A transparent implementation of task migration has been proposed inMPI-TM [152℄. AMPI [101℄ supports malleability and migration via proessorvirtualization: the programmer is presented with a virtual proessor abstra-tion and the runtime system dynamially maps virtual proessors to physialproessors. An advantage of system-level approahes is that little or no e�ort isrequired from the appliation programmer. Disadvantages are omplexity, largeamount of data that needs to be saved and lak of portability.Another approah is to let the programmer provide fault tolerane, malleabilityor migration. Various extensions and modi�ations of the MPI standard wereproposed. For example, the MPI-2 standard [137℄ extends the basi MPI stan-dard with primitives for dynami proess management: reating new proessesand proess termination. FT-MPI [78℄ proposes extending the set of possibleommuniator states from valid, invalid to (OK, PROBLEM, FAILED). If aommuniator is in an erroneous state, it needs to be rebuilt aording to thespei�ed semantis: shrink (shrink the ommuniator to exlude the failed pro-essors), blank (reates a ommuniator with `gaps' that have to be �lled beforethe ommuniator an be used for ommuniation), rebuild (rebuilds the om-muniator by starting new proesses to �ll the `gaps'). SRS [171℄ is a librarysupporting appliation-level hekpointing for MPI appliations. With SRS theprogrammer has to speify whih variables need to be hekpointed and whenhekpointing has to take plae.� Adaptivity: MPI itself does not provide support for adaptivity. Adding adap-tivity to an MPI appliation is the responsibility of the appliation program-mer. Adaptive MPI appliations have been developed in the ontext of theGrADS projet [173℄. Eah time a performane degradation of the appliationwas deteted, the appliation was hekpointed and restarted on another setof resoures. The SRS software has been used to perform the migration. Theappliation programmer needs to supply a performane model for the applia-tion whih allows prediting appliation runtimes on various set of resoures.Also a resoure seletor has to be reated whih uses the performane model toselet a resoure set whih results in the shortest appliation runtime. Further,the appliation needs to be instrumented with sensors that ollet appliationinformation and detet a performane degradation.� Portability: Grid-enabled MPI implementations hide many platform-spei�details whih enhanes portability. However, MPI is typially used in ombi-nation with C or Fortran. Appliations written in those languages annot be

20 CHAPTER 2. CONTEXT: GRID PROGRAMMING ENVIRONMENTSported to another arhiteture without reompilations. Java bindings of theMPI interfae exist, suh as MPJ [55℄. However, the message-passing paradigmdoes not integrate well with objet-oriented Java [131℄. Communiation modelsbased on method invoations, suh as Group Method Invoation (GMI) [131℄�t better into the Java model.ProAtiveProAtive [30℄ is a Java middleware whih supports the so-alled Objet-OrientedSPMD programming model [35℄. This model is similar to the SPMD model supportedby MPI. Whereas an MPI appliation onsists of a number of proesses, a ProAtiveappliation is strutured as a set of ative objets. Like passive objets, ative objetsserve inoming method invoations. Additionally, eah ative objet has its ownthread of ontrol. Method alls to ative objets are asynhronous with transparentfuture objets. ProAtive provides various group ommuniation primitives based onmethod invoations.ProAtive provides a onvenient deployment mehanism: deployment desriptors.The goal is to remove any referenes to the software and hardware on�guration fromthe appliation ode, so that the appliation an run unmodi�ed on di�erent on�gu-rations. The appliation has aess to virtual nodes. An external XML desriptor �lespei�es the mapping of the virtual nodes to JVMs and the ways the JVMs shouldbe started, for example it spei�es the shell ommand that should be used to starta JVM or a loal resoure manager to obtain nodes. Starting JVMs an also involveusing grid appliation deployment tools suh as the Globus Toolkit.� Performane: ProAtive appliations an ahieve high performane. In [103℄a speedup of 100 on 150 nodes has been reported for a parallel solver for 3DMaxwell equations. However, sine ProAtive is an expliit ommuniationmodel, the programmer is responsible for applying grid-spei� optimizations.� Ease of use: ProAtive supports an expliit message passing programmingmodel. The disadvantages of expliit message passing has been already men-tioned in the disussion of MPI. However, ProAtive is based on Java whih is ahigher-level programming language than C or Fortran, whih are typially usedin ombination with MPI.� Appliability: Sine the programming model supported by ProAtive is rela-tively low-level, a broad variety of appliations an be programmed with thisprogramming environment.� Fault tolerane, malleability, migration: ProAtive supports migration of ativeobjets between JVMs. The migration is either self-triggered or initiated by anexternal entity. This faility an be used to implement appliation malleabilityand migration. ProAtive also provides transparent fault tolerane throughCommuniation Indued Chekpointing.� Adaptivity: Providing adaptivity is the responsibility of the appliation pro-grammer. No adaptive ProAtive appliations have been developed to date.

2.2. GRID PROGRAMMING ENVIRONMENTS 21� Portability: Portability of ProAtive appliations is ensured through the useof the Java tehnology. The deployment desriptors hide the details of theunderlying platform from the appliation enhaning its portability.Remote Proedure CallsThe onept of Remote Proedure Calls (RPC) [40℄ has been widely used in program-ming distributed appliations. RPC is similar to message passing, however, insteadof sending a message to a remote mahine, a routine is alled on this mahine. Withmessage passing the message has to be expliitly reeived. With RPC this is notthe ase. Typially a new thread is reated on the reeiver to serve the inomingproedure all.Java's Remote Method Invoation (RMI) [10℄ is an objet-oriented variant of RPC.RMI allows invoking methods on objets loated in remote Java Virtual Mahines.The suitability of Java RMI for grid omputing was investigated in [177℄. This re-searh has shown that many high-performane appliations an be programmed usingRemote Method Invoations and run e�iently in grid environments. The disadvan-tages of RMI are similar to other expliit message-passing models (suh as MPI):the programmer has to expliitly deal with issues like load balaning, ommuniationhierarhy and varying proessor speeds. Additional disadvantages of RMI are: lakof asynhronous method alls whih makes lateny-hiding di�ult and lak of groupoperations.GridRPC [154℄ extends RPC with a number of important primitives. Apart fromsynhronous proedure alls, the GridRPC API de�nes also asynhronous alls andprimitives to operate on those alls, e.g. to monitor the status of a previously sub-mitted all, to anel a all or to wait for any of multiple, previously submitted alls.In that way, GridRPC supports fork-join type of parallelism. GridRPC is suitable formedium-to-oarse-grained parallel appliations but not for �ne-grained parallelism.Example implementations of GridRPC are Netsolve [27℄ and Ninf [164℄.� Performane: Appliations based on RPCs an ahieve high performanein grid environments. For example, in [177℄ a data-parallel appliation pro-grammed with RMI has been shown to ahieve in wide-area setting perfor-mane lose to single-luster performane. However, it is the responsibility ofthe programmer to apply grid spei� optimizations. GridRPC supports thisby providing for example asynhronous proedure alls.� Ease of use: Like other expliit ommuniation models, programming withRPCs is di�ult sine the programmer has to expliitly deal with omplex gridprogramming issues.� Appliability: A broad variety of appliations an be programmed with RPCs.� Fault tolerane, malleability, migration: Some RPC frameworks, suh as RPC-V [69℄ provide transparent fault tolerane. With other frameworks, providingfault-tolerane, malleability and migration is the responsibility of the program-mer.

22 CHAPTER 2. CONTEXT: GRID PROGRAMMING ENVIRONMENTS� Adaptivity: When programming with RPCs, providing adaptivity is the re-sponsibility of the appliation programmer. However, some implementations ofGridRPC API provide a form of transparent adaptivity. For example, Ninf-Guses dynami information from Network Weather Servie [181℄ to dynamiallyselet the best resoure to exeute an RPC all.� Portability: The portability of an RPC/RMI appliation depends on the se-quential language used. Using Java enhanes the portability of an appliation.2.3 Satin: a divide-and-onquer frameworkSatin is a framework for writing divide-and-onquer appliations developed by Robvan Nieuwpoort [175℄. Satin has been inspired by Cilk [46℄ (hene the name) � aC-based divide-and-onquer framework designed for shared-memory mahines. Satinhas been designed to run e�iently in grid environments. Satin is Java-based whihallows Satin appliations to run aross heterogeneous grids without the need of re-ompilation. Programming with Satin is very easy: in order to reate a parallel gridappliation, the programmer annotates the sequential ode with divide-and-onquerprimitives. The Satin ompiler and runtime system take are of the low-level issues,suh as inter-proessor ommuniation and load balaning. Satin uses a load balaningalgorithm alled Cluster-aware Random Work Stealing. This algorithm allows Satinappliations to ahieve high performane in heterogeneous, wide-area environments.In the remainder of this setion, we will desribe Satin's programming model andillustrate it with ode examples. Next, we will brie�y desribe Satin's runtime systemand the Cluster-aware Random Work Stealing load-balaning algorithm.2.3.1 The divide-and-onquer paradigmDivide-and-onquer algorithms operate by dividing the problem at hand into smallersubproblems. The division proess ontinues until the problems beome trivial tosolve. The solutions of subproblems are ombined to provide the solution of theparent problem. A typial example of a divide-and-onquer algorithm is the famousquiksort algorithm for sorting arrays of real or integer numbers (Figure 2.2). In thedivide phase, a pivot element is hosen (thik lines in Figure 2.2) � this an be anyelement of the array, for example the �rst one. Next, the array is partitioned into 2smaller arrays: an array onsisting of elements smaller or equal to the pivot elementand and array onsisting of elements greater than the pivot element. This partitioningis performed in plae by swapping elements that are in wrong positions. Then thesame proedure is applied to the smaller arrays and is repeated until the size of thearrays reahes 1. In the ombine phase arrays are `glued' together.Beause the subproblems (also alled tasks or jobs) in a divide-and-onquer om-putation are independent, suh a omputation an be parallelized by exeuting dif-ferent tasks on di�erent mahines. Moreover, the task graph of a divide-and-onquerappliation has a hierarhial struture. Therefore, suh appliations an be exeutedwith good ommuniation loality on hierarhial grids.

2.3. SATIN: A DIVIDE-AND-CONQUER FRAMEWORK 23

10

7 10

6

1 4

1 4

1 4 6

1 4 6 7

1 4 6 7 8 15 10

8 15 10

4 6 1 15 710

1 4 6 15 8

1 4

1

15

15

8

7 10

86

4 10

15

Figure 2.2: The quiksort algorithm

24 CHAPTER 2. CONTEXT: GRID PROGRAMMING ENVIRONMENTSThe divide-and-onquer model has many appliations. Examples of divide-and-onquer omputations inlude: searh and optimization problems (e.g. the satis�-ability problem [97℄), astrophysial simulations (e.g., the Barnes-Hut N-body algo-rithm [34℄), grammar based learning [12℄, parallel rendering (raytraing), bioinfor-matis omputations, omputational geometry problems (e.g., onvex hull alula-tion), adaptive data lassi�ation proedures and numerial methods (e.g multigridalgorithms [184℄). Also, all the master-worker omputations an be expressed inthe divide-and-onquer model. In fat, divide-and-onquer is a generalization of themaster-worker model: master-worker an be seen as a divide-and-onquer with onelevel of reursion. The master-worker paradigm has gained extreme popularity ingrid ommunity and a vast majority of existing grid appliations has been writtenusing this paradigm, for example the famous SETI�home projet [7℄ and similarinitiatives [2, 4, 1, 5℄, the GridSAT satis�ability solver [64℄, et. The advantage ofdivide-and-onquer over master-worker is not only its broader appliability, but italso solves several performane issues. With master-worker omputations, the per-formane of the master proess an beome a bottlenek of appliation performane:the speed of the master limits the number of workers that an be used and thereforeit limits the speedup that an be ahieved. Moreover, master-worker may su�er fromommuniation overhead between the master and workers, espeially if they are lo-ated on di�erent lusters. This problem an be alleviated by using the hierarhialmaster-worker paradigm [110℄. The hierarhial master-worker grid system uses twolevels: a single supervisor proess ontrols multiple master proesses. There is onemaster per site and eah master ontrols a set of workers loated on the same site. Inthis way the amount of wide-area ommuniation is redued. The divide-and-onquerparadigm an be seen as a further generalization of the hierarhial master-workerparadigm.2.3.2 The Satin programming modelSatin extends the Java model with two Cilk-like divide-and-onquer primitives: spawnand syn. While Cilk introdues new keywords into C to implement those primitives,Satin integrates leanly into Java, without the need of language extensions.The spawn operation is a speial form of method invoation. A spawnable methodan potentially be exeuted in parallel with the method that has invoked it. We allsuh an invoation a spawned method invoation. The programmer indiates whihmethods are spawnable by means of marker interfaes (this mehanism is used in JavaRMI). The programmer delares spawnable methods in an interfae whih extends thespeial, empty satin.Spawnable interfae. Eah invoation of a method delared insuh a way is a spawned method invoation.Syn is a synhronization operation with the following semantis: wait until allthe methods spawned by the urrent method omplete and return their results. Onlyafter the syn operation has returned are the results of the spawned methods available.Before syn, the values of the variables ontaining those results are unde�ned. Synis a method de�ned in the lass satin.SatinObjet. Eah lass that spawns work needsto extend the SatinObjet lass and inherits the syn() method.

2.3. SATIN: A DIVIDE-AND-CONQUER FRAMEWORK 251 : interfae Rayt r a e r I n t e r f a e extends s a t i n . Spawnable () {2 : BitMap render (Sene sene , int x , int y , int w, int h) ;3 : }4 :5 : lass Raytraer extends s a t i n . Sat inObjet6 : implements s a t i n . Spawnable {7 :8 : BitMap render (Sene sene , int x , int y , int w, int h) {9 :1 0 : BitMap p i tu r e 1 , p i tu r e 2 , p i tu r e 3 , p i tu r e 4 ;11 :1 2 : i f (w < THRESHOLD && h < THRESHOLD) {1 3 : return r ende rS equen t i a l l y (sene , x , y , w , h) ;1 4 : } else {1 5 : p i tu r e 1 = render (sene , x , y , w/ 2 , h / 2) ; /�spawn�/1 6 : p i tu r e 2 = render (sene , x+w/2 , y , w/ 2 , h / 2) ; /�spawn�/1 7 : p i tu r e 3 = render (sene , x , y+h / 2 , w/ 2 , h / 2) ; /�spawn�/1 8 : p i tu r e 4 = render (sene , x+w/2 , y+h / 2 , w/ 2 , h / 2) ; /�spawn�/1 9 : syn () ;2 0 : return ombinePitures (p i tu r e 1 , p i tu r e 2 , p i tu r e 3 , p i tu r e 4) ;2 1 : }2 2 : }23 :2 4 : }Figure 2.3: Raytraer: an example divide-and-onquer appliation in SatinFigure 2.3 shows an example Satin appliation: Raytraer: a rendering appliationthat uses the raytraing method. It takes an abstrat sene desription as an inputand outputs a bitmap. The appliation is parallelized by reursively dividing thepiture into four smaller pitures until a ertain threshold is reahed. Below thethreshold the pitures are rendered sequentially. After rendering the smaller pituresthe �nal image is reassembled.In Figure 2.3 the interfae RaytraerInterfae (line 1) extends the satin.Spawnableinterfae. Therefore, the render(...) method (line 2) delared in the RaytraerIn-terfae is marked as spawnable. Eah invoation of this method (lines 15�18) willbe a spawned invoation, whih means that piture1, piture2, piture3 and pi-ture4 will be (potentially) rendered in parallel. The Raytraer lass extends thesatin.SatinObjet lass to inherit the syn() method and implements the Raytraer-Interfae.The parameter-passing semantis of spawnable methods are di�erent than thesemantis of normal Java methods. Where a spawnable method is exeuted remotely,the all-by-value semantis are used. However, when a spawnable method is exeutedloally, the all-by-referene semantis are applied to avoid the overhead of opying thepossibly large parameters. Sine at the moment a method is spawned it is unknownwhether it will be exeuted remotely or loally, the programmer annot assume eitherall-by-value or all-by-referene semantis. Therefore, the programmer must makesure that the appliation works orretly if either all-by-value or all-by-referenesemantis is used.

26 CHAPTER 2. CONTEXT: GRID PROGRAMMING ENVIRONMENTS
bytecodebytecodesource code Java

compiler
bytecode
rewriter

JVM

JVM

JVMFigure 2.4: Compiling Satin appliationsSatin does not provide shared memory. The only way of sharing data betweentasks is by expliit parameter passing and returning results. Global variables shouldnot be used by spawnable methods. In other words, spawnable methods should nothave side e�ets. In hapter 5, we will show how this model an be extended with ashared-objet abstration whih allows data sharing between independent tasks.2.3.3 ImplementationThe Satin framework onsists of a byteode rewriter and a runtime system. The appli-ation ode is �rst ompiled with a standard Java ompiler (java) and then rewrittenby the byteode rewriter whih transforms it into a parallel appliation (Figure 2.4).The byteode rewriter replaes eah spawned method invoation and eah syn() op-eration with a all to the Satin runtime system. For eah spawned method invoationthe Satin runtime system reates a datastruture alled invoation reord. An invoa-tion reord ontains the referenes to the parameters of the method (not opies of theparameters; the parameters are opied only if the method is exeuted remotely) andsome extra administration data. The method desribed by the invoation reord isnot invoked immediately. Instead, the invoation reord is plaed in the work queue �a datastruture maintained by the runtime system and ontaining unproessed tasks(spawned method invoations).For eah method that spawns work a spawn ounter is reated - an objet thatounts the outstanding spawned method invoations. Eah time a method is spawned,the spawn ounter of its parent (the method that invoked it) is inreased. Eah timea spawned method returns, the spawn ounter is dereased.In the syn all, the spawn ounter of the urrent method is heked. If its valueis 0, the ontrol is returned to the urrent method. Otherwise, tasks from the workqueue are exeuted. If the work queue is empty, the Satin runtime system performsload balaning by means of work stealing: it ontats another node, and downloadsa task (an invoation reord), whih it subsequently exeutes. The hoie of a vitim

2.3. SATIN: A DIVIDE-AND-CONQUER FRAMEWORK 27
GMI

TCP UDP

SatinRepMI

Ibis Portability Layer (IPL)

Application

GM Panda MPI

MPJ

P2P

pure Java implementation

implementation with native code

RMI

Figure 2.5: The design of Ibisfor work stealing is very important for the appliation performane. The Satin's workstealing algorithm will be desribed in more detail in the next setion.When an invoation reord is inserted in the work queue, it is put at the head ofthe queue. In a syn operation, if a loal task is exeuted, it is also taken from thehead of the queue, so that the queue works as a stak. However, if a task is stolenfrom a remote node, it is taken from the tail of the remote node's work queue. Individe-and-onquer omputation, larger jobs tend to be loated towards the tail ofthe queue and stealing large jobs redues ommuniation overhead.The Satin runtime system has been implemented on top of the Ibis ommuniationlibrary [179℄. The struture of Ibis is shown in Figure 2.5. The ore of Ibis is theIbis Portability Layer whih onsists of a number of well-de�ned interfaes. Theappliation programmer an use the IPL diretly or an program with one of thehigher-level programming models implemented on top of IPL. Those models inlude:RMI (remote method invoations), GMI (asynhronous and group ommuniation),RepMI (objet repliation), Satin and MPJ (MPI-like message passing in Java).The IPL an have di�erent implementations that an be seleted and pluggedinto the appliation at runtime. The appliation needs to speify its ommunia-tion requirements, suh as unreliable/reliable ommuniation, point-to-point/groupommuniation, et., and the Ibis runtime system selets the appropriate Ibis imple-mentation.Ibis inludes both pure Java implementations based on the TCP, UDP or peer-

28 CHAPTER 2. CONTEXT: GRID PROGRAMMING ENVIRONMENTSto-peer tehnology and a number of speialized implementations with native ode,for example an implementation based on the Panda ommuniation library [39℄, MPIor GM. The pure Java implementation an be used everywhere, but if an Ibis appli-ation is running on a system where Panda, GM or MPI is available, a speializedimplementation an be used. Ibis inludes a number of optimizations that make theommuniation more e�ient. For example, Ibis o�ers an optimized objet serializa-tion implementation.Ibis, apart from ommuniation failities, provides the Ibis Registry. The Reg-istry provides, among others, a membership servie to the proessors taking part inthe omputation. The appliation proesses an use this servie to disover otherproesses taking part in the appliation. The Registry also o�ers fault detetion.Finally, the Registry provides the possibility to send signals to appliation proesses.Currently the Registry is implemented as a entralized server.2.3.4 Load balaningSatin balanes the load using a work stealing approah. When a proessor runsout of work, it steals a task from another proessor. The hoie of the vitim isimportant for the performane of the appliation. For homogeneous systems, RandomStealing (RS) has been shown to be the optimal strategy [47℄. With RS, the vitim ishosen at random, with uniform probability, from all proessors. In grid environments,however, RS performs suboptimally. Beause of the uniform probability with whihthe vitim is seleted, typially the majority of steal requests are sent to a remote site(luster/superomputer). Stealing is done synhronously, that is, the thief waits idlyuntil a reply arrives. In grid environments, this means waiting a wide-area round tripmost of the times.Cluster-aware Random Stealing (CRS) [176℄ is a load-balaning algorithm designedespeially for hierarhial systems. CRS distinguishes between nodes in the loal siteand in remote sites. When a node runs out of work, it �rst tries to steal from a node ina remote site. However, this wide-area steal request is performed asynhronously : thethief does not wait until a reply arrives. Instead, it sets a �ag indiating that a wide-area steal is in progress and starts synhronous stealing in the loal site. Even if thenode �nds a job in the loal luster, the wide-area steal request is not aneled. If it issuessful, the job is simply put in the work queue. Only one wide-area steal requestat a time is allowed � as long as the �ag is set, only loal stealing will be performed.Vitims for both wide-area and loal stealing are hosen at random. With wide-areastealing, eah node in any remote site has the same probability of being hosen. Withloal stealing, nodes in the loal site are hosen with uniform probability.Beause wide-area stealing is done asynhronously, CRS e�iently hides wide-arealatenies. Also, ompared to RS, CRS sends muh less wide-area messages and thussaves wide-area bandwidth. The performane of CRS was evaluated both in simula-tions and in a real grid environment � the GridLab testbed. On the GridLab testbed,it ahieves 80% e�ieny, while the e�ieny of RS ranges from 26% (daytime) to62% (nighttime). Table 2.3.4 ontains some information about the nodes used inthis experiment. The latenies between the nodes ranged from 1 milliseond to 3.5

2.4. SATIN VS OTHER GPES 29Operating CPUs/ totalloation arhiteture System nodes node CPUsVrije Universiteit Intel Red HatAmsterdam Pentium-III LinuxThe Netherlands 1 GHz kernel 2.4.18 8 1 8Vrije Universiteit Sun Fire 280RAmsterdam UltraSPARC-III SunThe Netherlands 750 MHz 64bit Solaris 8 1 2 2ISUFI/High Perf. Compaq CompaqComputing Center Alpha Tru64 UNIXLee, Italy 667 MHz 64bit V5.1A 1 4 4Cardi� Intel Red HatUniversity Pentium-III Linux 7.1Cardi�, Wales, UK 1 GHz kernel 2.4.2 1 2 2Masaryk Univ.Brno Intel Xeon Debian LinuxCzeh Republi 2.4 GHz kernel 2.4.20 4 2 8Konrad-Zuse SGIZentrum für Origin 3000Informationtehnik MIPS R14000Berlin, Germany 500 MHz IRIX 6.5 1 16 16Table 2.1: Nodes used in the GridLab experimentseonds. The bandwidths ranged from 9 KByte/s to 11 MByte/s. The appliationused in this experiment was the Raytraer. More details about his experiment an befound in [178℄.2.4 Satin vs other GPEsSatin is an appliation development tool. It does not provide appliation deploymentfuntionalities. Satin an be ombined with any appliation deployment tool, forexample, in our grid experiments we have used Satin in ombination with the GlobusToolkit and Zorilla.Satin provides the programmer with a high-level programming model. The appli-ation programmer needs only to deompose the problem into tasks that an be donein parallel. The Satin ompiler and runtime system take are of the low-level issuessuh as load balaning and inter-proess ommuniation. Below, we will investigatewhih non-funtional properties we have identi�ed in setion 2.2.2 are met by Satin.� Performane: Satin ahieves exellent performane in grid environments. ASatin appliation has been shown to ahieve parallel e�ieny of 80% in a het-erogeneous, wide-area environment. Suh high performane an be ahieved

30 CHAPTER 2. CONTEXT: GRID PROGRAMMING ENVIRONMENTSbeause of the hierarhial struture of divide-and-onquer appliations whihsuits the struture of grid platforms and the use of the CRS load balaning algo-rithm. The appliation programmer does not need to make any speial e�ort tooptimize the appliation for grid environments. The grid-spei� optimizationsare applied by the ompiler and the runtime system.� Ease of use: As a high-level programming model, Satin is extremely easy to use.To reate a grid appliation, the appliation programmer only needs to annotatethe sequential ode with the simple divide-and-onquer primitives: spawn andsyn. The runtime system takes are of the low-level issues.� Appliability: A broad range of appliations an be expressed in the divide-and-onquer model. This inludes all master-worker omputations (as divide-and-onquer is a generalization of master-worker), searh and optimization problems,astrophysial simulations, parallel rendering et.However, the appliability of the divide-and-onquer paradigm is limited bythe lak of global state. The only way of sharing data between tasks is byexpliit parameter passing. This model is insu�ient for many appliations.In hapter 5, we will show how the divide-and-onquer model an be extendedwith a shared-abstration: shared objets. This will extend the appliability ofour programming model to for example branh-and-bound appliations, gameswith transposition tables, VLSI routing and many others.� Fault tolerane, malleability and migration: In hapter 3, we will show how wean provide transparent support for fault-tolerane, malleability and migration.We will present a divide-and-onquer-spei� algorithm whih allows Satin ap-pliations to run on variable numbers of nodes with little overhead.� Adaptivity: Sine Satin uses a dynami load-balaning algorithm, it an adapt tovarying proessor speeds. However, if a di�erene in proessor speeds beomestoo large, for example beause another, high-priority appliation overloads partof the proessors, the performane might su�er. The overloaded proessorswill not perform enough omputation to amortize the overhead they ause bystealing work from other proessors. Also, the prototype Satin implementa-tion ould not adapt to hanging network onditions. If a ertain network linkbeame overloaded and the bandwidth drops beneath a ertain threshold, theperformane of the appliation would derease dramatially. In hapter 4 wewill show, how we an make Satin appliations adapt to hanging onditions ingrid environments.� Portability: The portability of Satin is ensured by the use of the Java tehnology.Thanks to Java's `write one, run anywhere' property, Satin appliations anrun unmodi�ed on heterogeneous resoures.Tables 2.2 and 2.3 provide an overview of all appliation development toolsdisussed in setion 2.2.2 and a omparison of those systems to the Satin frame-work. We ompare them to both the prototype Satin system implemented by

2.4. SATIN VS OTHER GPES 31Rob van Nieuwpoort and to the full system whih is the result of the workdesribed in this thesis.

32 CHAPTER 2. CONTEXT: GRID PROGRAMMING ENVIRONMENTS

perf. optimizationsapplied ease of use appliationsGRID fork/joinsupersalar automatially + oarse grainedMW automatially + master-workerWork�ow verysystems automatially + oarse grainedall, but most suitableHPJava by programmer +/- for data-parallelall, but most suitableMPI by programmer - for SPMD appliationsProAtive by programmer - allRPC by programmer - allSatin(prototype) automatially + divide-and-onquerSatin divide-and-onquer(full system) automatially + with data sharingTable 2.2: The omparison of Satin and other grid programming environments

2.4. SATIN VS OTHER GPES 33

FT, malleability, migration adaptivity portabilityGRIDsupersalar - - +/-MW + +/- -Work�owsystems + only some varieshHPJava - - +only someMPI implementations - -ProAtive + - ++ (RMI)RPC - - - (others)Satin(prototype) - - +Satin(full system) + + +Table 2.3: The omparison of Satin and other grid programming environments

34 CHAPTER 2. CONTEXT: GRID PROGRAMMING ENVIRONMENTS

Chapter 3Fault tolerane, malleability andmigration3.1 IntrodutionIn grid environments, the availability of omputing resoures hanges onstantly. Pro-essor rashes are more likely to our than in traditional parallel environments. Also,sine there is no entralized ontrol, omputing nodes may be rebooted or shut downfor maintenane with or without prior notie. Finally, proessors may be taken awayfrom the appliation beause they are laimed by another, higher-priority appliation,beause a proessor reservation has ended. On the other hand, new proessors mightbeome available.A grid appliation must be able to adapt to suh hanges in order to survive ina grid environment and ahieve good performane. In this hapter, we will disussthree issues that are important for grid appliations to adapt to hanges in gridenvironments:� fault tolerane � the ability of an appliation to operate in the presene ofhardware and software failures, i.e. proessors and network rashes.� malleability � the ability of an appliation to handle proessors joining andleaving an on-going omputation.� migratability � the ability of an appliation to transfer to a di�erent set ofomputational resoures during the run.The three above issues are losely related to eah other. For example, if an ap-pliation an handle rashing proessors (fault tolerane) and ontinue working onthe diminished number of proessors, it an also handle leaving proessors (partialmalleability). However, if the proessors are leaving graefully (i.e., after a prior no-tie) handling it may be more e�ient than handling rashing proessors. Further, ifan appliation is malleable, it is also migratable: it an be migrated from one set of

36 CHAPTER 3. FAULT TOLERANCE, MALLEABILITY AND MIGRATIONresoures to another by �rst adding the new proessors to the omputation and thenremoving the old ones.In this hapter, we will present a novel tehnique to provide fault tolerane, mal-leability and migratability to divide-and-onquer appliations. We will desribe itsimplementation in Satin and evaluate its performane.The rest of this hapter is strutured as follows. Setion 3.2 ontains bakgroundinformation on fault tolerane, malleability and migration. In setion 3.3, we willpresent our fault-tolerane algorithm. In setion 3.4, we will desribe how the fault-tolerane algorithm an be extended to handle malleability. In setion 3.5, we willfurther extend our fault-tolerane algorithm to handle total rashes. In setion 3.6,we will evaluate the performane of our algorithms. In setion 3.7, we ompare ourapproah with related work. Finally, we onlude in setion 3.8.3.2 BakgroundIn this setion, we will disuss some bakground information on fault tolerane, mal-leability and migration issues.3.2.1 Failure modelsTo ahieve fault tolerane in a distributed system or appliation, it is important toknow the failure model of the system omponents. A failure model haraterizes thebehavior of a omponent in ase of a failure. The literature lists a vast number offailure models with various degrees of `severity'. A failure model is more severe thananother failure model if the set of faulty behaviors allowed by it is a superset of the setof behaviors allowed by the other model [138℄. The most ommonly used models arerash failure and arbitrary failure also known as Byzantine failure. Crash failure is theleast severe failure model. In this model, a faulty proess stops prematurely but it wasworking orretly before it stopped. Byzantine failure is the most severe failure modeland it states that a faulty proess might exhibit any behavior whatsoever. Most fault-tolerane tehniques, inluding the one presented in this hapter, assume the rashfailure model. There are also tehniques known that an deal with Byzantine failures.The tehniques for handling both rash and Byzantine failures will be desribed brie�yhereafter.3.2.2 Fault-tolerane tehniquesIn this setion, we will desribe the most important approahes to implementing faulttolerane in distributed appliations. We will over hekpointing, message logging,retry (reomputing) and repliation.ChekpointingThe most popular fault-tolerane mehanism is hekpointing, i.e., periodially sav-ing the state of the appliation on stable storage, a devie that an survive failures

3.2. BACKGROUND 37� usually one or more hard disks. The information stored on the stable storage isalled a hekpoint. After a rash, the appliation is restarted from the last hek-point rather than from the beginning [165℄. Chekpointing omes in three varieties:unoordinated hekpointing, oordinated hekpointing and ommuniation induedhekpointing [77℄.With unoordinated hekpointing, eah proess takes its hekpoints indepen-dently. This allows to avoid the synhronization overhead. Finding a onsistent setof hekpoints to roll bak to might be di�ult, however. Rolling bak a rashedproess may ause rolling bak other, dependent proesses that have sent or reeivedmessages from the rashed proess. This rollbak propagation might extend bak tothe initial state of the omputation (domino e�et) [149℄.The domino e�et an be avoided by using oordinated hekpointing or ommuni-ation indued hekpointing. With oordinated hekpointing, the proesses synhro-nize before taking a hekpoint to make sure that the resulting set of hekpoints isonsistent. The disadvantage of oordinated hekpointing over unoordinated hek-pointing is the synhronization overhead. The advantage is that the reovery is fasterand easier to implement.With ommuniation indued hekpointing, proesses take two kinds of hek-points: loal and fored. Loal hekpoints are taken independently by eah proess.Fored hekpoints are taken if a message exhanged by two proesses ould ausereation of a useless hekpoint, that is, a hekpoint that will never be a part of aonsistent global state [77℄. This guarantees that the domino e�et will not our.In pratie, the most ommonly used tehnique is oordinated hekpointing [77℄.The reason is that, urrently, the main ause of overhead is aess to stable storage andnot synhronization. The simpliity of the reovery proedure is also an importantargument.Chekpointing an be done either at the system level or at the appliation level.With system-level hekpointing, the system-level state of the appliation is saved.The advantage of system-level hekpointing is that it is ompletely transparent to theappliation programmer. However, the system-level implementation of hekpointingan be extremely omplex, as has been shown in the Dynamite projet [106℄. Notonly do the memory image, stak and registers of a proess need to be saved, but alsoits signal mask, open �le desriptors and open network onnetions. Reproduingthe open �le desriptors after a proess has been restarted from a hekpoint is non-trivial, beause the �les might not be aessible on the mahine where the proess isrestarted. Restoring network onnetions requires omplex protools. Finally, system-level hekpointing is inherently not portable, sine proess hekpoints ontain OS-spei� data, and a proess hekpointed under one OS annot be restarted on anotherOS.With appliation-level hekpointing, the appliation itself saves its ritial vari-ables and datastrutures. Appliation-level hekpointing is typially easier to im-plement. It often requires the ooperation of the appliation programmer, however,and is therefore not transparent. Further, appliation-level hekpointing is moreportable than system-level hekpointing, as the hekpoint data does not ontainOS-dependent information. Finally, appliation-level hekpointing is more e�ient

38 CHAPTER 3. FAULT TOLERANCE, MALLEABILITY AND MIGRATIONsine smaller amounts of data need to be saved.Chekpointing is used in grid omputing by suh systems as Condor [169℄, Dy-namite [106℄ (system-level hekpointing), Catus [22℄ (appliation-level hekpoint-ing) and the European DataGrid projet [92℄ (appliation-level hekpointing). Also,several MPI implementations provide hekpointing failities, for example CoChekMPI [160℄, Star�sh MPI [14℄ and MPICH-V [49℄.The main advantage of hekpointing is that it is a very general tehnique whihan be applied to any type of parallel appliations. The disadvantage is that it ausesexeution time overhead, even if there are no rashes. This overhead depends on thefrequeny with whih hekpoints are taken and the programmer must be areful inhoosing a reasonable frequeny. In [185℄ and [174℄, formulas are presented whih anbe used to alulate the optimal hekpointing frequeny. However, the programmerneeds to have a detailed knowledge about the harateristis of the appliation andthe system it is running on, suh as the time it takes to save a hekpoint and themean-time-to-failure.The overhead of hekpointing an be redued using suh tehniques as onurrenthekpointing [145℄ and inremental hekpointing [80℄. With onurrent hekpoint-ing, the exeution of a proess is ontinued while its state is being saved to stablestorage. Inremental hekpointing avoids rewriting the portions of the proess statethat have not hanged sine the previous hekpoint.Another problem of most hekpointing shemes is the omplexity of the rash re-overy proedure, espeially in dynami and heterogeneous grid environments whereresheduling the appliation and retrieving and transferring the hekpoint data be-tween nodes is non-trivial. The �nal problem of hekpointing is that in most existingimplementations, the appliation needs to be restarted on the same number of pro-essors as used before the rash, so it does not support malleability. An exeption isSRS [171℄, a hekpointing library for MPI appliations whih saves data in suh away that an appliation an be restarted on a di�erent number of proessors.Message LoggingAn alternative fault-tolerane tehnique is message logging : during failure-free opera-tion, eah proess logs sent or reeived messages (depending on the variant of messagelogging algorithm) from other proesses [77℄. After a failure, the rashed proess is re-exeuted and the logged messages are replayed. Message logging protools assume apieewise deterministi model : the exeution of eah proess is deterministi betweenourrenes of non-deterministi events. The non-deterministi events are usually re-eipts of messages, but the protool an be easily extended to handle other types ofnon-deterministi events. All non-deterministi events need to be logged.Message logging is typially ombined with hekpointing to redue the amountof re-exeution needed � message logging enables the system to reover beyond thelast hekpoint [77℄. Therefore, message logging is also often used to provide theappliations the ability to interat with the outside world. Message logging is usedless often than hekpointing. An example of a system that uses a ombination ofmessage logging and hekpointing is MPICH-GF [183℄ or MPICH-V [49℄. Message

3.2. BACKGROUND 39logging an also be ombined with other fault-tolerane tehniques. For example,RPC-V [69℄ ombines message logging with repliation.Message logging shemes ome in three �avours: pessimisti message logging, opti-misti message logging and ausal message logging. Pessimisti message logging doesnot allow any message to be reeived before it is logged. This approah guaranteesthat so-alled orphan proesses are never reated. An orphan proess is a proessthat depends on a message that has not been logged and whose sender has rashed.The disadvantage of this approah is a high performane overhead. Logging messagesa�ets ommuniation throughput and lateny. The advantage of pessimisti loggingis the simpliity of the reovery proedure: proesses other than the rashed proessare not a�eted by the rash.Optimisti logging tries to redue the logging overhead by making the optimistiassumption that logging will omplete before a rash ours [77℄. Messages are loggedasynhronously so a message an be reeived before it is logged. This redues thelogging overhead but signi�antly ompliates the reovery proedure. Optimistilogging does not exlude the reation of orphan proesses. Suh proesses must berolled bak during the reovery proedure.Causal message logging also avoids synhronous aess to stable storage whileavoiding reating orphan proesses at the same time. Causal logging ensures thateah message on whih a proess ausally depends (aording to Lamport's happened-before relation [118℄) is either logged or available loally (in the volatile memory) tothat proess. This is implemented by piggybaking messages in the proess' memorywhih have not been logged on eah message the proess sends to another proess.The reovery proedure with ausal logging is more omplex than in ase of pes-simisti logging. In pratie, pessimisti logging is most ommonly used beause ofthe simpliity of the reovery proedure [77℄.The advantages and disadvantages of message logging tehniques are similar tothose of hekpointing tehniques. Message logging is a very general tehnique but itan ause high exeution time overhead. It an a�et ommuniation throughput andlateny. With some message-logging protools, if stable storage is aessed throughthe network, the bandwidth required by the appliation doubles. Also, message log-ging annot be used to implement malleability: the appliation annot ontinue ex-eution on the diminished number of proessors, the rashed proessor needs to bereplaed.RepliationRepliation is another approah to implementing fault tolerane. Multiple opies ofthe same task/proess are run on separate proessors. If one of the opies rashes,other opies are used. This tehnique an be used not only for tolerating rash failuresbut also Byzantine failures. In the latter ase, repliation is ombined with voting:the result returned by the majority of replias is onsidered valid, other results aredisarded. To tolerate N rash failures, N+1 replias are needed. To tolerate NByzantine failures, 3N+1 replias are needed. This tehnique is suitable for systemsof whih high-availability is required, sine the reovery is fast � it basially requires

40 CHAPTER 3. FAULT TOLERANCE, MALLEABILITY AND MIGRATIONswithing to another replia.Repliation is often used in hardware-based fault tolerane. An example is TripleModular Redundany used in eletroni systems.An example of software-based fault tolerane using the repliation priniple isthe mehanism used in the FTAG runtime system [61℄. The FTAG programminglanguage is based on the funtional paradigm. A FTAG program is strutured as aset of modules. Modules an be deomposed into sub-modules, whih resembles thedivide-and-onquer style programming. With FTAG, the user an selet one of thetwo supported failure models: rash failure or Byzantine failure. The omputation isrepliated for fault-tolerane purposes. The replias exhange partial results. If therash failure model is seleted, this exhange of partial results is used to speed up theomputation: if a replia reeives a result of a ertain sub-module and it does notneed to ompute this sub-module anymore. If the Byzantine failure model is used,majority voting is used for eah partial result to determine its orretness.Another example of a system that uses software-based repliation is RPC-V [69℄.RPC-V ombines repliation with message logging.RetryAnother tehnique used for providing fault tolerane is retry � reomputing parts ofthe work that were lost in a rash. This tehnique annot be applied to an arbitraryappliation. One group of appliations to whih this tehnique an be applied areappliations strutured as a series of (possibly nested) atomi ations [129℄. In ase ofa proessor rash, an atomi ation an be aborted without side-e�ets and restartedfrom the beginning.Appliations that adhere to the funtional programming paradigm an also usethis priniple [108℄. Funtional programming appliations onsist of funtions with noside-e�ets. There is no notion of global state and the result of a funtion depends onlyon its input parameters. Funtion exeution will always produe the same outputs ifgiven the same inputs, a property known as referential transpareny [61℄. So, in aseof a rash, funtions exeuted by rashed proessors an be re-exeuted.One example of appliations that adhere to the funtional programming paradigmare master-worker appliations. Master-worker tasks are typially funtions whoseresults depend solely on their parameters and with no side-e�ets. Fault toleranein master-worker appliations is typially implemented by reomputing tasks doneon rashed workers. A separate fault-tolerane tehnique needs to be applied to themaster � usually hekpointing or repliation. An example of a master-worker frame-work that adopts this fault-tolerane mehanism is MW [95℄ (see also setion 2.2.2).Charlotte [33℄ introdues a fault-tolerane mehanism alled eager sheduling. Itreshedules a task to idle proessors as long as the task's result has not been re-turned. Crashes an be handled without the need of deteting them. Assigning asingle task to multiple proessors also guarantees that a slow proessor will not slowdown the progress of the whole appliation.Divide-and-onquer appliations also adhere to the funtional paradigm and there-fore the retry priniple an be used for providing fault tolerane in this type of appli-

3.2. BACKGROUND 41ations. However, this naive approah might lead to large amounts of reomputationwhen a task loated high in the hierarhial task graph is lost in a rash. Also, naivereomputation might ause the need of reomputing work done by proessors thathave not rashed. In this hapter, we will explain in more detail why the naive re-omputing approah is not adequate for divide-and-onquer appliations and we willpresent a more e�ient solution. Other divide-and-onquer frameworks whih use re-omputing to ahieve fault tolerane are: Cilk [46℄, CilkNow [44℄, Atlas [32℄, DIB [83℄and Lin and Keller's work [126℄. A more detailed desription of the algorithms usedby those systems and their omparison to the algorithm desribed in this hapter willbe given in the related work setion at the end of the hapter.3.2.3 Malleability tehniquesThe basi idea behind implementing transparent malleability in parallel appliationsis separating parallelizing, that is, identifying what an be done in parallel, from map-ping to physial proessors [101℄. For SPMD (MPI-like) appliations, this an be doneby proessor virtualization. The programmer operates on virtual proessors, the num-ber of whih is typially many times bigger than the number of physial proessors.The runtime system takes are of mapping the virtual proessors to the physial one.Malleability an be ahieved in two ways. One way is migrating virtual proessors o�leaving or to joining physial proessors. Another way is hekpointing the appliationin suh a way that eah virtual proess has a separate hekpoint �le. The appliationan then be stopped, hekpoint �les rearranged and the appliation restarted on adi�erent number of proessors. This approah is used in Adaptive MPI [101℄ (virtualproessor migration and hekpointing) and Phoenix (only hekpointing).Another approah is to treat the number of proessors the appliation is runningon as a variable. The data partitioning depends on the value of this variable. Whenthis value is �xed at the time the job starts and annot be hanged during the run,we all the appliation moldable [111℄. Many data-parallel and SPMD appliationsare written in that way. Moldable appliations an be turned into malleable appli-ations by introduing reon�guration points at whih the number of proessors anbe hanged. This approah is used in DyReT [93℄, DRMS [9℄ and SRS [171℄. Ata reon�guration point, global synhronization and data redistribution takes plae.Data redistribution an be done by means of group ommuniation (DyReT, DRMS)or hekpointing (SRS).Master-worker and divide-and-onquer paradigms are espeially attrative whenimplementing malleability. When programming with those paradigms the program-mer does not use the notion of proessors. Instead the notion of tasks or jobs is used.The tasks are mapped to the physial proessors by the ompiler or runtime system.Joining proessors are handled in a straightforward manner by assigning tasks fromthe pool of free tasks to those proessors. Leaving proessors an be handled usingthe fault-tolerane mehanism: leaving proessors are treated as rashing proessors.Some systems, however, an handle graefully leaving proessors (i.e., after a priornoti�ation) more e�iently than proessor rashes. For example, Piranha [56℄ al-lows the programmer to speify a `leanup' proedure whih is alled when a task

42 CHAPTER 3. FAULT TOLERANCE, MALLEABILITY AND MIGRATIONneeds to vaate a leaving proessor. In this thesis, we will also present a malleabilitymehanism that is an `optimized' version of the fault-tolerane mehanism.3.2.4 Migration tehniquesIn sequential appliations, migration is traditionally ahieved by stopping the appli-ation exeution on the urrent node, transferring the whole appliation state to thenew node and restarting the appliation on the new node from the point where it wasstopped on the old node. Migration an also be implemented on top of hekpointing:a hekpoint �le is reated on the old node and transferred to the new node wherethe appliation is restarted from the hekpoint �le rather than from the beginning.Those two approahes are very similar. In fat, diret migration an be seen as anoptimized version of hekpoint-based migration: the data is transferred diretly intothe memory of the new mahine instead of via stable storage [160℄.Similarly to hekpointing, migration an be implemented either on the operatingsystem level (system-level migration) or in the appliation itself (appliation-levelmigration). As explained in setion 3.2.2, system-level implementations are extremelyomplex. Care needs to be taken to properly save and restore open �le desriptors andopen network onnetions [106℄. Also, system-level implementations are not portable.However, implementing migration on the OS level is transparent and therefore moreonvenient for the programmer. Appliation-level tehniques are less omplex toimplement and more portable. Typially, they are also more e�ient, sine less dataneeds to be saved and transferred. However, appliation-level tehniques are nottransparent.Parallel appliations an be migrated using the same approah: eah proess ismigrated separately by diret transfer of the proess state or by hekpointing. Spe-ial are needs to be taken to guarantee that the states of all migrated proesses areonsistent and that the ommuniation hannels between proesses are orretly re-stored after migration. Migration of MPI appliations was studied in the Dynamiteprojet [106℄ also in [101℄, [152℄ and [167℄.Another approah to migrating parallel appliations is using malleability to ahievemigration. An appliation an be migrated from one set of resoures to another by�rst adding the new set of resoures to the omputation and then removing the oldset.3.3 Fault-tolerane for SatinThe divide-and-onquer paradigm is well suited for implementing fault-tolerane, mal-leability and migration. There is no notion of global state in a divide-and-onquerappliation: funtion exeution does not have side-e�ets and the result of a funtiondepends only on its input parameters. Funtion exeution will always produe thesame outputs if given the same inputs, a property known as referential transpareny.So, the work lost in a rash of a proessor an be redone at any time during exeutionof the appliation.

3.3. FAULT-TOLERANCE FOR SATIN 43Therefore, it is possible to handle leaving or rashing proessors by reomputingwork done by those proessors. Suh a mehanism has low overhead, as no syn-hronization between proessors is needed and no data needs to be stored on stablestorage. Several suh tehniques have been proposed [32, 44, 83, 126℄. However, theommon problem of those tehniques is redundant omputation whih degrades theirperformane. They do not reuse orphan work, that is, tasks that are dependent ontasks done by leaving proessors. Orphan work is disarded and reomputed.In this setion, we will desribe a reovery mehanism whih salvages orphan workand thus avoids redundant omputations. Orphan work is salvaged by restruturingthe exeution tree. The overhead of our mehanism during rash-free exeution is verysmall. Our mehanism an handle rashes of multiple proessors or entire lusters.In the following setions, we will disuss two simple extensions to the fault-tolerane mehanism. First, we extend the orphan saving sheme in suh a waythat we an also reuse partial results omputed by the graefully leaving proessors.This ours, for example, when the proessor reservation is oming to an end or whenthe appliation reeives a noti�ation that it should vaate part of its proessors foranother, higher-priority appliation. When the proessors leave graefully, the workdone by them is randomly distributed over the other proessors. Then, the orphansaving sheme is used to reuse those partial results. When proessors are leavinggraefully, our mehanism an save nearly all the work done by the leaving proes-sors. That, ombined with the fat that adding proessors to ongoing divide-and-onquer omputations is straightforward (they just start stealing), results in e�ientmalleability. We an also use our tehnique for e�ient migration of the omputation:to migrate the omputation from one luster to another, we �rst add the new lusterto the omputation and then (graefully) remove the old one.The disadvantage of this sheme is that always at least one proessor must berunning, or else all work will be lost. This makes it impossible to stop an appliationand restart it later from the point where it was stopped. It is also impossible tosurvive total rashes, i.e. the situations when all proessors have rashed. Therefore,we extended the basi sheme with the possibility of storing partial results in a user-de�ned �le. The results stored in the �le an be reused using the orphan-savingmehanism.The resulting system an handle a vast variety of senarios typial for the Grid:� Crashing proessors, inluding a total rash an be handled.� Proessors joining and leaving an on-going omputation an be handled withhigh e�ieny.� An appliation an be e�iently migrated.� An appliation an be stopped and restarted later on a possibly di�erent set ofresoures.In the remainder of this setion, we will desribe the basi fault-tolerane meha-nism. The extensions will be desribed in the following setions.

44 CHAPTER 3. FAULT TOLERANCE, MALLEABILITY AND MIGRATION3.3.1 Failure detetionWe use two di�erent mehanisms to detet proessor rashes. One mehanism isimplemented in the ommuniation layer (Ibis). If a onnetion between two hostsis broken, the ommuniation layer noti�es the Satin runtime system. The seondmehanism is implemented in the Ibis Registry. The Registry periodially sends akeep-alive message to every node. If a node does not respond to this message withinthe spei�ed timeout, the Registry noti�es the remaining nodes that this node hasdied.In general, it is impossible to detet failures reliably in asynhronous systems wheremessage propagation time is unbounded. Therefore, both of our failure detetionmethods assume that there exist an upper bound on message propagation time. Thismay result in false positives in some ases. Also, the system annot distinguishbetween a rashed proessor and a broken network onnetion. This may also resultin false positives. False positives, however, a�et the performane of our failurereovery algorithm, as some jobs might be reomputed unneessarily, but not itsorretness. The system will ontinue to work orretly as long as the followingondition is satis�ed:If proessor A thinks that proessor B has rashed, then either pro-essor B has indeed rashed or proessor B thinks that proessor A hasrashed.We make sure that this ondition always holds by breaking all onnetions with pro-essors that we assume to be rashed.3.3.2 Reomputing jobs stolen by leaving proessorsTo be able to reompute jobs stolen by leaving proessors, we keep trak of all thejobs stolen in the system. Eah proessor maintains an outstandingJobs list ontain-ing the invoation reords of jobs stolen from this proessor (invoation reords aredatastrutures desribing the jobs, see setion 2.3.3). For eah job, the proessorIDof the thief is stored. When one or more proessors are leaving or rashing, eah ofthe remaining proessors traverses its outstandingJobs list and searhes for jobs stolenby the leaving proessors. If suh a job is found, it is put bak in the work queue ofthe proessor from whih the job was stolen. Later, this job will be reomputed bythe loal proessor or stolen by another proessor. Figure 3.1 (a) shows an exampleomputation tree. Four proessors are taking part in the omputation. Proessorsstore the information about stolen jobs in their outstandingJobs queues: proessor 1remembers that job 2 was stolen by proessor 3 and job 14 by proessor 2. Proessor 3remembers that job 4 was stolen by proessor 4. Proessors also remember where thejobs were stolen from: this information is stored in the invoation reord of eahstolen job. Figure 3.1 (b) shows the situation after the rash of proessor 3. As soonas proessors 1, 2 and 4 disover the rash of proessor 3, they searh through theiroutstandingJobs lists. Proessor 1 disovers that job 2 has been stolen by proessor 3and puts this job bak in its work queue (�gure 3.2 (a)). Eah job reinserted into

3.3. FAULT-TOLERANCE FOR SATIN 45a work queue during the reovery proedure is marked as `restarted'. Children of`restarted' jobs are also marked as `restarted' when they are spawned.3.3.3 Orphan jobsOrphan jobs are jobs stolen from leaving proessors. In �gure 3.2 (a), job 4 and all itssubjobs are orphans. In most existing approahes, the proessor whih has �nishedworking on an orphan job must disard the result of this job: sine the proessor wherethe job was stolen from has rashed, the result annot be sent bak. Orphan jobs arereomputed when their restarted parents are reomputed. For example, in �gure 3.2(a), job 4 and all its subjobs would be reomputed while reomputing job 2. This isundesirable, sine a rash of a small number of proessors an ause reomputationof large parts of the work, if the rashing proessor was omputing jobs high in thetree.The results of orphan jobs are valid partial results and an be used while reom-puting their parents. The results of orphan jobs would be usable if the proessorsreomputing the parents knew where to retrieve those orphans or the orphan taskknew the new address to return the result. Thus, salvaging orphan jobs requiresreating the link between the orphan and its restarted parent.We restore links between parents and orphans in the following way: for eah �n-ished orphan job (jobs 9 and 17 in �gure 3.2 (a)), we forward to the other proessors asmall message ontaining the jobID of the orphan and the proessorID of the proessoromputing this orphan.We abort the un�nished intermediate nodes of orphan subtrees, sine they requirelittle omputation: in a typial divide-and-onquer appliation, the bulk of the om-putation is done in the leaf nodes, the intermediate nodes only split work and ombinethe results. Aborting simpli�es the algorithm and eliminates the possibility of dead-loks in Satin. In setion 3.3.7, we will disuss an alternative orphan saving shemein whih the un�nished orphans are not aborted. We will show that this makes thealgorithm muh more ompliated and does not improve the performane.The (jobID, proessorID) tuples are stored by eah proessor in a loal orphantable. Figure 3.2 (b) shows the omputation tree after the reovery proedure. Pro-essor 4 aborted jobs 4, 8 and 16 and forwarded the (jobID, proessorID) tuples forjobs 9 and 17 to the other proessors. Proessors 1 and 2 stored those tuples in theirorphan tables. The rash reovery proedure is ompleted. Note that the rash re-overy does not require inter-proess synhronization: eah proessor proesses therashes independently of the other proessors.Jobs that have been restarted after a rash and all their subjobs have a `restarted'�ag set in their invoation reords. Before starting the exeution of suh jobs, pro-essors perform lookups in their loal orphan tables. If the jobID of the spawned joborresponds with the jobID of one of the orphans in the table, the proessor does notstart omputing the job. Instead, it puts the job on its outstandingJobs list and sendsa message to the owner of the orphan requesting the result of the job. Figure 3.3 (a)shows the ontinuation of the omputation from �gures 3.1 � 3.2. In the meantime,proessor 2 stole job 2 from proessor 1 and started exeuting it. Beause it is a

46 CHAPTER 3. FAULT TOLERANCE, MALLEABILITY AND MIGRATION`restarted' job, proessor 2 performs a lookup in its orphan table for this job and allits subjobs. After spawning job 9, it disovers that it has an entry for this job in itsorphan table. Instead of omputing this job, it puts it on the outstandingJobs listand asynhronously sends a message (result request) to proessor 4 requesting theresult of job 9 (�gure 3.3 (a)). Note, that at this moment, the state of the exeutiontree and the datastrutures (outstandingJobs lists) is exatly as if job 9 was stolenby proessor 4 from proessor 2. This has important onsequenes. First, the resultreturned by proessor 4 an be handled using the normal routine used for handling theresults of stolen jobs. Proessor 2 does not need to wait until the result is returned.Instead, it an ompute other jobs in the meantime. Seond, if proessor 4 rashesbefore it returns the result, this rash will be handled by the normal rash reoveryproedure: job 9 will be taken from the outstandingJobs list and put bak in the workqueue of proessor 2. This guarantees that job 9 will always be omputed and thatproessor 2 will not hang waiting inde�nitely for the reply of proessor 4.Proessor 4, after reeiving the result request sends the result of job 9 to proessor 2(�gure 3.4 (a)) The format of the message ontaining this result is exatly the sameas a format of a message returning the results of a stolen job. The results of job 17will be reused in the same way later in the omputation.Note that reusing orphans does not in�uene the orretness of the algorithm. Ifthe result of an orphan is not found (e.g. beause the (jobID, proessorID) tupledoes not arrive in time), the job an always be reomputed. Reusing orphans is anoptimization that improves the performane of the system but does not in�uenethe orretness of the rash reovery proedure. This has important onsequenesfor the implementation of the forwarding of the tuples: no reliable and potentiallyhigh-overhead broadast protools are needed. Currently, we are using asynhronousbroadasting. An alternative solution would be piggybaking tuples on other messagessent by the Satin runtime system, for example steal requests and replies. Also, we usemessage ombining : instead of sending eah tuple in a separate message, we ombinemultiple tuples into one message. This redues the number of messages sent duringthe reovery proedure to one broadast message per proessor.3.3.4 Orphan propagationAn orphan subtree might not neessarily be loated on a single proessor like in theexample above where the whole subtree of job 4 was loated on proessor 3 (�gure 3.1(a)). If one of the subjobs of job 4 was stolen, the orphan subtree would be distributedover two proessors. For example, in �gure 3.5 (a), proessor 5 stole job 8 from proes-sor 4. After the rash of proessor 2, job 8 and all its subtree beome orphans beausetheir anestor, job 4, was stolen from a rashed proessor. However, proessor 5 doesnot have enough information to disover that. Therefore, we introdue orphan prop-agation messages. When a proessor disovers that a part of the orphan subtree wasstolen by another proessor, it sends an orphan propagation message ontaining theidenti�er of the stolen job to the other proessor. Orphan propagation messages aresent asynhronously. Orphan propagation ontinues reursively, if neessary. In ourexample, proessor 4 sends an orphan propagation message to proessor 5 (�gure 3.6

3.3. FAULT-TOLERANCE FOR SATIN 47

8

1

32

54 6 7

16 20

10

28

14

21 29

1511

processor 2processor 3

17

outstandingJobs[(4,proc4)]outstandingJobs [] outstandingJobs[]

outstandingJobs[(2,proc3),(14,proc2)]

processor 1

(a)

(b)

processor 4

8

1

3

4 6 7

16 28

14

29

15

processor 2processor 4

17

outstandingJobs [] outstandingJobs[]

outstandingJobs[(2,proc3),(14,proc2)]

processor 1

Job spawned but not yet started

Job finished

Job in progress

1

1

9

1

9

Figure 3.1: An example omputation tree before and after the rash of proessor 3

48 CHAPTER 3. FAULT TOLERANCE, MALLEABILITY AND MIGRATION

8

1

32

4 6 7

16 28

14

29

15

processor 2

17

outstandingJobs [] outstandingJobs[]

outstandingJobs[(14,proc2)]

processor 1

(a)

(b)

processor 4

1

32

6 7

28

14

29

15

processor 4

17

outstandingJobs [] outstandingJobs[]

outstandingJobs[(14,proc2)]

orphan table [(9,proc4),(17,proc4)]

orphan table [(9,proc4),(17,proc4)]

(9,proc4),(17,proc4)

processor 1

processor 2

9

9

Job spawned but not yet started

Job finished

Job in progress

1

1

1 Figure 3.2: The rash handling proedure

3.3. FAULT-TOLERANCE FOR SATIN 49
1

32

54 6

outstandingJobs[(2,proc2)]

processor 1

7

8 9 12 13

orphan table [(9,proc4),(17,proc4)]orphan table [(9,proc4),(17,proc4)]

(a)

(b)

outstandingJobs []

1

32

54 6

outstandingJobs[(2,proc2)]

processor 1

7

8 12 13

orphan table [(9,proc4),(17,proc4)]orphan table [(9,proc4),(17,proc4)]

processor 2

outstandingJobs[(9,proc4)]

processor 4

processor 4

outstandingJobs []

17 9

917

Job spawned but not yet started

Job finished

Job in progress

1

processor 2

1

outstandingJobs[]

REQ
Job 9

1 Figure 3.3: Restoring the parent-hild link

50 CHAPTER 3. FAULT TOLERANCE, MALLEABILITY AND MIGRATION
1

32

54 6

outstandingJobs[(2,proc2)]

7

8 12 13

orphan table [(9,proc4),(17,proc4)]orphan table [(9,proc4),(17,proc4)]

processor 2

outstandingJobs[]
processor 1

processor 4

outstandingJobs []

Job spawned but not yet started

Job finished

Job in progress

1

1

17

1

9

Figure 3.4: Proessor 4 returns the result of the orphan to proessor 2

3.3. FAULT-TOLERANCE FOR SATIN 51(a)). Proessor 5 aborts jobs 8 and 16 and forwards a (jobID, proessorID) tuple forjob 17 (�gure 3.6 (a)).3.3.5 Handling rashes of the master proessorThe proessor that spawned the job that is the root of the exeution tree is alled themaster. In �gure 3.1 (a), job 1 is the root of the exeution tree and proessor 1 is themaster. A rash of the master is a speial ase. Sine the root job was never stolen,it will not be restarted during the normal reovery proedure in whih jobs stolen byrashed proessors are restarted. Therefore, a speial proedure for handling a rashof the master is needed.When the rash of the master is disovered, the remaining proessors elet the newmaster using the Registry1. The new master re-spawns the root job, thereby restartingthe appliation. The information needed to restart the appliation is repliated onall proessors. The new run of the appliation will reuse the partial results of theorphan jobs from the previous run (when the master rashes, all jobs beome orphans).Figures 3.7 (a) shows the omputation tree from �gure 3.1 (a) after the rash of themaster (proessor 1). Figure 3.7 (b) shows the situation after the rash handlingproedure. Proessor 3 has been eleted as a new master and restarted the root ofthe omputation tree (job 1).3.3.6 Job identi�ersThe job identi�ers (jobID) must be both globally unique and reproduible: the iden-ti�er of a job that is re-spawned after a proessor rash must be the same as it wasbefore the rash, otherwise the orphaned hildren annot be linked orretly to theirparents. We reate job identi�ers in the following way: the root job is assigned ID=1.The hild's identi�er is omputed by multiplying the identi�er of its parent by themaximal branhing fator of the omputation tree and adding the number of hildrenthe same parent generated before. For example, the seond hild of a job with ID 4in a tree with branhing fator = 2 will have ID = 2 * 4 + 1 = 9. The jobs in thetree in �gures 3.1�3.7 are numbered aording to this sheme.In most divide-and-onquer appliations, the maximal branhing fator of theexeution tree is known. If it is not known, however, level stamps desribed in [126℄an be used. A level stamp is a string. The root job is identi�ed by an empty string.The level stamp of a hild is reated by appending a harater to the identi�er of theparent. The appended harater is the number of hildren the parent has spawnedbefore. For example, the �rst hild of the root job will be identi�ed with a stamp `0',the seond hild of job `021' will be identi�ed with `0211'. Figure 3.8 shows an exampleexeution tree with level stamps. In our implementation, the appliation programmeran speify the maximal branhing fator of the appliation. In that ase the integerjob identi�ers are used, otherwise the runtime system uses level stamps.1Crashes of the Registry have to handled by a separate mehanism suh as hekpointing andrepliation

52 CHAPTER 3. FAULT TOLERANCE, MALLEABILITY AND MIGRATION

8

1

3

4 6 7

16 28

14

29

15

processor 2

17

outstandingJobs[]

outstandingJobs[(2,proc3),(14,proc2)]

outstandingJobs [(8,proc5)]

processor 5

outstandingJobs []
(a)

(b)

processor 4

processor 1

8

1

32

6 7

16 28

14

29

15

processor 2

17

outstandingJobs[]

outstandingJobs[(14,proc2)]

processor 1

outstandingJobs []

processor 5

(9,proc4)

orphan table [(9,proc4)]
orphan table [(9,proc4)]

orphan table [(9,proc4)]

processor 4

outstandingJobs []

Job spawned but not yet started

Job finished

Job in progress

1

1

9

orphan

9

prop.
job8

1 Figure 3.5: Orphan propagation

3.3. FAULT-TOLERANCE FOR SATIN 53
1

32

6 7

28

14

29

15

processor 2

17

outstandingJobs[]

outstandingJobs[(14,proc2)]

processor 1

outstandingJobs []

processor 5

orphan table [(9,proc4)]
orphan table [(9,proc4),(17,proc5)]

orphan table [(9,proc4),(17,proc5)]

orphan table [(17,proc5)]

(17,proc5)

processor 4

outstandingJobs []

Job spawned but not yet started

Job finished

Job in progress

1

1

1

9

Figure 3.6: Orphan propagation

54 CHAPTER 3. FAULT TOLERANCE, MALLEABILITY AND MIGRATION

8

2

54

16 20

10

28

14

21 29

11

processor 2processor 3processor 4

17

outstandingJobs[(4,proc4)]outstandingJobs [] outstandingJobs[] (a)

(b)

1

21 29

11

processor 2processor 3processor 4

17

outstandingJobs[]outstandingJobs [] outstandingJobs[]

Job spawned but not yet started

Job finished

Job in progress

1

1

9

1

9

Figure 3.7: Handling the rash of the master (proessor 1)

3.3. FAULT-TOLERANCE FOR SATIN 55
"10"

"0"

"01""00"

""

"1"

"11"

"000" "001" "010" "011" "110" "111"

"0000" "0001" "0100" "0101" "1100" "1101"Figure 3.8: Level stamps3.3.7 Alternative orphan saving shemesIn this setion, we will disuss alternative orphan saving shemes and we will explainwhy they were found to be less e�ient.Global result tableOne alternative sheme we tried is using a global result table � a onept similar to atransposition table [50℄ used in game solving environments or the table used in tabledexeution of logi programs [163℄. It is a table aessible to all proessors in whihresults of jobs an be stored. Jobs in the table are identi�ed by their parameters. Theglobal result table is used for storing the results of orphan jobs. As in the basi sheme,only �nished orphans are stored in the table. Un�nished orphans are aborted. Whenreomputing jobs lost in rashes, proessors perform lookups in the global result table.If a lookup is suessful the result found in the table is used instead of reomputingthe job.The global result table is repliated on all proessors. The replias of the table donot have to be strongly onsistent. If a proessor does not �nd a job, it an alwaysreompute it. Therefore, updates of the table are propagated to other proessorsasynhronously.The global result table sheme has many similarities with the basi sheme. Infat, the basi sheme an be seen as a distributed implementation of the global resulttable: instead of repliating the job results on all proessors, the results are storedloally and only pointers to the results ((jobID, proessorID) tuples) are forwardedto other proessors.The advantage of the global result table sheme over the basi sheme is that

56 CHAPTER 3. FAULT TOLERANCE, MALLEABILITY AND MIGRATIONorphan results are always available loally and the result request messages do notneed to be sent. This simpli�es the algorithm and redues the number of messagesthat are sent in the system. However, a severe disadvantage of the global resulttable sheme is that for appliations with large job parameters and large job results,muh data is transferred. The problem of large parameters an be solved by using jobidenti�ers desribed in setion 3.3.6 instead of parameters to identify jobs in the globalresult table. However, there still remains the problem of large results. Therefore, theglobal result table sheme is not suitable for appliations with large parameters andresults.Avoiding aborting orphansTo avoid aborting orphans, we extended the basi orphan saving sheme in the fol-lowing way. The (jobID, proessorID) are broadast for all orphans, inluding theun�nished ones. No orphan is aborted. This means that a result request may arrivewhile the requested orphan job is still not �nished. In that ase, the informationabout the proessor requesting this job is stored in this job's invoation reord: theowner �eld is set to the identi�er of the proessor requesting the job. For regular jobs(i.e. not orphans) the owner �eld ontains the identi�er of the proessor from whihthe job was stolen and where the result should be returned. Thus, after the orphanjob is �nished, its result will be returned to the proessor that requested this job asif this job was stolen from this proessor.Unfortunately, this solution introdues a possibility of deadloks in the Satin run-time system. For e�ieny Satin is single-threaded and has one stak. Thereforeun�nished orphan jobs an be bloked by their parents whih after being restartedan be higher in the stak than their orphaned hildren. An example of suh a situ-ation is shown in �gure 3.9. In this �gure, the staks of three proessors are shown.Job 2 was restarted after a rash. Jobs 4, 8, 16 and 32 are orphans. The arrowsdenote parent-hild relationships. Job 2 annot be ompleted before job 4, beausejob 4 is its hild. Job 4 annot be ompleted before job 16, beause job 16 is itsgrandhild. Job 16 annot be ompleted before job 2 beause it is lower in the stak.In the basi orphan saving sheme suh deadloks are impossible � we reuse only the�nished parts of orphan jobs so their exeution annot be bloked by the restartedjobs.Suh deadlok an be avoided by delaying the restarting of the jobs lost in arash until a safe moment. A job an be safely restarted when its parent is on thetop of the stak. Therefore, after a rash we do not put restarted jobs immediatelyin the work queue, but store them in a separate queue. A job from this queue isput in the work queue only if its parent is on the top of the stak and the workqueue is empty. In this way, we make sure that no orphans will be bloked by theirparents. Unfortunately, this approah inreases the load balaning overhead of theappliation. The reason is that putting jobs aside temporarily dereases the numberof jobs available in the system. Those jobs are typially relatively large jobs, beauserestarted jobs have been stolen before, and stolen jobs tend to be large. Thus, thederease in the number of available jobs an be signi�ant. The performane gain of

3.4. MALLEABILITY AND MIGRATION FOR SATIN 57

orphan

processor 1
the stack of
processor 2

the stack of
processor 3

3

1

7

14

16

2

8

4 32

restarted

the stack of

Figure 3.9: An example of a deadloknot aborting orphans does not outweigh the extra load balaning overhead. Moreover,not aborting orphans makes the algorithm signi�antly more ompliated, inreasingthe probability of bugs and rae onditions.3.4 Malleability and migration for SatinAn important harateristi of the fault-tolerane algorithm desribed in the previoussetion is that after a rash, the appliation an ontinue running on the diminishednumber of proessors. The rashed proessors do not need to be replaed. Therefore,the appliations using our fault-tolerane algorithm are already partly malleable: theyan tolerate proessors leaving the on-going omputation. In this setion, we willdisuss how we an handle proessors joining the on-going omputation. Furthermore,we will show how the rash handling mehanism an be optimized if the appliationreeives a prior noti�ation before the proessors are taken away. With the optimizedmehanism, we an save almost all work done by the leaving proessors, reduing theoverhead to nearly zero.3.4.1 Adding proessorsAdding a proessor to an on-going divide-and-onquer omputation is simple. All weneed to do is to let the new proessor steal jobs from the other proessors and theload will be balaned automatially. Adding proessors has pratially no overhead.

58 CHAPTER 3. FAULT TOLERANCE, MALLEABILITY AND MIGRATIONSpeial are needs to be taken when a proessor joins the omputation after the re-overy proedure was exeuted by other proessors (e.g., if new proessors were addedto replae leaving proessors). In this ase, the orphan table of the new proessor isempty and it has to download an orphan table from one of the other proessors, tobe able to reuse partial results. The problem here is that a joining proessor doesnot know: a) whether there was a rash reovery before it joined b) whih otherproessors have non-empty orphan tables and whih do not (beause they have alsojust joined). We solve this problem in the following way. Every proessor joining theomputation, even proessors joining at the very beginning of the omputation, exeptfor the master, tries to download an orphan table from another proessor. Only themaster assumes that it has an up-to-date version of the orphan table (it is empty atthe beginning of the omputation). Eah proessor piggybaks orphan table requestson its steal requests until it reeives the table.3.4.2 Saving partial results from the leaving proessorsWe extended the rash handling algorithm in suh a way that if proessors are leavinggraefully, that is if the appliation reeives a noti�ation before the proessors leave,we an save the partial results from the leaving proessors.We assume that suh departure noti�ations will be sent to the appliation bythe grid sheduler or other grid middleware. Currently, however, none of the gridshedulers support this funtionality. For performane evaluation purposes, we imple-mented a simple ontrol interfae in the Ibis Registry. The user an send a ommandto the Registry ontaining a list of nodes that have to leave the omputation. TheRegistry passes this list to all the nodes taking part in the omputation.Our algorithm an also work with other models of departure noti�ation, for ex-ample, if noti�ations are sent only to the leaving proessors and if they do not ontainthe identi�ers of other leaving proessors. However, in suh ases, our algorithm anbe less e�ient, as will be explained below.If a proessor reeives a departure noti�ation, it hooses another proessor ran-domly, transfers all the results of its �nished jobs to the other proessor and exits.The proessor that reeives those jobs treats them as orphan jobs: it broadasts a(jobID, proessorID) tuple ontaining its own proessorID for eah reeived result.Next, the normal rash reovery proedure is exeuted by all the proessors that didnot leave. The proessors that left are treated as rashed proessors. The partialresults from the rashed proessors are linked to the restarted parents, as it happensin the ase of orphan jobs.An example is shown in �gures 3.10 � 3.11. Proessor 3 reeives a signal that ithas to leave the omputation. It hooses another proessor at random (proessor 4)and it sends it all its �nished jobs � jobs 11 and 21. It aborts the un�nished jobs, andexits. Next, the remaining proessors exeute the normal rash handling proedure:proessor 1 restarts job 2 stolen by proessor 3. Proessor 4 handles its orphan jobs.Jobs 11 and 21 reeived from proessor 3 are handled in exatly the same was asorphan jobs: for eah of the a (jobID, proessorID) tuple is sent and stored in theorphan tables. Therefore, the jobs omputed by proessor 3 an be reused in further

3.4. MALLEABILITY AND MIGRATION FOR SATIN 59

8

1

3

4 6 7

16 28

14

21 29

1511

processor 2processor 4

17

outstandingJobs [] outstandingJobs[]

outstandingJobs[(2,proc3),(14,proc2)]

8

1

32

54 6 7

16 20

10

28

14

21 29

1511

processor 3

17

outstandingJobs[(4,proc4)]outstandingJobs [] outstandingJobs[]

outstandingJobs[(2,proc3),(14,proc2)]

processor 1

11,21

(a)

(b)

processor 2processor 4

processor 1

Job spawned but not yet started

Job finished

Job in progress

1

1

9

1

9

Figure 3.10: Handling graefully leaving proessors

60 CHAPTER 3. FAULT TOLERANCE, MALLEABILITY AND MIGRATION

1

32

54 6 7

10 11

processor 4

17

outstandingJobs []

outstandingJobs[(2,proc2)]

processor 1

1

32

6 7

28

14

29

1511

processor 2processor 4

17

outstandingJobs [] outstandingJobs[]

outstandingJobs[(14,proc2)]

(9,proc4),(11,proc4)
(17,proc4),(21,proc4)

orphan table [(9,proc4),(11,proc4),(17,proc4),(21,proc4)]

orphan table [(9,proc4),(11,proc4),(17,proc4),(21,proc4)]

orphan table [(9,proc4),(11,proc4),(17,proc4),(21,proc4)]

processor 2

outstandingJobs[(11,proc4)]

orphan table [(9,proc4),
(11,proc4),(17,proc4),(21,proc4)]

(a)

(b)

processor 1

Job spawned but not yet started

Job finished

Job in progress

1

1

9

21

21

1

9

Figure 3.11: Handling graefully leaving proessors

3.5. TOTAL CRASHES 61omputation (�gure 3.11).The hoie of the proessor to whih the leaving proessor will transfer its partialresults depends on the information the leaving proessor has about the system. Cur-rently, the departure noti�ation reeived from the Registry ontains the identi�ersof all proessors that are leaving at the same time. Thus, the leaving proessors makesure that they transfer their results to one of the proessors that are not leaving.However, if the leaving proessors do not have full information, it may happen thatpartial results are transfered to a proessor that is leaving as well. If it leaves whilethe results are in transfer, they will be lost. Otherwise the proessor will forwardthem together with its own partial results to another proessor. Note that this onlyin�uenes the performane of the algorithm and not the orretness: if the results arelost they an always be reomputed.3.4.3 Using malleability to implement migrationIn setion 3.6, we will show that our algorithm allows adding and removing proessorspratially without loss overhead. Therefore, we an use malleability to implemente�ient appliation migration. We an migrate an appliation from one set of re-soures to another, by �rst adding the new set of resoures and then removing the oldone. Note that order is important � there must be some proessors up and runningat all times to preserve work.3.5 Total rashesA disadvantage of our fault-tolerane and malleability mehanism is that if a proessorrashes suddenly, the work done by it is always lost. If a substantial part of theproessors rash, a substantial part of work needs to be reomputed. If all proessorsrash, everything needs to be reomputed. Only if a prior noti�ation is sent to theappliation, an the work done on the leaving proessors be saved. However, if allproessors are leaving, their work annot be saved even if a prior noti�ation is sent.Thus, with the urrent fault-tolerane/malleability mehanism, it is not possible tostop an appliation and restart it later from the point where it was stopped. Theappliation an only make progress if at every moment there is at least one proessorup and running.To overome this limitation, we extended our fault-tolerane mehanism to (pe-riodially) store partial results on a stable storage. All proesses taking part in theappliation (periodially) save the results of their �nished subjobs in a user-de�ned�le.This mehanism an be used in two ways:� To minimize the amount of work lost in rashes. In this senario all proessorsperiodially save their partial results on the stable storage. After a rash, theresults omputed by the rashed proessor are retrieved and reused.� To stop an appliation and restart it later from the point where it was stopped.

62 CHAPTER 3. FAULT TOLERANCE, MALLEABILITY AND MIGRATIONIn this senario, the user (or grid middleware) sends a signal to the appliation,for example via the Registry. After reeiving the signal, proesses store theirresults in the �le de�ned by the user and exit. The user an use the �le later torestart the appliation on a possibly di�erent set of resoures.This mehanism an be seen as an appliation-level hekpointing. The di�erenewith lassial appliation-level hekpointing shemes is that it is done transparently,that is, it does not need to be desribed expliitly by the programmer. This is possible,beause we onentrate on a single lass of divide-and-onquer appliations. In furthertext we will refer to our mehanism as hekpointing.3.5.1 The basi hekpointing algorithmAll proessors taking part in the omputation periodially save their partial resultsin a user-de�ned hekpoint �le. Along with the job results, the jobID of this job andthe proessorID of the proessor that has omputed this job are stored. The intervalbetween the subsequent hekpoints (hekpointing interval) is de�ned by the user.Proessors do not aess the hekpoint �le diretly. Instead, they send the datato the oordinator proessor whih is responsible for writing and reading the hek-point �le. The proessors do not synhronize before taking their hekpoints � thehekpoints an be taken independently. The oordinator is eleted from among theproesses taking part in the omputation. The eletion algorithm will be desribedin setion 3.5.4. If a proessor rashes, the oordinator searhes the hekpoint �lefor the results omputed by the rashed proessor. All those results are retrieved andstored in the memory of the oordinator. Next, the basi fault tolerane mehanismis used to reuse those results � they are treated just like orphan jobs. For eah ofthose results, the oordinator forwards a (jobID, proessorID) tuple with its own pro-essorID to the other proessors. Proessors store the (jobID, proessorID) tuples intheir orphan tables. The orphan tables are used in exatly the same way as in thebasi fault tolerane mehanism.An example is shown in �gures 3.12 � 3.14. All proessors periodially sendresults of their �nished jobs to the oordinator � proessor 2. The oordinator storesthose results together with its own results in the hekpoint �le. After the rash ofproessor 3, a normal rash handling proedure is exeuted: proessor 1 puts job 2bak in its work queue and proessor 4 handles its orphans. Additionally, proessor 2searhes the hekpoint �le for the results omputed by proessor 3. It retrievesjobs 11 and 21, stores them in its memory and broadasts the (jobID, proessorID)tuples. The tuples are stored in orphan tables and used to reuse the hekpointedresults.3.5.2 Restoring the omputation after an abort or total rashThe main advantage of storing partial results on stable storage is the possibility ofstopping the omputation and restarting it later without the need of reomputingfrom srath. Also, surviving a total rash is possible.

3.5. TOTAL CRASHES 63

8

1

32

54 6 7

16 20

10

28

14

21 29

1511

processor 2 (coordinator)processor 3processor 4

17

outstandingJobs[(4,proc4)]outstandingJobs [] outstandingJobs[]

outstandingJobs[(2,proc3),(14,proc2)]

processor 1

8

1

32

54 6 7

16 20

10

28

14

21 29

1511

processor 2 (coordinator)processor 3processor 4

17

outstandingJobs[(4,proc4)]outstandingJobs [] outstandingJobs[]

outstandingJobs[(2,proc3),(14,proc2)]

processor 1

(a)

(b)

Job spawned but not yet started

Job finished

Job in progress

1

1

9

9

179

11 21

15

11

9

29

15

17

21

checkpoint
file

checkpoint
file

1 Figure 3.12: Proessors are taking a hekpoint

64 CHAPTER 3. FAULT TOLERANCE, MALLEABILITY AND MIGRATION

8

1

3

4 6 7

16 28

14

29

15

processor 2 (coordinator)processor 4

17

outstandingJobs [] outstandingJobs[]

outstandingJobs[(2,proc3),(14,proc2)]

processor 1

1

32

6 7

28

14

29

15

processor 2 (coordinator)processor 4

17

outstandingJobs [] outstandingJobs[]

outstandingJobs[(14,proc2)]

processor 1

(9,proc4),(17,proc4)

orphan table [(9,proc4),(17,proc4)]

orphan table [(9,proc4),(17,proc4)]

(a)

(b)

Job spawned but not yet started

Job finished

Job in progress

1

1

9

2111 17

21

15 11

9

29

17

21

15 11

9

29

9

checkpoint
file

checkpoint
file

1 Figure 3.13: Crash handling proedure and reading the hekpoint �le

3.5. TOTAL CRASHES 65
1

32

6 7

28

14

29

15

processor 2 (coordinator)processor 4

17

outstandingJobs [] outstandingJobs[]

outstandingJobs[(2,proc3),(14,proc2)]

processor 1

1

32

54 6 7

10

28

14

29

15

processor 2 (coordinator)processor 4

17

outstandingJobs [] outstandingJobs[]

outstandingJobs[(2,proc3),(14,proc2)]

processor 1

orphan table [(9,proc4),(17,proc4)

(11,proc2),(21,proc2)]

orphan table [(11,proc2),(21,proc2)] orphan table [(9,proc4),(17,proc4)]

(21,proc2)

(11,proc2)

orphan table [(11,proc2),(21,proc2)] orphan table [(9,proc4),(17,proc4)]

orphan table [(9,proc4),(17,proc4)

(11,proc2),(21,proc2)]

(a)

(b)

Job spawned but not yet started

Job finished

Job in progress

1

1

9 11

21

17

21

15 11

9

29

29

9

1115

21

17

11

21

9

checkpoint
file

checkpoint
file

1 Figure 3.14: Reusing the hekpointed results

66 CHAPTER 3. FAULT TOLERANCE, MALLEABILITY AND MIGRATIONWhen a omputation is started, the oordinator heks if the hekpoint �le spe-i�ed by the user already exists. If this is the ase, the oordinator assumes that theomputation has been restarted after an abort or a total rash. All results from thehekpoint �le are read into the memory of the oordinator, and for eah of thoseresults a (jobID, proessorID) tuple is sent to other proessors. We use messageombining to avoid sending eah tuple separately.Currently, all results read from the hekpoint �le are stored in the memory of theoordinator. However, the amount of hekpointed data might be simply too large to�t in the memory of the oordinator. An alternative solution would be distributingthe results among all the proessors (urrently) taking part in the omputation.3.5.3 The hekpoint �leThe hekpoint �le ontains the partial results of the omputation. The hekpoint�le is aessed by the oordinator, but it need not neessarily be loated on the o-ordinator's loal �lesystem. In fat, the user may speify an arbitrary loation forthe hekpoint �le. The aess to the hekpoint �le is implemented using the JavaGAT (Grid Appliation Toolkit) interfae [3℄, a Java implementation of the GAT [23℄.Java GAT provides a high-level API for grid appliations. Among others, Java GATprovides an API for �le operations that hides the omplexity of the underlying in-frastruture from the programmer. With GAT, the programmer only needs to speifythe �le name and loation. The GAT takes are of seleting the appropriate protool(e.g., FTP, SSH, HTTP, GridFTP et.) and automatially optimizes the adjustableparameters based on available information on the urrent environment.For data intensive appliations, the hekpoint �le might beome huge. If theamount of spae on stable storage is limited, it is neessary to prevent the hekpoint�le from growing too muh. Therefore, we implemented hekpoint �le ompression.During the appliation run, eah hekpointed result eventually beomes redundant.This happens when the parent of the hekpointed job is also written to the hek-point �le. Therefore, the results of the hildren an be removed from the hekpoint�le. However, we do not remove the hildren from the hekpoint �le as soon astheir parents are hekpointed, sine this would ause muh I/O overhead. Instead,ompression is performed when the hekpoint �le exeeds the size spei�ed by theuser. During the ompression phase, a new hekpoint �le is reated and all the non-redundant results from the old �le are written to the new �le. Then, the old �le isdeleted. Note that the amount of free spae on stable storage must be roughly twieas big as the maximal hekpoint �le size spei�ed by the user. In the rare ase thatthe ompression does not result in signi�ant enough redution of the hekpoint �lesize, hekpointing is stopped: no new results will be hekpointed. Chekpoint �leompression is performed by the oordinator.3.5.4 The oordinatorThe oordinator is responsible for aessing the hekpoint �le. The oordinator iseleted from among the proessors taking part in the omputation. A simple approah

3.6. PERFORMANCE EVALUATION 67would be using the master as a hekpointing oordinator. However, to ahieve theoptimal performane, the I/O bandwidth and lateny between the oordinator andthe hekpoint �le needs to be taken into aount. Therefore, the proessor with thebest I/O performane is eleted to be the oordinator. The eletion is performed inthe following way.1. The master is eleted using the Registry2. Eah proessor measures the time it takes to write a small �le to the loationwhere the hekpoint �le will be reated.3. The results of those measurements are sent to the master.4. The master waits until it reeives suh messages from at least 50% of the pro-essors.5. The master selets the proessor with the shortest �le write time and announesit as the new oordinator.If the oordinator rashes, a new oordinator has to be eleted. The new eletionis initiated by the master, whih sends a oordinator reeletion message to all proes-sors. Then, the normal oordinator eletion proedure is performed. The proessorspostpone hekpointing until the eletion is ompleted.If the oordinator has rashed while another proess was sending hekpoint datato it, the data will be lost and never written to the hekpoint �le. The loss ofhekpoint data might a�et the performane of the fault tolerane mehanism butnot its orretness. Therefore, we do not take any ation to avoid suh situations.The oordinator may also rash while writing to the hekpoint �le and the hek-point �le may be orrupted. Therefore, eah time a oordinator is initialized, it heksthe hekpoint �le (if it exist) for possible errors. If errors are found, it reates a newhekpoint �le and transfers all non-damaged results from the old �le to the new one.The old �le is deleted.To minimize the overhead of hekpointing, we use onurrent hekpointing [124℄.The results are written to the hekpoint �le by a separate thread in the oordinatorproess. This thread runs onurrently with the Satin omputation.3.6 Performane evaluationIn this setion, we will evaluate the performane of our fault-tolerane algorithms.First, we evaluate the overhead of our algorithms during rash-free exeution. Seond,we evaluate the performane of our algorithms in the presene of rashes. We evaluateboth the basi orphan-saving algorithm and the hekpointing extension with varioushekpointing intervals. We will show that our algorithms add little overhead to Satin.Next, we will show that our basi sheme outperforms the traditional approah,whih does not save orphan jobs, and that using hekpointing further improves theperformane.

68 CHAPTER 3. FAULT TOLERANCE, MALLEABILITY AND MIGRATION1 min 2 min 5 minRaytraer 28 MB 20 MB 17 MBTSP 217 KB 128 KB 55 KBTable 3.1: Chekpoint �le sizesFurther, we will show that our mehanism an be used for e�ient migration of theomputation. Finally, we will demonstrate that using the hekpointing extension,the omputation an be stopped and restarted without losing work.The experiments were arried out on the Distributed ASCI Superomputer 2(DAS-2). DAS-2 onsists of �ve lusters loated on �ve Duth universities, in fourDuth ities: Amsterdam, Leiden, Delft and Utreht. One of the lusters onsists of72 nodes, the others onsist of 32 nodes, so there are 200 nodes in total. Eah nodeontains two 1-GHz Pentium-IIIs and at least 1 GB RAM. All nodes run RedHatLinux. Within a single luster, nodes are onneted by Myrinet [48℄ and 100 Mb/sEthernet. The lusters are interonneted by SurfNet, the Duth university Internetbakbone. The bandwidth between the sites ranges from 300 Mb/s to 1 Gb/s. Thelatenies are around 2ms.All experiments desribed in this setion were arried out on 32 nodes in 2 lusters(16 nodes in eah luster). For intra-luster ommuniation we used Ethernet.In our experiments, we used the following appliations:� Raytraer whih renders a piture (bitmap) using an abstrat desription of asene. Raytraer has been parallelized by reursively subdividing the bitmapinto smaller parts and rendering the parts in parallel. Raytraer is a relativelyommuniation-intensive appliation.� Traveling Salesman Problem (TSP) whih searhes for a shortest path onnet-ing a set of ities. TSP is a well-known NP-omplete problem whih has manyappliations in siene and engineering (e.g., manufaturing of iruit boards,analysis of the struture of rystals, lustering of data arrays, et.). TSP wasparallelized by evaluating di�erent paths in parallel. The TSP implementationused in this evaluation is less e�ient than industrial implementations. The rea-son is that the divide-and-onquer model does not allow data sharing betweendi�erent subomputations and therefore does not allow pruning of the searhspae2. However, our implementation is su�ient for the purpose of evaluat-ing the performane of the fault-tolerane algorithms. TSP is a omputation-intensive appliation and sends little data.2In hapter 5, we will present a data-sharing extension of our programming model and desribea more e�ient implementation of TSP

3.6. PERFORMANCE EVALUATION 69

0

50

100

150

200

250

300

350

R
u

n
ti

m
e

(s
ec

.)

no fault tolerance

basic fault tolerance

checkpointing 1 min

checkpointing 2 min

checkpointing 5 minFigure 3.15: Raytraer, overhead during rash-free exeution

0

150

300

450

600

750

900

1050

R
u

n
ti

m
e

(s
ec

.)

no fault tolerance

basic fault tolerance

checkpointing 1 min

checkpointing 2 min

checkpointing 5 minFigure 3.16: TSP, overhead during rash-free exeution

70 CHAPTER 3. FAULT TOLERANCE, MALLEABILITY AND MIGRATION3.6.1 Overhead during rash-free exeutionIn this setion, we evaluate the impat of our algorithms on appliation performanewhen no proessors are leaving or rashing. We run the appliations in the followingsettings:� The plain Satin system, that is, without any fault-tolerane mehanism enabled.� The Satin system with the basi fault-tolerane mehanism (i.e., job reomput-ing and saving orphans) enabled.� The Satin system with periodi hekpointing and with the following hek-pointing intervals: 1, 2 and 5 minutes.Figures 3.15 and 3.16 show runtimes of the two appliations. The runtimes shownare averages over 2�4 runs. The standard deviations are around 2 seonds for Ray-traer and 8 seonds for TSP.The overhead of the basi fault-tolerane mehanism is negligible. Also, hek-pointing has s small overhead and the overhead does not seem to be dependent onthe hekpointing interval. This results from the fat that we are using onurrenthekpointing, whih minimizes the impat of aessing the hekpoint �le on theperformane of the appliation. Table 3.1 lists the maximal sizes of the hekpoint�les for di�erent hekpoint intervals. The hekpoint �les produed by the TSP ap-pliation are small, sine TSP does not proess muh data. Raytraer is more dataintensive, and therefore produes larger hekpoint �les.3.6.2 Performane in the presene of rashesIn this setion, we will evaluate the performane of our algorithms in the presene ofrashes. First, we will ompare the performane of our basi fault-tolerane algorithm(with orphan saving but no hekpointing) with the traditional (`naive') algorithm inwhih work lost in rashes is reomputed, but the orphans are not saved. Instead,orphans are disarded after omputing them and reomputed later. Next, we willompare the performane of the hekpointing extension with the performane of thebasi algorithm. We will look at di�erent hekpointing intervals. Finally, we willevaluate the performane of our algorithm when the nodes are leaving graefully, thatis, after a prior noti�ation.In these experiments, we run the two appliations on 32 nodes in 2 lusters. Weremove one of the lusters in the middle of the omputation, that is, after half of thetime it would take on 2 lusters without proessors leaving. The ase when half ofthe proessors leave is the most demanding, as the largest number of orphan jobs isreated in this ase. Typially, the number of orphans does not depend on the momentwhen proessors leave, exept for the initial and �nal phase in the omputation.To allow a fair omparison between various hekpointing intervals, we made surethat the rash happens always exatly in the middle of a hekpointing interval. Weahieved it by adjusting the time the �rst hekpoint during the omputation wastaken. To ompute the time of the �rst hekpoint, we used the following formula:

3.6. PERFORMANCE EVALUATION 71

0

150

300

450

600

750

900

R
u

n
ti

m
e

(s
ec

.)

1 cluster leaves gracefully

1 cluster crashes, ckpt 1 min

1 cluster crashes, ckpt 2 min

1 cluster crashes, ckpt 5 min

1 cluster crashes, basic ft

1 cluster crashes, naive ftFigure 3.17: Raytraer, performane in the presene of rashes

0

450

900

1350

1800

2250

2700

R
u

n
ti

m
e

(s
ec

.)

1 cluster leaves gracefully

1 cluster crashes, ckpt 1 min

1 cluster crashes, ckpt 2 min

1 cluster crashes, ckpt 5 min

1 cluster crashes, basic ft

1 cluster crashes, naive ftFigure 3.18: TSP, performane in the presene of rashes

72 CHAPTER 3. FAULT TOLERANCE, MALLEABILITY AND MIGRATIONbasi ft kpt 5 min kpt 2 min kpt 1 min graefulRaytraerjobs spawned 5 mln 5 mln 4.5 mln 4.5 mln 3.8 mlnjobs stolen 405 460 408 506 470jobs in orphan tables 79 342 690 768 392jobs reused 79 275 288 430 384% jobs reused 100% 80% 42% 56% 98%broadast messages 11 22 22 29 25TSPjobs spawned 400 000 360 000 330 000 330 000 290 000jobs stolen 625 648 628 647 560jobs in orphan tables 228 862 1503 2373 409jobs reused 216 529 623 793 409% jobs reused 95% 61% 41% 33% 100%broadast messages 12 16 20 25 14Table 3.2: Orphan saving statististime of �rst hekpoint = (1/2 runtime on 32 pus - 1/2 hekpointinterval) modulo hekpoint intervalThe harts in �gures 3.17 and 3.18 show the runtimes of both appliations. Theruntimes shown are averages taken over 4�6 runs. In 50% of the runs, the rashing(or leaving graefully) luster ontained the master.On average, our basi fault-tolerane algorithm outperforms the traditional, `naive'approah by 15% to 25%. Chekpointing improves the performane of the system byfurther 10% to 15%. The performane improvement is largest with small hekpoint-ing intervals. If nodes are leaving graefully, the orphan saving algorithm provides upto 40% performane improvement over the `naive' algorithm.Table 3.2 lists average numbers of jobs stored in orphan tables and average numberof jobs reused. While with the basi fault-tolerane algorithms almost all jobs arereused, when hekpointing is used, only 30% to 80% of jobs are reused. This isaused by the fat that many jobs in the hekpoint �le are redundant, that is, theirparent or other anestor was hekpointed. In suh ases, only the anestor is used.Chekpoint ompression an redue the number of redundant jobs.Table 3.2 also lists the number of broadast messages sent in order to keep orphantables up to date. Beause message ombining is used, this number is small andindependent of the number of jobs in the orphan tables.The variation in the runtimes for the traditional, `naive' algorithm is large. This isaused by the fat that the performane of the traditional algorithm depends heavilyon the number of orphan jobs reated by the leaving proessors, as all of those jobshave to be omputed twie. Beause work is distributed randomly, the variation inthe number of reated orphans is large whih auses a large variation in runtimes forthe traditional algorithm. Our algorithms are muh less sensitive to the number of

3.6. PERFORMANCE EVALUATION 73mean standard deviation mean standard deviationTSP TSP Raytraer Raytraergraeful 1695 s 1 s 514 s 27 skpt 1 min 1806 s 119 s 565 s 25 skpt 2 min 1865 s 175 s 582 s 37 skpt 5 min 1953 s 139 s 661 s 36 skpt 10 min 1971 s 108 s 687 s 73 sbasi ft 2246 s 258 s 668 s 25 snaive ft 2654 s 649 s 886 s 205 sTable 3.3: Crash performane statistisorphans, as only small overhead is inurred by reusing orphans. Table 3.6.2 lists thestandard deviations and means for all algorithms. These statistis were omputedover 4�6 runs.The di�erene between the `naive' algorithm and our algorithm is biggest whenthe luster ontaining master rashes. In that ase, all the jobs beome orphans andwith the traditional approah, the omputation must be started from the beginning.Our algorithm an reuse all the orphans and therefore the performane of the systemstays the same regardless of whether the master rashes or not.3.6.3 Performane of migrationIn this setion, we will evaluate the overhead of malleability based migration. In thisexperiment, we started an appliation on 32 nodes in 2 lusters. In the middle of theomputation, we graefully removed one of the lusters and replaed it with anotherluster with the same number of proessors (16). We ompared the resulting runtimewith a runtime without migration. These runtimes are shown in �gures 3.19 and 3.20.The di�erene in the runtimes shows the overhead of migration. With our approah,the overhead is smaller than 5%. There are two soures of this overhead. First, theresults from the leaving proessors need to be sent over the network. Depending onthe appliation, the amount of data to be sent an be signi�ant. Seond, part ofthe jobs need to be reomputed after migration, as only jobs that are �nished at themoment the migration is requested are saved and transferred to other proessor.The overhead stays small, however, whih shows that our mehanism an be usedfor e�ient migration of the omputation.3.6.4 Performane of the abort/restore mehanismIn this setion, we will evaluate the performane of the abort/restore mehanism. Inthis experiment, we ran an appliation on 32 nodes in 2 lusters. In the middle ofthe omputation, we stopped the appliation by sending it an `abort' signal. The ap-pliation hekpointed its results and exited. Next, we have restarted the appliationon the same proessor set and using the hekpoint �le reated in the aborted run.

74 CHAPTER 3. FAULT TOLERANCE, MALLEABILITY AND MIGRATION

0

50

100

150

200

250

300

350

R
u

n
ti

m
e

(s
ec

.)

without migration

with migrationFigure 3.19: Raytraer, performane of migration

0

150

300

450

600

750

900

1050

R
u

n
ti

m
e

(s
ec

.)

without migration

with migrationFigure 3.20: TSP, performane of migration

3.6. PERFORMANCE EVALUATION 75

0

50

100

150

200

250

300

350

R
u

n
ti

m
e

(s
ec

.)

without abort

with abort/restoreFigure 3.21: Raytraer, performane of abort/restore

0

150

300

450

600

750

900

1050

R
u

n
ti

m
e

(s
ec

.)

without abort

with abort/restoreFigure 3.22: TSP, performane of abort/restore

76 CHAPTER 3. FAULT TOLERANCE, MALLEABILITY AND MIGRATIONappliation �le sizeRaytraer 12 MBTSP 19 KBTable 3.4: Chekpoint �le size while aborting and restoring appliationsWe ompared the resulting runtime with a runtime without abort/restore. Thoseruntimes are shown in �gures 3.21 and 3.22. The overhead of aborting and restoringan appliation is 10% for a data intensive appliation (Raytraer) and only 1% fora omputation intensive appliation (TSP). This overhead is aused by the need towrite and read the hekpoint �le. Pratially no work is lost while aborting andrestoring an appliation. The sizes of the hekpoint �les are listed in table 3.4.3.7 Comparison with related workSeveral fault tolerane mehanisms designed spei�ally for divide-and-onquer appli-ations have been proposed in the literature. An interesting approah was presentedby Finkel and Manber in [83℄. Their system, DIB, works in a way similar to Satin: itruns divide-and-onquer appliations in parallel by exeuting subproblems on di�erentproessors. Load balaning is done by work stealing. The fault-tolerane mehanismis based on redoing of work. Proessors in DIB redo work of other proessors evenif no rash has been deteted. Redoing ours while a proessor waits for its stealrequest to be granted. Instead of staying idle, the proessor starts redoing work thatwas stolen from it earlier but whose result it has not yet reeived. This approahis robust sine rashes an be handled even without being deteted. However, thisstrategy an lead to a large amount of redundant omputation. The authors reportthe anestral-hain problem in their paper: assume that proess P1 gave some workto P2 whih in turn gave some of it to P3, whih failed before reporting the resultbak to P2. In that ase both P1 and P2 will redo the work they gave away andthe work given to P3 will be redone twie. Another problem, not disussed in thepaper, are orphan jobs. Orphan jobs are not aborted after a rash was disovered,but exeuted until the end. When the result of an orphan is returned to its parent, itwill be disarded, sine the parent has rashed. The same job will be omputed againwhile redoing the work given to the rashed proessor. Therefore, like in the ase ofanestral hains, part of the work will be done twie.Another approah was proposed by Lin and Keller [126℄. Similarly to the DIBapproah, they base their fault tolerane mehanism on redoing the work. When arash of a proessor is deteted, the jobs stolen by the rashed proessor are redoneby the owners of those jobs, i.e., the proessors from whom the jobs were stolen. Theauthors try to handle the problem of orphan jobs. They ahieve it by storing witheah job not only the identi�er of its parent proessor (the proessor from whih thejob was stolen), but also the identi�er of its grandparent proessor (the proessorfrom whih the parent proessor stole the anestor of our job). When the parent

3.8. CONCLUSION 77proessor rashes, the orphaned job is passed after ompletion to the grandparentproessor whih in turn passes it to the proessor whih is redoing the work lostin the rash. The result of an orphaned job an thus be reused. However, if bothparent and grandparent proessor rash, the orphaned job annot be reused anymore.The onept an be extended by storing great-grandparent and higher level proessoridenti�ers to be able to handle more rashes, but the number of rashes a spei�implementation of this sheme an handle will always be limited by the number ofpointers the implementation stores. Moreover, the amount of data that needs to bestored depends linearly on the number of rashes the implementation an handle.Another problem with this mehanism is that the result of an orphan job is passedto the grandparent proessor only after the exeution of this job is ompleted, whihmay our a long time after the rash. By that time, some other proessor may havealready started or even ompleted redoing the same job. Our experiments show thatsuh situations our often. Therefore, although this mehanism tries to reuse orphanjobs, the amount of redundant work is still high.Atlas [32℄ is another divide-and-onquer system. It was designed with heterogene-ity and fault tolerane in mind and aims only at reasonable performane. Its faulttolerane mehanism is also based on redoing the work. The problem of orphan jobsis not addressed in Atlas. Atlas and its fault tolerane mehanism was based on Cil-kNOW [44℄ � an extension of Cilk [46℄, a C-based divide-and-onquer system. Cilkwas designed to run on shared-memory mahines while CilkNOW supports networksof workstations.3.8 ConlusionIn this hapter, we presented a mehanism that enables fault tolerane, malleabilityand migration for divide-and-onquer appliations. We proposed a novel approah toreusing partial results by restruturing the omputation tree. Using this approah weminimized the amount of redundant omputation, whih is a problem of many otherfault-tolerane mehanisms for divide-and-onquer systems. Our approah also allowsto save almost all the work done by the leaving proessors, when they leave grae-fully. Divide-and-onquer appliations using our mehanism an adapt to dynamiallyhanging numbers of proessors and migrate the omputation between di�erent ma-hines without loss of work.Further, we extended our basi fault-tolerane mehanism with a simple hek-pointing faility. This extension allows the appliation to survive a total rash andimproves the performane of rash reovery when a signi�ant part of the proessorhas rashed. Finally, the hekpointing faility allows to abort an appliation andrestart it without loss of work.We implemented our algorithms in Satin and evaluated them on a wide-area DAS-2 system. In those experiments, we showed that the overhead of our algorithms duringrash-free exeution is very small. We also showed that when proessors rash, ourbasi fault-tolerane algorithm outperforms the traditional approah (whih does notreuse orphans) by 15 to 25%. Chekpointing an improve the performane by a

78 CHAPTER 3. FAULT TOLERANCE, MALLEABILITY AND MIGRATIONfurther 10%. Finally, when nodes leave graefully the performane improvement ofthe orphan-saving approah over the traditional approah an reah 40%. We havealso demonstrated the orphan-saving algorithm an be used for very e�ient migration(with an overhead of smaller than 5%) and that the hekpointing faility an be usedfor aborting and restarting an appliation without loss of work.

Chapter 4Self-adaptation4.1 IntrodutionOne important problem in grid omputing is resoure seletion � seleting a set ofompute nodes suh that the appliation ahieves good performane. Even in tradi-tional, homogeneous parallel environments, �nding the optimal number of nodes is ahard problem and is often solved in a trial-and-error fashion. In a grid environmentthis problem is an order of magnitude harder beause of the heterogeneity of resoures:the ompute nodes have various speeds and the quality of network onnetions be-tween them varies from low-lateny and high-bandwidth loal-area networks (LANs)to high-lateny and possibly low-bandwidth wide-area networks (WANs). Anotherimportant problem is that the performane and availability of grid resoures variesover time: the network links or ompute nodes may beome overloaded, the omputenodes may beome unavailable beause of rashes or beause they have been laimedby a higher priority appliation. Also, new, better resoures may beome available.To maintain a reasonable performane level, the appliation therefore needs to adaptto the hanging onditions.In this hapter, we will �rst disuss existing solutions to the resoure seletionand adaptation problems. Current approahes to the resoure seletion problem [172,37℄ typially assume the existene of a performane model for an appliation � amathematial formula that allows to predit the appliation runtime on a given set ofresoures. The performane model is used to evaluate a number of possible resouressets and hoose the most appropriate one.The adaptation problem an be redued to the resoure seletion problem: the re-soure seletion phase an be repeated during appliation exeution, either at regularintervals, or when a performane problem is deteted, or when new resoures beomeavailable. A preondition here is that the appliation is malleable or migratable, thatis, it an be moved to a di�erent set of resoures at runtime.Construting performane models for parallel appliations is an inherently di�ulttask. Creating suh a model requires not only appliation domain knowledge but alsofamiliarity with omplex parallel and distributed programming issues. In this hapter,

80 CHAPTER 4. SELF-ADAPTATIONwe will desribe an approah to resoure seletion and adaptation whih does not useperformane models.The rest of this hapter is strutured as follows. In setion 4.2, we will presentbakground information on resoure seletion and adaptation. In setion 4.3, we willdesribe our approah to resoure seletion and adaptation. In setion 4.4, we willevaluate our approah, and in setion 4.5, we will ompare it with related work. Weonlude in setion 4.6.4.2 BakgroundIn this setion, we will disuss some bakground on resoure seletion and appliationadaptation. We will desribe the existing approahes to those problems.4.2.1 Resoure seletionThe resoure seletion problem involves hoosing a subset of the set of all availableresoures (ompute nodes) on whih the appliation will ahieve a ertain level ofperformane. Typially, a resoure set that yields the shortest exeution time issearhed for. Alternatively, a resoure set whih allows the appliation to �nishbefore a ertain deadline is seleted. Note that both of those approahes need a wayof prediting the runtime of the appliation on a given set of resoures.In eonomy based grid omputing [52℄ an extra searh parameter is added: resoureost. The total ost of the seleted resoure set must fall within a user-de�ned budgetand the appliation exeution time should be minimized or the appliation must �nishbefore a given deadline.Finding the resoure set that gives an optimal performane requires, in the mostgeneral ase, an exhaustive searh through all resoure subsets. In the ase of se-quential appliations, the omplexity of the problem is O(n) where n is the number ofavailable resoures, but in the ase of parallel appliations the problem is NP-omplete(the number of possible subsets is 2n). Sine the number of available resoures maybe very large and the resoure seletor must deliver an answer within reasonable time,heuristis for pruning the searh spae are neessary. For example, in [65℄ resouresare grouped into lusters (sets of proessors suh that network latenies within a setare lower than network latenies between the sets) and eah possible set of suh lus-ters is evaluated. For eah set of lusters, mahines are sorted aording to a ertainmetri (three metris are tried out for eah luster set: available memory, CPU speedand the ombination of the two). Next, the �rst N mahines from the sorted list aretaken, for N ranging from 1 to the total number of mahines in the luster set, andthe resulting resoure set is evaluated. If it yields an exeution time shorter that theurrent best set, it beomes the urrent best set. In [144℄, a greedy strategy is used:the olletion of mahines is extended in eah step with a mahine with the highestaverage bandwidth from all available mahines. The proedure is repeated as long asthe predited exeution time beomes shorter.To selet an appropriate set, a method of ranking the possible resoure sets is

4.2. BACKGROUND 81needed. One method is using a performane model whih allows prediting the ap-pliation running time on a given set of resoures. Creating performane models isa hallenging task. It requires knowledge not only of the appliation domain butalso of the parallel omputing issues. The literature desribes suh models only forrelatively simple, regular appliations, suh as parameter sweeps [37℄, master-workerappliations with homogeneous tasks [155℄ or regular iterative appliations [128℄. Theperformane model approah has been used in suh projets as AppLeS [37℄ andGrADS [173℄.Instead of using a detailed performane model of an appliation, some heuristiapproah an be used. If only a single node needs to be seleted (sequential applia-tions), node ranking an be based on the node CPU speed (�ops) [102℄. Even thoughnode speed does not always diretly orrespond to the appliation performane [142℄,node speed an be used as a heuristi replaing the use of a detailed performanemodel. This approah an be extended to parallel, single-site appliations, i.e., par-allel appliations that an only run on a single luster or superomputer. Eah site isranked aording to its number of nodes, node speed and average node load. The sitewith the biggest ompute power is seleted. This approah was used in the Catus-Code projet [21℄. Heuristi approahes have not been used for appliations runningaross multiple sites.4.2.2 AdaptationGrid environments are inherently dynami. The availability and performane of gridresoures is onstantly hanging. Even if an appliation is started on the optimalresoure set, it may soon beome suboptimal and the appliation performane maysu�er. Therefore, to ahieve optimal or even reasonable performane the appliationmust onstantly adapt to hanging onditions. Appliation adaptation has two as-pets: when to adapt, i.e., what irumstanes should trigger the adaptation, andhow to adapt, i.e. what ations should be taken to perform the adaptation.Adaptation an be triggered by events suh as:� Appliation performane degradation.� Availability of new resoures that were not available at the moment the appli-ation was started.� A hange in appliation requirements.To observe and measure the appliation performane degradation a onept of aperformane ontrat was introdued. A performane ontrat spei�es that givena set of resoures with ertain harateristis (e.g., bandwidth, proessor speeds) anappliation will ahieve a spei�ed performane [150℄. Appliation performane anbe measured in a variety of ways. For example, a spei�ed number of iterations perseond needs to be ahieved as in the CatusWorm experiment [21℄. In [173℄, the realexeution time of ertain omputation phases needs to be lose to the exeution timepredited by the performane model.The appliation an reat to hanges in the environment in two ways:

82 CHAPTER 4. SELF-ADAPTATION� The appliation an hange its behavior to use the urrent resoures in a di�erentway.� The appliation an be resheduled on a di�erent set of resoures (the new andthe old resoure sets an have a ommon subset).Changing the appliation behavior an involve hanging the mapping of the ap-pliation tasks to the available resoures. For example, an overloaded proessor anget a lighter task. In [70℄, this strategy has been used to make a Suessive Over-Relaxation (SOR) appliation adaptive: the alloation of matrix rows is periodiallyhanged to adapt to a hanging load of proessors. Dynami load balaning strate-gies, suh as the CRS used by Satin, or heuristis used for sheduling parameter-sweepappliations in the AppLeS projet [57℄ make the appliation automatially adapt tohanging proessor loads.An alternative way of hanging the appliation behavior is hanging the algorithm.For example, if its resoures beome overloaded, an appliation an start performingthe alulation with lower auray, or if a network bandwidth diminishes, an appli-ation might start transferring pitures in a lower resolution.The strategy of hanging the appliation behavior annot be applied to all types ofappliations. Espeially, the algorithm hange strategy is only suitable for a limitedlass of appliations. Moreover, the algorithm hange strategy is very di�ult toapply automatially by the ompiler or the runtime system. Usually, suh a strategyhas to be expliitly programmed by the appliation programmer.Also, hanging the appliation behaviour might not be su�ient to adapt to ertainhanges in the environment, for example extremely overloaded proessors or networksor rashing proessors. In that ase, the appliation needs to be resheduled on anew set of proessors. Typially, when an appliation needs to be resheduled, a newresoure seletion phase takes plae. Possible resoure sets are re-evaluated and theappliation is migrated to the urrent best set. This strategy is more generi: it an beapplied to any type of appliation, provided that the appliation is migratable and/ormalleable. However, a performane model for the appliation must be available.4.3 Avoiding performane modelsMost of the existing approahes to resoure seletion and adaptation assume that aperformane model of an appliation is available. However, onstruting performanemodels for parallel appliations is an inherently di�ult task. Suh models existfor simple, regular appliations. However, the divide-and-onquer appliations we aredealing with exhibit muh more omplex behavior and we believe that reating perfor-mane models for suh appliations would be an extremely di�ult task. In general,reating performane models requires expertise whih a typial appliation program-mer may not have. Creating suh a model requires not only appliation domainknowledge but also familiarity with omplex parallel and distributed programmingissues.

4.3. AVOIDING PERFORMANCE MODELS 83In this hapter, we desribe an alternative approah to appliation adaptation andresoure seletion. We start an appliation on any set of resoures. Simple heuristisan be used to selet this initial set of resoures (e.g., selet fast proessors ratherthan slow ones) but no performane model is needed. During the appliation run, weollet statistis about the run and use them to estimate the resoure requirementsof the appliation. Our approah does not use any appliation-spei� statistis, butlook at metris that an be applied to any parallel appliation: parallel e�ieny,ommuniation overhead, et. Looking at those parameters we an onlude, for ex-ample, that there is not enough bandwidth in the system, or that there are more nodesthan the appliation degree of parallelism would justify. Next, we re�ne the resoureset the appliation is running on by adding and/or removing ompute nodes. Werepeat this proedure periodially, whih allows us to adapt to hanging onditions.A major advantage of our approah is that it improves appliation performanein many di�erent situations that are typial for grid omputing. It handles all of thefollowing ases:� Automatially adapting the number of proessors to the degree of parallelismin the appliation, even when this degree hanges during the omputation.� Migrating (part of) a omputation away from overloaded resoures.� Removing resoures with poor ommuniation links that slow down the ompu-tation.� Adding new resoures to replae resoures that have rashed.4.3.1 Appliation requirementsWe studied the adaptation problem in the ontext of divide-and-onquer appliations.However, we believe that our methodology an be used for other types of appliationsas well. In this setion we summarize the assumptions about appliations that areimportant to our approah. We also disuss how our approah an be extended todi�erent types of appliations.The �rst assumption we make is that the appliation is malleable, i.e., it is ableto handle proessors joining and leaving the on-going omputation. In hapter 3, weshowed how divide-and-onquer appliations an be made fault tolerant and malleable.Proessors an be added or removed at any point in the omputation with littleoverhead.The seond assumption is that the appliation an e�iently run on proes-sors with di�erent speeds. This an be ahieved by using a dynami load balan-ing strategy, suh as work stealing used by divide-and-onquer appliations [176℄.Also, master-worker appliations typially use dynami load-balaning strategies (e.g.,MW [95℄ desribed in setion 2.2.2). We �nd it a reasonable assumption for a gridappliation, sine appliations for whih the slowest proessor beomes a bottlenekwill not be able to e�iently utilize grid resoures.

84 CHAPTER 4. SELF-ADAPTATIONFinally, the appliation is insensitive to wide-area latenies. Our strategies ouldbe extended to handle lateny-sensitive appliations. However, suh appliations an-not run e�iently on wide-area grids.4.3.2 Resoure modelWe assume the following resoure model. The appliations are running on multiplesites at the same time, where eah site is a luster or superomputer. We also assumethat the proessors of the sites are aessible using a grid sheduling system, suh asKoala [136℄, Zorilla [72℄ or GRMS [23℄. Proessors belonging to one site are loatedon the same LAN. The ommuniation between the proessors on the same site isharaterized by low lateny and high bandwidth. Sites are onneted by a WAN.Communiation between sites su�ers from high latenies. We assume that the linksonneting the sites with the Internet bakbone might beome bottleneks ausingthe inter-site ommuniation to su�er from low bandwidths.4.3.3 Weighted average e�ienyIn traditional parallel omputing, a standard metri desribing the performane of aparallel appliation is parallel e�ieny. E�ieny is de�ned as the average utilizationof the proessors, that is, the fration of time the proessors spend doing useful workrather than being idle or ommuniating with other proessors [74℄.eÆieny = 1n � nXi=0(1� overheadi)where n is the number of proessors and overheadi is the fration of time the ithproessor spends being idle or ommuniating. E�ieny allows alulating the appli-ation speedup whih indiates the bene�t of using multiple proessors in omparisonto using a single proessor. The relationship between the e�ieny and the speedupis expressed by the following formula:eÆieny = speedupnTypially, the e�ieny drops as new proessors are added to the omputation. There-fore, ahieving a high speedup (and thus a low exeution time) and ahieving a highsystem utilization are on�iting goals [74℄. The optimal number of proessors isthe number for whih the ratio of e�ieny to exeution time is maximized. Addingproessors beyond this number yields little bene�t. This number is typially hard to�nd, but in [74℄ it was theoretially proven that if the optimal number of proessorsis used, the e�ieny is at least 50%. Therefore, adding proessors when e�ieny issmaller or equal to 50% will only derease the system utilization without signi�antperformane gains.For heterogeneous environments, that is, environments with proessors with dif-ferent speeds, we extended the notion of e�ieny and introdued weighted averagee�ieny.

4.3. AVOIDING PERFORMANCE MODELS 85wa_eÆieny = 1n � nXi=0 speedi � (1� overheadi)In the above formula, the useful work done by a proessor (1�overheadi) is weightedaverage by multiplying it by the speed of this proessor relative to the fastest proes-sor. The fastest proessor has speed = 1, for others holds: 0 < speed � 1. Therefore,slower proessors are modeled as fast ones that spend a large fration of time beingidle. Weighted average e�ieny re�ets the fat that adding slow proessors yieldsless bene�t than adding fast proessors.In the heterogeneous world, it is hardly bene�ial to add proessors if the e�ienyis lower than 50% unless the added proessor is faster than some of the urrently usedproessors. Adding faster proessors might be bene�ial regardless of the e�ieny.4.3.4 Adaptation oordinatorIn order to monitor the appliation performane and guide the adaptation, we addedan extra proess to the omputation whih we all adaptation oordinator. The adap-tation oordinator periodially ollets performane statistis from the appliationproessors and omputes the weighted average e�ieny. If the weighted average ef-�ieny falls above or below ertain thresholds, the oordinator deides on adding orremoving proessors. A heuristi formula is used to deide whih proessors have tobe removed. During this proess the oordinator learns the appliation requirementsby remembering the harateristis of the removed proessors. Those requirementsare then used to guide the adding of new proessors.4.3.5 Colleting performane statistisEah proessor measures the time it spends ommuniating or being idle. The ompu-tation is divided into monitoring periods. After eah monitoring period the proessorsompute their overhead over this period as the perentage of the time they spent beingidle or ommuniating in this period. Apart from the total overhead, eah proessoralso omputes the overhead of inter-luster and intra-luster ommuniation.In order to be able to alulate weighted average e�ieny, we need to know therelative speeds of the proessors. The speeds of the proessors depend on the applia-tion and the problem size used. Sine it is impratial to run the whole appliation oneah proessor separately, we use appliation-spei� benhmarks. Currently we usethe same appliation with a small problem size as a benhmark and we require the ap-pliation programmer to speify this problem size. The disadvantage of this approahis that it requires extra e�ort from the programmer to �nd the right problem size andpossibly produe input �les orresponding to this problem size, whih might be hard.An alternative solution would be generating benhmarks automatially by hoosing arandom subset of the task graph of the original appliation. For example in �gure 4.1,two branhes (darker nodes) of the exeution tree are used as a benhmark.Benhmarks have to be re-run periodially beause the speed of a proessor mighthange if it beomes overloaded by another appliation (for time-shared mahines).

86 CHAPTER 4. SELF-ADAPTATION

8

32

54 6 7

16 20

10

28

14

21 29

1511

17

9

1

Figure 4.1: A subset of the exeution tree used as a benhmark

4.3. AVOIDING PERFORMANCE MODELS 87Therefore, measuring the speed inurs an overhead. There is learly a trade-o� be-tween the auray of speed measurements and the overhead it inurs. The longer thebenhmark, the greater the auray of the measurement. The more often it is run,the faster hanges in proessor speed are deteted. In our urrent implementation,the appliation programmer spei�es the length of the benhmark (by speifying itsproblem size) and the maximal overhead it is allowed to ause. Proessors run thebenhmark at suh frequeny so as not to exeed the spei�ed overhead. An improve-ment to this approah would be ombining benhmarking with monitoring the loadof the proessor whih would allow us to avoid running the benhmark if no hange inproessor load is deteted. This optimization would further redue the benhmarkingoverhead.Note that the benhmarking overhead ould be avoided ompletely for more reg-ular appliations, for example, for master-worker appliations with tasks of equalor similar size. The proessor speed ould then be measured by ounting the tasksproessed by this proessor within one monitoring period. Unfortunately, divide-and-onquer appliations typially exhibit a very irregular struture. The sizes of tasksan vary by many orders of magnitude.At the end of eah monitoring period, the proessors send the overhead statistisand proessor speeds in this period to the oordinator. The adaptation oordina-tor stores the statistis reeived from the proessors. Periodially, it omputes theweighted average e�ieny and other statistis, suh as average inter-luster overheador overheads in eah luster. The loks of the proessors are not synhronized witheah other or with the lok of the oordinator. Eah proessor deides separatelywhen it is time to send data. Therefore, it happens oasionally that at the end of themonitoring period, the oordinator misses data from a few proessors. In that ase,the oordinator uses data from the previous monitoring period for those proessors.This auses small inauraies in the alulations of the oordinator. In our experi-ments, we did not observe any in�uene of those inauraies on the performane ofadaptation.4.3.6 Adaptation strategyThe adaptation oordinator tries to keep the appliation weighted average e�ienybetween two thresholds: Emin and Emax. When the weighted average e�ienyexeeds Emax, the adaptation oordinator requests new proessors from the sheduler.The number of requested proessors depends on the urrent e�ieny: the higherthe e�ieny, the more proessors are requested. The adaptation oordinator startsremoving proessors when the weighted average e�ieny drops below Emin. Thenumber of nodes that are removed depends on the weighted average e�ieny. Thelower the e�ieny, the more nodes are removed. The thresholds we use are Emax =50%, beause we know that adding proessors when e�ieny is lower does not makesense, and Emin = 30%. E�ieny of 30% or lower might indiate performaneproblems suh as low bandwidth or overloaded proessors. In that ase, removingbad proessors will be bene�ial for the appliation. Suh low e�ieny might alsoindiate that we simply have too many proessors. In that ase, removing some

88 CHAPTER 4. SELF-ADAPTATIONproessors may not be bene�ial but it will not harm the appliation. The adaptationoordinator always tries to remove the `worst' proessors. The `badness' of a proessoris determined by the following formula:pro_badnessi = � � 1speedi + � � i_overheadi + � inWorstCluster(i)The proessor is onsidered bad if it has low speed (1speed is big) and high inter-lusteroverhead (i_overhead). High inter-luster overhead indiates that the bandwidth tothis proessor's luster is insu�ient. Removing proessors loated in a single lusteris desirable sine it dereases the amount of wide-area ommuniation. Therefore, pro-essors belonging to the `worst' luster are preferred. The funtion inWorstCluster(i)returns 1 for proessors belonging to the `worst' luster and 0 otherwise. The `badness'of lusters is omputed similarly to the `badness' of proessors:luster_badnessi = � � 1speedi + � � i_overheadiThe speed of a luster is the sum of proessor speeds normalized to the speed of thefastest luster. The i_overhead of a luster is an average of proessor inter-lusteroverheads. The �, � and oe�ients determine the relative importane of the terms.Those oe�ients are established empirially. Currently we are using the followingvalues: � = 1, � = 100 and = 10, based on the observation that i_overhead > 0:2indiates bandwidth problems and proessors with speed < 0:05 do not ontribute tothe omputation.Additionally, when one of the lusters has an exeptionally high inter-luster over-head (larger than 0.25), we onlude that the bandwidth on the link between thisluster and the Internet bakbone is insu�ient for the appliation. In that ase, wesimply remove the whole luster instead of omputing node badness and removingthe worst nodes. After deiding whih nodes are removed, the adaptation oordina-tor sends a message to those nodes, and the nodes leave the omputation. Figure 4.2shows a shemati view of the adaptation strategy. Dashed lines indiate a part thatis not supported yet, as will be explained below.This simple adaptation strategy allows us to improve appliation performane inseveral situations typial for the Grid:� If an appliation is started on a smaller number of proessors than its degreeof parallelism allows, it will automatially expand to more proessors (as soonas there are extra resoures available). Conversely, if an appliation is startedon more proessors than it an e�iently use, a part of the proessors will bereleased.� If an appliation is running on an appropriate set of resoures but after a whilesome of the resoures (proessors and/or network links) beome overloaded andslow down the omputation, the overloaded resoures will be removed. Afterremoving the overloaded resoures, the weighted average e�ieny will inrease

4.3. AVOIDING PERFORMANCE MODELS 89

Yes

add nodes

faster nodes
available

if
compute weighted
average efficiency Ewa

wait & collect
statistics

rank nodes
remove worst nodes

waE

Ewa

Yes

No

No

above
if

below
if

Emin

maxE

Figure 4.2: Adaptation strategy

90 CHAPTER 4. SELF-ADAPTATIONto above the Emax threshold and the adaptation oordinator will try to addnew resoures. Therefore, the appliation will be migrated from overloadedresoures.� If some of the original resoures hosen by the user are inappropriate for theappliation, for example the bandwidth to one of the lusters is too small, theinappropriate resoures will be removed. If neessary, the adaptation omponentwill try to add other resoures.� If during the omputation a substantial part of the proessors rash, the adapta-tion omponent will try to add new resoures to replae the rashed proessors.� If the appliation degree of parallelism is hanging during the omputation, thenumber of nodes the appliation is running on will be automatially adjusted.4.3.7 Further improvements of the adaptation strategyFurther improvements of our adaptation mehanism are possible, but require extrafuntionality from the grid sheduler and/or integration with monitoring serviessuh as NWS [181℄. For example, adding nodes to a omputation an be improved.Currently, we add any nodes the sheduler gives us. However, it would be moree�ient to ask for the fastest proessors among the available ones. This ould be done,for example, by passing a benhmark to the grid sheduler, so that it an measureproessor speeds in an appliation spei� way. Typially, it would be enough tomeasure the speed of one proessor per site, sine lusters and superomputers areusually homogeneous. An alternative approah would be ranking the proessors basedon parameters suh as lok speed and ahe size. This approah is sometimes usedfor resoure seletion for sequential appliations [102℄. However, it is less auratethan using an appliation spei� benhmark.Also, during appliation exeution, we an learn some appliation requirementsand pass them to the sheduler. One example is the minimal bandwidth required bythe appliation. The lower bound on minimal required bandwidth is tightened eahtime a luster with high inter-luster overhead is removed. The bandwidth betweeneah pair of lusters is estimated during the omputation by measuring data transfertimes, and the bandwidth to the removed luster is set as a minimum. Alternatively,information from a grid monitoring system an be used. Suh bounds an be passed tothe sheduler to avoid adding inappropriate resoures. It is espeially important whenmigrating from resoures that ause performane problems: we have to be areful notto add the resoures we have just removed. Currently we use blaklisting - we simplydo not allow adding resoures we removed before. This means, however, that weannot use those resoures even if the ause of the performane problem disappears,e.g. the bandwidth of a link might improve if the bakground tra� diminishes.We are urrently not able to perform opportunisti migration - migrating to betterresoures when they are disovered. If an appliation runs with e�ieny betweenEmin and Emax, the adaptation omponent will not undertake any ation, even ifbetter resoures beome available. Enabling opportunisti migration requires, again,

4.4. PERFORMANCE EVALUATION 91the ability to speify to the sheduler what `better' resoures are (faster, with aertain minimal bandwidth) and reeiving noti�ations when suh resoures beomeavailable. If that was possible, we ould add those better resoures even when we arerunning at good e�ieny, and trigger removing (part of) the slower resoures we arerunning on.Existing grid shedulers suh as GRAM from the Globus Toolkit [86℄ do not sup-port suh funtionality. The developers of the KOALA metasheduler [136℄ havereently started a projet whose goal is providing support for adaptive appliationsin KOALA. In the future, KOALA will provide the funtionalities required by us tosupport opportunisti migration and to improve the initial resoure seletion.4.3.8 ImplementationWe instrumented the Satin runtime system to ollet runtime statistis and send themto the adaptation oordinator. The oordinator is implemented as a separate proess.For requesting new nodes, the Zorilla [72℄ system, desribed in setion 2.2.1 is used.It allows straightforward alloation of proessors in multiple lusters and/or super-omputers. Zorilla provides loality-aware sheduling. It tries to alloate proessorsthat are loated lose to eah other in terms of ommuniation lateny. In the future,Zorilla will also support bandwidth-aware sheduling, that is, a sheduling strategythat tries to maximize the total bandwidth in the system. Replaing Zorilla with an-other grid sheduler is straightforward. For example, Zorilla ould be replaed withGAT [23℄ or KOALA [136℄.4.4 Performane evaluationIn this setion, we will evaluate our approah. We will demonstrate the performaneof our mehanism in a few senarios typial for grid environments. The �rst senariois an `ideal' situation: the appliation runs on a reasonable set of nodes (i.e., suhthat the e�ieny is around 50%) and no problems suh as overloaded network andproessors, rashing proessors, et., our. This senario allows us to measure theoverhead of the adaptation support. The remaining senarios are typial for gridenvironments and allow us to demonstrate that with our adaptation support theappliation an avoid serious performane bottleneks suh as overloaded proessorsor network links.For eah senario, we ompare the performane of an appliation with adaptationsupport to a non-adaptive version. In the non-adaptive version, the oordinator doesnot ollet statistis and or perform benhmarking (for measuring proessor speeds).In the `ideal' senario, we additionally measure the performane of an appliation witholleting statistis and benhmarking turned on but without allowing it to hangethe number of nodes. This allows us to measure the overhead of benhmarking andolleting statistis. In all experiments we used a monitoring period of 3 minutes (180seonds) for the adaptive versions of the appliations.All the experiments were arried out on multiple lusters of the DAS-2 wide-

92 CHAPTER 4. SELF-ADAPTATION

0

2000

4000

6000

ru
nt

im
e

(s
ec

s.
)

Scenario 0
a b c

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

without monitoring and adaptation (runtime 1)
with monitoring and adaptation (runtime 2)
with monitoring but no adaptation (runtime 3)

Figure 4.3: The runtimes of the Barnes-Hut appliation, senarios 0-5area system (DAS-2 was desribed in setion 3.6). We used the Barnes-Hut N-bodysimulation. This appliation simulates the evolution of an N-body system under thein�uene of fores, for example gravitational or eletrostati fores. The simulationis arried out in disrete time steps (iterations). In eah iteration the veloities of allbodies are omputed and the positions of the bodies are adjusted1.We hose the Barnes-Hut simulation beause it is an iterative appliation. Ob-serving the variability in the iteration duration an give us more insight into theperformane of the appliation under varying grid onditions and the e�etiveness ofadaptation.4.4.1 Senario 0: adaptivity overheadIn this senario, the appliation is started on 36 nodes. The nodes are equally dividedover 3 lusters (12 nodes in eah luster). On this number of nodes, the applia-tion runs with 50% e�ieny, so we onsider it a reasonable number of nodes. Asmentioned above, in this senario we measure three runtimes: the runtime of theappliation without adaptation support (runtime 1), the runtime with adaptationsupport (runtime 2) and the runtime with monitoring (i.e., olletion of statistisand benhmarking) turned on but without allowing it to hange the number of nodes(runtime 3). These runtimes are shown in �gure 4.3, the �rst group of bars. Theomparison between runtime 3 and 1 shows the overhead of adaptation support. Inthis experiment it is around 15%. Almost all overhead omes from benhmarking.The benhmark is run 1-2 times per monitoring period. This overhead an be made1A more detailed desription of the Barnes-Hut appliation an be found in setion 5.6.3.

4.4. PERFORMANCE EVALUATION 93

0 5 10 15

iteration number

0

200

400

600

ite
ra

tio
n

du
ra

tio
n

(s
ec

s.
)

starting on 8 nodes
starting on 16 nodes
starting on 24 nodes
starting on 8 nodes
starting on 16 nodes
starting on 24 nodes

} no adaptation

} with adaptation

Figure 4.4: Barnes-Hut iteration durations with/without adaptation, too few CPUs(Senario 1)
smaller by inreasing the length of the monitoring period and dereasing the benh-marking frequeny. The monitoring period we used (3 minutes) is relatively short,beause the runtime of the appliation was also relatively short (approx. 30 minutes).Using longer running appliations would not allow us to �nish the experimentation ina reasonable time. However, real-world grid appliations typially need hours, daysor even weeks to omplete. For suh appliations, a muh longer monitoring periodan be used and the adaptation overhead an be kept muh lower. For example, withthe Barnes-Hut appliation, if the monitoring period is extended to 10 minutes, theoverhead drops to 6%. Note that ombining benhmarking with monitoring proessorload (as desribed in setion 4.3.5) would redue the benhmarking overhead in thissenario to almost zero: sine the proessor load is not hanging, the benhmarkswould only need to be run at the beginning of the omputation.Note that runtime 2 (with adaptation) is slightly shorter than runtime 3 (withoutadaptation). The reason is that during the run with adaptation turned on, a few nodeswere added to omputation when at some point the measured normalized e�ienydropped slightly below 50%.

94 CHAPTER 4. SELF-ADAPTATION4.4.2 Senario 1: expanding to more nodesIn this senario, the appliation is started on a number of nodes that is smaller thanthe appliation an e�iently use. This may happen beause the user does not knowthe right number of nodes or beause a bigger number of nodes was not availableat the moment the appliation was started. We tried 3 initial numbers of nodes: 8(Senario 1a), 16 (Senario 1b) and 24 (Senario 1). The nodes were loated on 1or 2 lusters. In eah of the three sub-senarios, the appliation gradually expandedto 36-40 nodes loated in 4 lusters. This allowed to redue the appliation runtimesby 50% (Senario 1a), 35% (Senario 1b) and 12% (Senario 1) with respet to thenon-adaptive version. These runtimes are shown in �gure 4.3. Sine Barnes-Hut isan iterative appliation, we also measured the time of eah iteration. These times areshown in �gure 4.4. Adaptation redues the iteration time by a fator of 3 (Senario1a), 1.7 (Senario 1b) and 1.2 (Senario 1) whih allows us to onlude that the gainsin the total runtime would be even bigger if the appliation were run for more than15 iterations.4.4.3 Senario 2: overloaded proessorsIn this senario, we started the appliation on 36 nodes in 3 lusters. After 200 se-onds, we introdued a heavy, arti�ial load on the proessors in one of the lusters.Suh a situation might happen when an appliation with a higher priority is startedon some of our resoures. Figure 4.5 shows the iteration durations of both the adap-tive and non-adaptive versions. After introduing the load, the iteration durationinreased by a fator of 2 to 3. This happened in iteration 2 for the adaptive versionand iteration 3 for the non-adaptive version (sine the iterations in the non-adaptiveversion are slightly shorter). Also, the iteration times beame very variable. Theadaptive version observed a very low weighted average e�ieny (20%) and reatedby removing the overloaded nodes (iteration 3). After removing these nodes, theweighted average e�ieny rose to around 65% whih triggered adding new nodes (it-eration 5) and the appliation expanded bak to 38 nodes. So, the overloaded nodeswere replaed by better nodes, whih brought the iteration duration bak to the initialvalue. This redued the total runtime by 14%. The runtimes are shown in �gure 4.3.4.4.4 Senario 3: overloaded network linkIn this senario, we ran the appliation on 36 nodes in 3 lusters. We simulated thatthe uplink to one of the lusters was overloaded and the bandwidth on this uplinkwas approximately 100 KB/s.To simulate low bandwidth we use the tra�-shaping tehniques desribed in [63℄2.To ahieve the spei�ed sending rate, the sender sleeps an appropriate time betweensending pakets. The sleeping time is alulated as a di�erene between the time thetransmission should have taken if the link had the spei�ed bandwidth and the timethe transmission really took. This is done both on the sending and on the reeiving2We used a tra� shaper implemented by Mathijs den Burger [68℄

4.4. PERFORMANCE EVALUATION 95

0 5 10 15

iteration number

0

200

400

600

800

1000

ite
ra

tio
n

du
ra

tio
n

(s
ec

s.
)

no adaptation
with adaptation

CPU load introduced

overloaded nodes removed

started adding nodes

36 nodes reached

Figure 4.5: Barnes-Hut iteration durations with/without adaptation, overloadedCPUs (Senario 2)side. Care needs to be taken to deal with the oarse granularity of the sleep funtion.More details an be found in [63℄.The iteration durations in this experiment are shown in �gure 4.6. The iterationdurations of the non-adaptive version exhibit enormous variation: from 170 to 890seonds. The adaptive version observed a weighted average e�ieny of 25% and ahighWAN ommuniation overhead in one of the lusters (40%). Therefore it removedthe badly onneted luster after the �rst monitoring period. As a result, the weightedaverage e�ieny rose to around 65% and new nodes were gradually added until theirnumber reahed 38. This brought the iteration times down to around 100 seonds.The total runtime was redued by 60% (�gure 4.3).4.4.5 Senario 4: overloaded proessors and an overloadednetwork linkIn this senario, we ran the appliation on 36 nodes in 3 lusters. Again, we simulatedan overloaded uplink to one of the lusters. Additionally, we simulated proessors withheterogeneous speeds by inserting a relatively light arti�ial load on the proessors inone of the remaining lusters. The iteration durations are shown in �gure 4.7. Again,

96 CHAPTER 4. SELF-ADAPTATION

0 5 10 15

iteration number

0

200

400

600

800

1000

ite
ra

tio
n

du
ra

tio
n

(s
ec

s.
)

no adaptation
with adaptation

one cluster is badly connected

badly connected cluster removed

started adding nodes

36 nodes reached

Figure 4.6: Barnes-Hut iteration durations with/without adaptation, overloaded net-work link (Senario 3)the non-adaptive version exhibits a great variation in iteration durations: from 200to 1150 seonds. The adaptive version removes the badly onneted luster after the�rst monitoring period, whih brings the iteration duration down to 210 seonds onaverage. After removing one of the lusters, sine some of the proessors are slower(approximately 5 times), the weighted average e�ieny rises only to around 35-40%and osilates around those values. At some point it drops slightly below 30% whihtriggers removing 2 of the slower nodes. This example illustrates what the advantagesof opportunisti migration would be. There were faster nodes available in the system.If those nodes were added to the appliation (whih ould trigger removing more ofthe slower nodes) the iteration duration ould be redued even further. Still, theadaptation redued the total runtime by 30% (�gure 4.3).4.4.6 Senario 5: rashing nodesIn the last senario, we also ran the appliation on 36 nodes in 3 lusters. After 500seonds, 2 out of 3 lusters rash. The iteration durations are shown in �gure 4.8.After the rash, the iteration duration rose from a 100 to 200 seond. The weightedaverage e�ieny rose to around 70%, whih triggered adding new nodes in the adap-tive version. The number of nodes gradually went bak to 36, whih brought the

4.5. COMPARISON WITH RELATED WORK 97

0 5 10 15

iteration number

0

200

400

600

800

1000

ite
ra

tio
n

du
ra

tio
n

(s
ec

s.
)

no adaptation
with adaptation

one cluster is badly connected
12 nodes lightly overloaded

removed badly connected cluster

removed 2 lightly overloaded nodes

Figure 4.7: Barnes-Hut iteration durations with/without adaptation, overloadedCPUs and an overloaded network link (Senario 4)iteration duration bak to around 100 seonds. The total runtime was redued by13% (�gure 4.3).4.5 Comparison with related workA number of Grid projets address the question of resoure seletion and adaptation.In most of these projets, resoure seletion and adaptation depend on performanemodels that allow prediting appliation runtime on a given resoure set. The GridAppliation Development System (GrADS) [172℄ uses performane models to seletthe set of resoures with the minimal predited runtime. During the omputation,the appliation performane is monitored using the Autopilot infrastruture [151℄.If the ratio between the predited and the atual appliation performane exeedsa ertain threshold, migration is requested. Upon a migration request, the resoureseletion phase is repeated - possible resoure sets are re-evaluated and if a better setof resoures is found, migration is onsidered. A distinguishing feature of the GrADSenvironment is that it takes into aount the remaining exeution time of the appli-ation when onsidering migration. Migration is performed only when the preditedremaining exeution time on the new set of resoures plus the worst ase migration

98 CHAPTER 4. SELF-ADAPTATION

0 5 10 15

iteration number

0

200

400

600

800

1000

ite
ra

tio
n

du
ra

tio
n

(s
ec

s.
)

no adaptation
with adaptation

2 out of 3 clusters crash

started adding nodes

36 nodes reached

Figure 4.8: Barnes-Hut iteration durations with/without adaptation, rashing CPUs(Senario 5)time is smaller than the predited remaining exeution time on the urrent set ofresoures. This approah allows to avoid ostly migrations when the appliation islose to ompletion. GrADS also supports opportunisti migration. If some otherappliation has reently ompleted, the GrADS resheduler determines whether per-formane bene�ts an be obtained for a urrently exeuting appliation by migratingit to use the resoures freed by the ompleted appliation.The main di�erene between the GrADS environment and our approah is the useof performane models. The main advantage is that one the performane model isknown, the system is able to take more aurate migration deisions than with ourapproah. However, even if the performane model is known, the problem of �ndingan optimal resoure set (i.e. the resoure set with the minimal exeution time) is NP-omplete. Currently, GrADS examine only a subset of all possible resoure sets andtherefore there is no guarantee that the resulting resoure set will be optimal. As thenumber of available grid resoures inreases, the auray of this approah diminishes,as the subset of possible resoure sets that an be examined in a reasonable timebeomes smaller.Unlike GrADS we are not able to predit the remaining exeution time and takeit into aount when deiding on adaptation. For divide-and-onquer this is of lit-

4.5. COMPARISON WITH RELATED WORK 99tle importane, however, sine adding and removing resoures to divide-and-onqueromputations has small overhead. GrADS supports opportunisti migration while ourimplementation urrently does not. However, we plan to add support for opportunis-ti migration in the future. Finally, GrADS is suitable for iterative MPI appliationswhile we are targeting at divide-and-onquer appliations.Catus is a Grid-enabled omputational framework for the onstrution of parallelsolvers for partial di�erential equations. Catus is suitable only for single-site (super-omputer or luster) appliations. No performane model is used. The available sitesare ranked and the site with the highest rank is seleted for exeution. The rank ofa site is its number of proessors multiplied by the proessor speed. The appliationan be migrated if a higher-ranked site is disovered or a performane degradationis observed. The appliation performane is expressed as the number of appliationiterations per seond. The main di�erene between the Catus methodology and ourapproah is that Catus is suitable for single-site appliations. For suh appliations,the omplexity of the resoure seletion and adaptation problems is many orders ofmagnitude smaller than for multi-site appliations: the set of possible resoure setsis muh smaller, the bandwidth between the sites does not have to be taken into a-ount et. Moreover, resoure seletion based on lok speed is not always aurate.Finally, performane degradation detetion is suitable only for iterative appliationsand annot be used for irregular omputations suh as searh and optimization prob-lems. We use performane degradation detetion based on weighted average e�ienywhih an be applied to any parallel appliation.The GridWay framework [102℄ has many similarities with the Catus approah.It is targeted at sequential appliations. In the resoure seletion phase, not only thespeed of a andidate host but also its proximity to the appliation �les, hekpoint�les and the urrent host (in ase of migration) is taken into aount. Migrationis performed when a better host is disovered or when performane degradation isdeteted. The appliation performane an be measured, for example, by ounting thenumber of appliation iterations per seond. The main di�erenes with our approahare that we target multi-luster, parallel appliations while GridWay supports onlysequential ones. Also, GridWay's performane degradation method is suitable onlyfor iterative appliations.The resoure seletion problem was also studied by the AppLeS projet [37℄. Inthe ontext of this projet, a number of appliations were studied and performanemodels for those appliations were reated. Based on suh a model a sheduling agentis built that uses the performane model to selet the best resoure set and the bestappliation shedule on this set. AppLeS sheduling agents are written on ase-by-ase basis and annot be reused for another appliation. Two reusable templates werealso developed for spei� lasses of appliations, namely master-worker (AMWATtemplate) and parameter sweep (APST template) appliations. Migration is notsupported by the AppLeS software.In [100℄, the problem of sheduling iterative master-worker appliations is stud-ied. The authors assume homogeneous proessors (i.e., with the same speed) anddo not take ommuniation osts into aount. Therefore, the problem is redued to�nding the right number of workers. The approah here is similar to ours in that

100 CHAPTER 4. SELF-ADAPTATIONno performane model is used. Instead, the system tries to dedue the appliationrequirements at runtime and adjusts the number of workers to approah the idealnumber. The adjustment is done on a per-iteration basis: the observations from theprevious iteration are used to adjust the number of workers for the following itera-tion. Our approah supports a muh wider variety of senarios, i.e., heterogeneousnode and network speeds. Also, our approah does not assume that the appliationis iterative.Aldinui et al. [19℄ present an abstrat model of ativities that need to be per-formed in order to handle adaptivity in distributed appliations. They apply thismodel to the ASSIST framework for reating high-level, omponent-based applia-tions. An ASSIST appliation onsists of multiple modules whih an themselves beparallel programs. It is possible to speify a Quality of Servie ontrat for eah mod-ule or for the whole appliation (similar to performane ontrats in GrADS). If suha QoS ontrat is violated, adaptation is performed. The adaptation strategy for aomponent is based on the performane model of this omponent. ASSIST an auto-matially provide performane models for omponents that have a master-worker ora data-parallel struture. For other types of omponents, a performane model mustbe provided by the user.4.6 ConlusionIn this hapter, we investigated the problem of resoure seletion and adaptation ingrid environments. Existing approahes to those problems typially assume the exis-tene of a performane model that allows prediting appliation runtimes on varioussets of resoures. However, reating performane models is inherently di�ult andrequires knowledge about the appliation.We proposed an approah that does not require in-depth knowledge about theappliation. We start the appliation on an arbitrary set of resoures and monitorits performane. The performane monitoring allows us to learn ertain appliationrequirements suh as the number of proessors needed by the appliation or the ap-pliation's bandwidth requirements. We use this knowledge to gradually re�ne theresoure set by removing inadequate nodes or adding new nodes if neessary. Thisapproah does not result in the optimal resoure set, but in a reasonable resoure set,i.e. a set free from various performane bottleneks suh as slow network onnetionsor overloaded proessors. Our approah also allows the appliation to adapt to thehanging grid onditions.We implemented this approah in the Satin framework. We added an extra proessalled the adaptation oordinator, whih ollets the runtime statistis (i.e. the idletime, the loal and wide-area ommuniation time) and deides on adding or removingnodes. The deisions are based on the weighted average e�ieny � an extension of theonept of parallel e�ieny de�ned for traditional, homogeneous parallel mahines. Ifthe weighted average e�ieny drops below a ertain level, the adaptation oordinatorstarts removing `worst' nodes. The `badness' of the nodes is de�ned by a heuristiformula. If the weighted average e�ieny raises above a ertain level, new nodes are

4.6. CONCLUSION 101added.This simple strategy allows us to handle multiple senarios typial for grid envi-ronments: expand to a bigger number of nodes or shrink to a smaller number of nodesif the appliation was started on an inappropriate number of proessors, remove in-adequate nodes and replae them with better ones, replae rashed proessors, avoidslow networks, et. The appliation adapts fully automatially to hanging onditions.We tested our approah on the DAS-2 distributed superomputer and demonstratethat our approah an yield signi�ant performane improvements (up to 60% in ourexperiments).Future work will involve extending our adaptation strategy to support oppor-tunisti migration. This, however, requires grid shedulers with more sophistiatedfuntionality than the funtionality of the existing shedulers. Further researh is alsoneeded to derease the benhmarking overhead. For example, the information aboutCPU load ould be used to derease the benhmarking frequeny. Another line ofresearh that may be investigated is using feedbak ontrol to re�ne the adaptationstrategy during the appliation run. For example, the node `badness' formula ouldbe re�ned at runtime based on the e�etiveness of the previous adaptation deisions.Finally, the entralized implementation of the adaptation oordinator might beomea bottlenek for appliations whih are running on very large numbers of nodes (hun-dreds or thousands). This problem an be solved by implementing a hierarhy ofoordinators: one sub-oordinator per luster whih ollets and proesses statistisfrom its luster and one main oordinator whih ollets the information from thesub-oordinators.

102 CHAPTER 4. SELF-ADAPTATION

Chapter 5Data sharing in dynamienvironments5.1 IntrodutionAn important disadvantage of the divide-and-onquer paradigm is its limited ap-pliability due to the lak of global state. The only way of sharing data betweendivide-and-onquer tasks is by expliit parameter passing. This model is insu�ientfor many appliations [107℄. One lass of suh appliations onsists of programs thatpass large data strutures as parameters. With pure divide-and-onquer, those largeparameters need to be opied eah time a task is exeuted remotely, while opying theparameters one and reusing them later would be more e�ient. Another lass of ap-pliations onsists of programs whih need to share data between independent tasks.In pure divide-and-onquer, this form of data sharing is not possible. Branh-and-bound appliations belong to this lass. Sharing the best known solution between allthe proessors taking part in the omputation allows pruning large parts of the searhtrees. Another example is game-tree searh where a transposition table is shared toavoid evaluating the same position twie.In this hapter, we will extend the divide-and-onquer model with a shared dataabstration � shared objets. We will all the extended model divide-and-share. Im-plementing a shared data abstration in a distributed system is a hallenging problem.Providing a strong form of onsisteny (e.g., sequential onsisteny [119℄) while main-taining high performane is infeasible even on tightly onneted systems like lustersof workstations. In grid environments this problem is even harder. One problem isthe high wide-area latenies. Another problem is that grids are inherently dynami.The set of proessors on whih the appliation is running onstantly hanges. Mostonsisteny protools have been designed with a �xed set of proessors in mind. Dy-nami proessor sets make onsisteny more ompliated and expensive and thereforeimpratial for grid environments.Many relaxed onsisteny models have been proposed (e.g., ausal onsisteny [104℄,

104 CHAPTER 5. DATA SHARING IN DYNAMIC ENVIRONMENTSDAG-onsisteny [45℄), but none of them are suitable for grid-enabled divide-and-onquer grid appliations, as they are either too expensive to implement in grid en-vironments, or do not �t the needs of our appliations.Therefore, we designed a new, relaxed onsisteny model, whih we all guardonsisteny. A programmer an de�ne the onsisteny requirements of an appliationby means of guard funtions. A guard funtion is assoiated with a divide-and-onquertask and de�nes whether the shared objets aessed by this task are in a onsistentstate. The runtime system allows the replias to beome inonsistent as long as theguards are satis�ed. If a guard is not satis�ed, the runtime system brings the loalreplias into a orret state.The rest of this hapter is strutured as follows. In setion 5.2, we present bak-ground information on data sharing. In setion 5.3, we desribe the shared objetsmodel. In setion 5.4, we desribe the shared objets API and illustrate it with a num-ber of ode examples. In setion 5.5, we desribe the implementation of the sharedobjets model. In setion 5.6, we disuss our experienes with programming applia-tions with the new model. In setion 5.7, we evaluate the performane of our model,and in setion 5.8, we ompare it with related work. We onlude in setion 5.9.5.2 BakgroundShared data is an attrative model for expressing ommuniation and synhronizationin distributed appliations. It is at a higher level of abstration than expliit messagepassing and therefore signi�antly simpli�es programming and debugging distributedappliations. In this setion, we will present bakground information on data sharingin distributed systems. We will disuss di�erent programming models using the shareddata abstration: Shared Virtual Memory, shared objet models and distributed tuplespae models. Next, we will disuss the algorithms used to implement shared dataabstrations. Finally, we will disuss the problem of shared data onsisteny andreview a number of onsisteny models.5.2.1 Shared data paradigmsData sharing paradigms an be roughly divided into two ategories: unstrutured andstrutured paradigms [122℄. Unstrutured paradigms present the programmer with a�at address spae similar to how the atual physial memory is seen by appliations.With strutured paradigms, the shared data is organized into user-de�ned abstratdata strutures. In this setion we will desribe both the unstrutured (the SharedVirtual Memory) and strutured approahes (shared objets and tuple spaes). Thelassi�ation of shared data paradigms is shown in �gure 5.1.Shared Virtual MemoryShared Virtual Memory (SVM) [123℄ simulates a real physial shared memory: theproesses have an illusion of seeing a single shared address spae. Proesses an aessthe shared memory using simple read, write and lok operations.

5.2. BACKGROUND 105
unstructured structured

Shared
Virtual
Memory

shared
objects

tuple
space

paradigms
data sharing

Figure 5.1: Data sharing paradigmsThe address spae of a SVM is partitioned into pages (bloks, segments). Whena proessor tries to aess a page whih is not present in its physial memory, theoperating system or runtime system fethes the page from a remote proessor andstores a opy of the page in the loal memory.The granularity of data sharing, that is the size of the page, varies in di�erentsystems. In some systems the unit of sharing is a multiple of the hardware page size(Ivy [123℄), in others the unit of sharing is muh smaller, for example 32 bytes (Mem-net [67℄). The hoie of the granularity an have a large impat on the performaneof the system. If the granularity is too small, many page transfers might our withina short period. However, if the granularity is large, the probability of false sharinginreases. False sharing ours when two variables used by two di�erent proesses arealloated on one page. In this ase, the page will be onstantly moved between thetwo proesses even though the variables are not shared. This problem results fromthe fat that the struture of the shared memory does not re�et the struture of theappliation. Therefore, Shared Virtual Memory is alled an unstrutured DistributedShared Memory (DSM) [122℄.Ivy [123℄ was the �rst implementation of Shared Virtual Memory. Later, manyother systems were implemented, for example Memnet [67℄, Mirage [84℄, Plus [42℄,Shiva [125℄, TreadMarks [113℄, Mether [135℄, Mermera [98℄, Munin [36℄ et. (see [140℄for a detailed overview of a part of those systems). Shared Virtual Memory systemswere targeted at tightly-oupled systems, suh as multiomputers or small networksof workstations (typially 8 nodes, in some ases up to 64).To avoid the mismath between the struture of the appliation and of the shareddata, strutured shared data models were introdued [122℄. In strutured data models,the shared data appears to the appliation as a set of user-de�ned data strutures.In the following setions, we will desribe two strutured approahes to data sharing:shared objets and tuple spaes.

106 CHAPTER 5. DATA SHARING IN DYNAMIC ENVIRONMENTSShared objetsStrutured approahes to data sharing allow tailoring the granularity of data sharingto the appliation needs. Many suh systems use the onept of a shared data-objetor a shared objet. Shared objets enapsulate shared data. They are user-de�nedabstrat data strutures that an be aessed by user-de�ned operations.Enapsulating shared data into objets has many advantages. Sharing granularitydepends on the appliation struture, as the unit of data sharing is a shared ob-jet instead of a page. This exludes the possibility of false sharing. Shared datais aessed using high-level, omposite operations rather than low-level read/writeoperations, whih redues the ommuniation overhead. Finally, shared objets allowsynhronizing aesses to the shared data. The runtime system an take are that thehigh-level operations are exeuted indivisibly. This simpli�es the programming taskas the programmer does not need to use semaphores or loks [31℄.Many Distributed Shared Memory systems based on the shared objet model havebeen implemented. Some examples inlude: Ora [31℄, CRL [116℄, DiSOM [58℄, Am-ber [59℄, SAM [153℄, Agora [41℄, Clouds [148℄, GARF [147℄, Emerald [109℄, RepMI [130℄and many others.Tuple spaeAnother strutured approah to data sharing is the onept of a tuple spae. Thisonept was �rst introdued in the parallel language Linda [18℄. Tuple spae is adistributed datastruture, that is a datastruture that an be modi�ed by multipleproesses. A tuple spae onsists of tuples � ordered sequenes of values. There arethree operations that an be performed on tuples: out, in and read. Out adds atuple to the tuple spae. In reads a tuple and removes it from the tuple spae. Readreads a tuple without removing it from the tuple spae. Tuple spae is an assoiativememory, meaning that the tuples do not have addresses but they are denoted by thevalues they ontain.Tuples residing in the tuple spae are immutable. The only way of modifying atuple is by taking it out of the tuple spae, modifying it in the loal memory of aproessor and putting it bak into the tuple spae. This provides a natural way ofserializing operations on the tuple spae: if two or more proesses want to modify thesame tuple, only one proess will sueed in taking the tuple out of the tuple spae.The remaining proesses will blok until the �rst proess �nishes its modi�ationsand puts the tuple bak in the tuple spae. However, this model might be ine�ientif tuples ontain large amounts of data, as in that ase the whole tuple needs to besent bak and forth.Many implementations of tuple spaes have been developed. Besides the im-plementation in the Linda programming language, implementations for Java (Java-Spaes [87℄ and TSpaes [121℄), Smalltalk [132℄ and SML [156℄ exist.

5.2. BACKGROUND 107

Orca, RepMI

shipping

function
shipping

static
owner

migrating
ownership

single−writer
(primary−copy)

multiple−reader
(replication)

single−reader

multiple−writer

Munin Munin

Ivy, Linda,
CRL

Ivy TreadMarksdata

Figure 5.2: Algorithms implementing data sharing5.2.2 Algorithms implementing data sharingIn this setion, we will disuss a number of algorithms implementing shared data ab-strations. Suh algorithms an be divided in three ategories: single-reader/single-writer, multiple-readers/single-writer and multiple-readers/multiple-writers 1 [146℄ (asimilar lassi�ation an be found in [161℄). In the single-reader/single-writer proto-ols, only one opy of eah data item exists in the system. In the multiple-reader/*protools, the data items are repliated, i.e. they exist in multiple opies. An overviewof the algorithms disussed in this setion and example systems using those algorithmsare shown in �gure 5.2.In the single-reader/single-writer type algorithms, only one proessor at a time hasa opy of the data. We all suh a proess the owner of the data. It an be a statimanager proess (i.e., the owner of the data does not hange during the omputation)or the data might be migrated between the proesses.With the stati manager approah, all operations on the shared data are for-warded to the manager whih applies the operations on the data and sends bak theresults. This approah has two major drawbaks. First, eah operation on the dataperformed by a proess other than the manager requires ommuniation over the net-work. Therefore, this approah is suitable only for tightly-oupled systems with lownetwork latenies or for appliations whih aess shared data infrequently. Another1The */single-writer algorithms are also known as primary-opy algorithms

108 CHAPTER 5. DATA SHARING IN DYNAMIC ENVIRONMENTSdrawbak of the entral manager approah is the fat the manager will beome abottlenek if aess to data is performed frequently. This problem an be alleviatedby partitioning the data and assigning a di�erent manager to eah partition.With data-migration, data is migrated to the proessor that needs to aess thisdata. The advantage of this approah over the previous one is that when the memoryaesses exhibit good loality, only the �rst in a series of aesses requires networkommuniation. Subsequent memory aesses an be performed loally. However,this algorithm is suseptible to thrashing : if two proesses aess the same data itemor data items on the same memory page, the data will be transferred bak and forthbetween the two proessors. Finding the previous owner of a ertain data item torequest migration is also an issue. This an be done by broadasting a migrationrequest to all proessors. An alternative solution is maintaining a manager proesswhih keeps trak of the data loations.An important problem in all single-reader/single-writer algorithms is the inherentlak of fault tolerane. Sine only one version of eah data item exists in the system,if the proessor owning this data item rashes, the data is lost. Another problem isthat these algorithms an severely limit parallelism as only a single proess at a timean aess shared data.When multiple proessors need to aess the same data at the same time, repli-ation an improve the system performane. When data is repliated on multiplehosts, read operations an be performed loally and are therefore very e�ient. How-ever, write operations beome more expensive. Therefore, repliation is a good designhoie if the read/write ratio in the appliation is relatively large.When one of the replias is modi�ed, other replias an be either invalidated (i.e.removed) or updated. Updating an be done either by data-shipping, that is sendingthe new value of the data item (page, objet, depending on the sharing granularity)to all replias, or by funtion shipping, that is forwarding the operation that modi�esthe data to all replias and applying this operation on eah replia.The data might be either fully or partially repliated. In the �rst ase, eahproessor taking part in the omputation has a opy of the data, regardless of whetherit ever aesses it or not. In the seond ase, only part of the proessors have a opy ofthe data. One option is to reate a replia on a ertain proessor when it �rst aessesa ertain shared data item. Another option is to reate replias on proessors thatfrequently read ertain data items [31℄. Partial repliation saves resoures � memoryneeded to store replias and network bandwidth needed to update/invalidate thosereplias. However, it often requires omplex administration protools that keep trakof whih data is repliated on whih proessors. This problem beomes partiularlydi�ult in dynami systems, where proessors an join or leave the omputation atany time.The repliation protools ome in two basi variants: multiple-readers/single-writer and multiple-readers/multiple-writers. With the single-writer variant, onlyone proess at a time has a write-aess to the data. Again, we all this proess theowner of the data. All write requests must be forwarded to the owner. The ownerupdates its loal opy and invalidates or updates other replias. This operation mustbe performed indivisibly. The owner an be either the same proess throughout the

5.2. BACKGROUND 109whole omputation, or the ownership an migrate to a proess that wants to performa write operation. In variants of this protool, di�erent data items (pages, objets)might have di�erent owners.The multiple-readers/single-writer repliation algorithms have a higher degree offault tolerane than the single-reader/single-writer approahes. If one replia of thedata rashes, the data might still be available at other replias. However, if the ownerof ertain data rashes, a speial reovery phase is needed before any of the remainingproessors an perform write operations on this data.With the multiple-writers variant, eah proess might perform write operationson its replia of the data. After updating the loal replia, the updates are forwardedto other replias. This, however, introdues the inonsisteny problem: di�erentproessors might see di�erent versions of the same shared data. The system musttake are that the updates are applied in the proper order. This order depends on theonsisteny model supported by the given Distributed Shared Memory system. Anoverview of onsisteny models will be given in the following setion.The multiple-writer repliation algorithm also has a higher degree of fault toler-ane than the entral and migrating manager approahes. However, the possibility ofrashes and the dynami harateristis of the underlying platform introdue a di�-ult problem: if a proessor rashes while performing an update, the update mightbe forwarded to only a part of the remaining proessors whih results in inonsistentdata. If a proessor joins the omputation while another proessor is updating thedata, it may miss the updates performed by this proessor. This problem is knownas the atomi multiast problem. Atomi multiast is non-trivial to implement [165℄.5.2.3 Consisteny modelsA onsisteny model spei�es the behavior of the memory subsystem. Ideally, dis-tributed shared memory on a parallel mahine should exhibit behavior idential tothat of memory on a sequential mahine. The onsisteny model observed by sequen-tial mahines is known as strit onsisteny and states that:Any read on a data item x returns a value orresponding to the resultof the most reent write on x [165℄.Implementing strit onsisteny in distributed systems, however, is impossibledue to the lak of absolute global time on whih the de�nition of `most reent' de-pends [165℄. Therefore, more relaxed onsisteny models have been designed whihprovide shared data semantis very lose to those of a sequential mahine, but arestill possible to implement: sequential onsisteny [119℄ and linearizability [99℄. Eventhough possible to implement, those models were still hard to implement e�iently,espeially in wide-area systems. Therefore, weaker onsisteny models allowing moree�ient implementations have been proposed. In this setion, we desribe sequentialonsisteny, linearizability and a number of weaker models.Traditionally, onsisteny models have been de�ned in terms of proessors op-erating on memory. In this setion, we disuss a di�erent way of speifying mem-ory onsisteny models: omputation-entri onsisteny models. We also disuss

110 CHAPTER 5. DATA SHARING IN DYNAMIC ENVIRONMENTSDAG-onsisteny � a omputation-entri model designed spei�ally for divide-and-onquer appliations.None of the many existing onsisteny models an meet the needs of all applia-tions � onsisteny requirements are di�erent for di�erent appliations or even di�er-ent data items within one appliation. The idea of tailoring onsisteny to the appli-ation needs in order to improve performane was �rst proposed by David Cheritonin 1986 [62℄. Sine then, many systems with multiple onsisteny models have beenimplemented. We provide an overview of suh systems in this setion.Finally, we disuss ontinuous onsisteny models, whih allow the programmerto quantify the amount of inonsisteny the appliation an tolerate. These modelsprovide another way of ustomizing onsisteny to the appliation requirements.Traditional onsisteny modelsThe most popular onsisteny model is sequential onsisteny de�ned by Lamportin [119℄. Sequential onsisteny states that all proessors see the operations on datain the same sequential order and the operations by eah proess appear in this se-quene in the order spei�ed by this proess' program. Sequential onsisteny loselyresembles the semantis of a sequential data store and is therefore easy to use. Ithas been implemented in early Distributed Shared Memory systems [123℄. However,sequential onsisteny has a problem of poor performane, espeially in wide-areasystems.Linearizability [99℄ (also known as atomi onsisteny) is stronger than sequentialonsisteny. It assumes that all operations on data reeive a timestamp using aglobal lok with a �nite preision (thus not an absolute lok as in strit onsisteny;a Lamport lok [118℄ an be used for this purpose). Linearizability extends theonditions of sequential onsisteny with the requirement that if the timestamp of anoperation is smaller than the timestamp of another operation, the former operationshould preede the latter operation in the operation sequene seen by the proesses.Linearizability is even more expensive to implement than sequential onsisteny [28℄.Causal onsisteny [104℄ is based on the notion of potential ausality introdued byLamport in [118℄. Under ausal onsisteny, all proessors must agree on the order ofoperations that are ausally related. Causally unrelated (onurrent) operations anbe seen in di�erent orders by di�erent proesses. Causal onsisteny is relatively hardto implement. It requires keeping trak of whih proesses has seen whih operations.This an be done using vetor timestamps [82, 133℄. However, vetor-timestamp basedprotools require large datastrutures when large numbers of proessors are used.Additionally, support for proessors dynamially joining and leaving the omputationmakes suh protools very omplex [105℄.Under PRAM onsisteny [127℄, operations performed by a single proess must beseen by all proessors in the order they were performed, while operations performedby di�erent proesses an be seen in arbitrary order. PRAM onsisteny an beimplemented e�iently in multiproessor systems beause operations an be pipelined(hene the name: PRAM � Pipelined Random Aess Memory). However, in dynamisystems the implementation beomes more omplex, sine speial are needs to be

5.2. BACKGROUND 111taken that updates are not lost or dupliated when proessors are joining or leavingthe omputation.Cahe onsisteny [94℄ (or oherene [91℄) is a relaxation of sequential onsisteny.Under ahe onsisteny, operations on eah memory loation have to be sequentiallyonsistent, as opposed to all operations. Proessor onsisteny [94, 17℄ is a ombi-nation of PRAM and ahe onsisteny: proessors might disagree on the order ofoperations if and only if the operations were performed by di�erent proessors andoperate on di�erent memory loations. Operations issued by a single proessor mustbe seen in the order imposed by this proessor's program. Slow memory [127℄ is aweaker version of PRAM onsisteny. It requires that operations on a single memoryloation performed by a single proessor are seen by all proessors in the same order.All onsisteny models desribed so far enfore a spei� order of individual op-erations on the shared data. However, suh models might be too restritive and tooine�ient for many appliations. Weak onsisteny [73℄, release onsisteny [91℄ andentry onsisteny [38℄ allow the programmer to group the operations on the shareddata and enfore ordering between the groups of operations rather than between indi-vidual operations [165℄. This is done by introduing synhronization variables. Weakonsisteny introdues one type of operation on synhronization variables: synhro-nize(var). On invoking this operation, the shared data is synhronized: that is, allloal operations performed by the invoking proess are propagated to other proessesand all operations performed by other proesses are applied to the loal opy of the in-voking proess. Aesses to synhronization variables are sequentially onsistent. Re-lease onsisteny distinguishes two types of synhronization operations: aquire(var)and release(var). On aquire, all operations performed by loal proesses are appliedto the loal opy. On release, loal operations are forwarded to other proesses. Entryonsisteny di�ers from release onsisteny in that it requires that eah shared dataitem is assoiated with a synhronization variable. On aquire or release, only dataitems assoiated with the synhronization variable are synhronized.Computation-entri onsisteny modelsWhile traditional onsisteny models are proessor-entri, that is, are expressed interms of proessors operating on a memory, omputation-entri memory models areexpressed in terms of tasks (threads) operating on a memory [89℄. Computation-entri spei�ation abstrats away the way tasks are mapped to physial proessorsand is therefore espeially suitable for omputations is whih tasks are dynamiallymapped onto available proessors. Computation is modeled as a direted ayligraph (DAG) in whih verties represent tasks and edges represent data-dependeniesbetween tasks.The omputation entri approah makes it possible to express a number of in-teresting onsisteny models. One suh model is DAG-onsisteny [45℄ � a onsis-teny model designed espeially for divide-and-onquer appliations. Under DAG-onsisteny, tasks may see operations on shared data in di�erent orders but eah ofthose orders must be onsistent with the dependenies enfored by the omputationDAG. Informally, in divide-and-onquer terms DAG-onsisteny an be de�ned re-

112 CHAPTER 5. DATA SHARING IN DYNAMIC ENVIRONMENTSursively in the following way: a task must see all writes its parent must have seen,plus the writes issued by the parent. A task may, but does not have to, see the writesissued by its siblings. A formal de�nition of DAG-onsisteny an be found in [45℄.DAG-onsisteny has been implemented in the Cilk divide-and-onquer frame-work [46℄ using the Baker algorithm [45℄ whih performs well on a tightly oupledmahine like the CM-5, but is not suitable for wide-area systems. Moreover, Cilk'sshared memory was developed for pure divide-and-onquer appliations whih uselarge data strutures, and not for appliations that need to share data between sib-ling tasks (suh as branh-and-bound omputations). With the Baker algorithm,updates of shared data are passed only along the edges of the exeution tree, but notto sibling tasks. Only sibling tasks that exeute on the same mahine an see eahother's updates. Therefore Cilk's shared memory is unsuitable for appliations suhas branh-and-bound algorithms or game-tree searh.Mixed onsisteny modelsOne way of tailoring the onsisteny riteria to the appliation needs is proposingmultiple onsisteny models to hoose from and/or ombine. In suh systems, the pro-grammer an hoose the onsisteny level on per-appliation, per-objet, per-repliaor per-aess basis.Hybrid onsisteny [88℄, mixed onsisteny [16℄ and Mether [135℄ allow the pro-grammer to ombine two onsisteny models. Hybrid onsisteny allows for strongand weak operations. Di�erent levels of onsisteny an be mixed within one appli-ation, but aesses to the same data item must be of the same onsisteny level.Strong operations appear to be exeuted in some sequential order. Operations in-voked by the same proess of whih one is strong appear to be exeuted in the orderthey were invoked. Agrawal et al. [16℄ desribe mixed onsisteny in whih ausal andPRAM memories are ombined. In this model, reads are labeled as ausal or PRAM.In Mether [135℄, memory an be aessed in two modes: read-write mode (stronglyonsistent) and read-only mode (weakly onsistent). This is spei�ed when a proessmaps a shared memory segment into its address spae. The programmer an hooseto enfore onsisteny at any point in the program.The designers of Mermera [98℄ argue that more levels of onsisteny are neededin order to better tune the system to the needs of appliations. Mermera allows theprogrammer to hoose from four types of memory semantis: sequentially onsistent,PRAM, slow and loal. Loal onsisteny is a very weak onsisteny riterion wherewrites only have to be visible to the proess that performed those writes. The on-sisteny level is spei�ed on per aess basis: memory writes are labeled with theironsisteny level. Reads are not labeled, and the semantis of eah read is the same:the loal opy of an objet is returned. Di�erent onsisteny levels an be mixedwithin one appliation and aesses to one objet an have di�erent onsisteny lev-els. The semantis of suh mixed aesses is as follows: sequential writes are totallyordered and this order is onsistent with eah proess' program and with the infor-mation �ow through weaker writes. PRAM writes and sequential writes satisfy thePRAM order, that is the order onsistent with eah proess' program. Slow, PRAM

5.2. BACKGROUND 113and sequential writes satisfy Slow onsisteny. Loal, slow, PRAM and sequentialwrites satisfy loal onsisteny. Maya [15℄ also supports four onsisteny models: se-quentially onsistent, ausal, PRAM and entry onsisteny [38℄. Contrary to othersystems, however, Maya does not allow mixing onsisteny models. The programmermust hoose one onsisteny riterion for the whole appliation.GARF [147℄ is an objet-oriented framework whih supports �ve onsisteny mod-els: slow, PRAM, ausal, sequential and linearizability. With GARF, the programmer�rst desribes appliation funtionalities using passive data objets. This is done in aentralized and sequential environment. The next step is adapting the appliation tothe distributed environment. Data objets are dynamially bound to enapsulator ob-jets whih ontrol how data objets send and reeive invoations, and mailer objetswhih ontrol the ommuniation between enapsulators. GARF provides a libraryof enapsulator and mailer objets. Enapsulator objets for handling asynhrony(asynhronous invoations), onurreny ontrol and repliation (ative and passive)are provided. Among mailer lasses provided by GARF, some represent onsistenyriteria � those are the lasses extending the Mast (multiast) lass. GARF sup-ports the following types of multiast: slow, PRAM, ausal, atomi, sequential andCAtomi (whih orresponds to linearizability).Continuous onsisteny modelsIn some systems, onsisteny requirements are expressed as the maximal allowed dis-tane between the result observed (read) by the appliation and the ideal result � theresult that would be observed with strong onsisteny (e.g. sequential onsisteny).This approah is alled ontinuous onsisteny [186℄, beause it explores the ontin-uum between strong onsisteny, where the di�erene between the observed and idealresult is zero, and optimisti onsisteny, where this di�erene is unbounded.With N-ignorant transations [117℄, the number of updates missed by a replia isbounded � N is a user-de�ned parameter and an N-ignorant transation is a transa-tion that may be ignorant of the results of at most N prior transations.With quasi-opies [24℄ the appliation programmer an de�ne how muh a se-ondary opy, alled a quasi-opy in this ontext, an diverge from the primary opy.The programmer an hoose from three types of onsisteny onditions: delay ondi-tion spei�es how muh time the quasi-opy an lag behind the primary opy. Versionondition de�nes how many updates the quasi-opy an miss. This riterion is similarto the N parameter in N-ignorant transations. Arithmeti ondition spei�es howmuh the numerial values of the quasi-opy and the primary-opy an di�er (forobjets with numerial values).Beehive [158℄ introdues delta onsisteny � a onsisteny riterion similar to thedelay ondition of quasi opies. With delta onsisteny a read returns a value thatwas produed at most delta time units preeding the read. Delta is an appliation-spei�ed parameter.Timed onsisteny [170℄ requires that if the time of a write is t, the value written bythis operation must be visible to all sites in the distributed system by time t+delta,where delta is an appliation spei� parameter. This riterion is similar to delay

114 CHAPTER 5. DATA SHARING IN DYNAMIC ENVIRONMENTSondition of quasi-opies and to delta onsisteny.InterWeave [60℄ supports the notion of a reent enough opy. Reent enough omesin six �avours: full oherene � always obtain the most reent version of the objetand exlude any onurrent writers, null oherene � always aept the urrentlyahed version, delta oherene guarantees that the objet is no more than x versionsout of date (similar to N-ignorant transations and version ondition in quasi-opies),temporal oherene guarantees that the objet is no more than x time units out of date(similar to delay ondition of quasi-opies, delta onsisteny and timed onsisteny),�nally di�-based oherene guarantees that no more than x% of the objet is out ofdate.The most general approah was proposed by Yu and Vadhat in [186℄, and wedesribe this approah in more detail here. In their onit-based ontinuous onsistenymodel, appliations an de�ne their onsisteny requirements as onits (onsistenyunits). Formally, a onit is a funtion that maps the shared data state to a realnumber. Eah read depends on a number of onits and eah write a�ets a numberof onits. Eah onit has a onsisteny level, quanti�ed along a three-dimensionalvetor: Consisteny = (numerial error, order error, staleness)Numerial error is the di�erene between the observed value of a onit and its idealvalue if strong onsisteny was enfored. Order error is the weighted out-of-orderwrites (i.e., writes that might be rolled bak and applied in a di�erent order). Stal-eness is the age of the oldest write a�eting the onit that has not been seen bythe loal replia. For eah read, the appliation an speify the required onsistenylevel of eah onit the read depends on. For eah write, the appliation spei�es howit a�ets eah onit, that is, how it hanges the value of eah onit, and what isits order weight with respet to eah onit. The onit-based onsisteny model wasimplemented in TACT. TACT exports a simple API for de�ning onsisteny require-ments: the DependonConit() funtion to delare the required onsisteny level andthe A�etConit() funtion to tell the system how a write a�ets eah onit.Note that, although onits were de�ned as funtions mapping the shared datastate to real numbers, the programmer does not need to de�ne suh funtions. It isenough to speify how eah write a�ets eah onit and how eah read depends ononits.The onit-based model elegantly uni�es all the models desribed in this setion.Timed onsisteny an be expressed using the staleness metri. Version and di�-basedonsisteny an be expressed using the numerial error metri. Also, traditional on-sisteny models (e.g., sequential onsisteny, ausal onsisteny et.) an be expressedin onit theory. However, it requires onits to be dynamially de�ned (one onit peraess) and the number of onits an be quite large, making the implementation im-pratial. Moreover, onit-based onsisteny was not designed with high-performaneappliations in mind, but appliations suh as message boards or airline reservationsystems. The protools used in TACT are heavy-weight and less suitable for highperformane appliations.

5.3. THE DIVIDE-AND-SHARE PROGRAMMING MODEL 1155.3 The divide-and-share programming modelTo inrease the appliability of the Satin framework, we extended the divide-and-onquer model with a shared-data abstration. We hose a shared objets modelsine it �ts naturally into objet-oriented Java and it is possible to implement ite�iently in distributed systems [31℄. In the rest of this thesis, we will refer tothe divide-and-onquer model extended with shared objets as the divide-and-sharemodel.Shared objets are passed by referene to all or part of the divide-and-onquertasks. Updates performed on a shared objet are visible to all tasks holding a refereneto this objet. Shared objets are automatially repliated on proessors that exeutetasks aessing those objets. We use repliation on demand: a replia is reated onthe �rst aess to the objet.Repliation is implemented using an update protool with funtion shipping:methods that modify the state of the objets are forwarded to other proessors, whihapply them on their loal replias, other methods are exeuted only loally. However,distinguishing between the two types of methods is the responsibility of the program-mer. The programmer marks part of the methods in the shared objet as sharedmethods, and those methods are propagated to other replias. If a method is notmarked as shared, it will not be propagated even if it hanges the objet state. Auto-matially distinguishing between loal and shared methods is very omplex and inursonsiderable runtime overhead. Due to Java's support for inheritane, the read-writeanalysis of methods would have to be performed at runtime (as explained in [130℄)whih auses performane overhead. Also, many restritions have to be imposed onthe use of shared objets to prevent the programmer from hanging the objet statein an unontrolled way. For example, shared objet �elds annot be aessed diretly(only through methods), shared objet methods annot return an objet referene,stati �elds in shared objets are disallowed, et. [130℄.Beause distinguishing between shared and loal methods is the responsibilityof the programmer, the runtime system annot guarantee that replias will remainonsistent. However, implementing strong onsisteny models, suh as sequential on-sisteny is not e�ient in grid environments anyway. Moreover, many appliations donot need strong onsisteny guarantees. For example, branh-and-bound appliationstypially do not need any onsisteny guarantees, as the shared data is used to opti-mize the searh proess. Other appliations need only very weak guarantees. For suhappliations, protools implementing strong onsisteny would impose an unneessaryperformane penalty. Finally, having expliitly inonsistent replias an be useful forsome appliations. One example is a repliated transposition table: replias may on-tain di�erent numbers of entries depending on the amount of memory available on aproessor.Therefore, Satin's shared objets provide a user-ontrolled, relaxed onsistenymodel alled guard onsisteny. Under guard onsisteny, the user an de�ne theappliation onsisteny requirements using guard funtions. Guard funtions are as-soiated with divide-and-onquer tasks. Coneptually, a guard funtion is exeutedbefore eah divide-and-onquer task. A guard heks the state of the shared objets

116 CHAPTER 5. DATA SHARING IN DYNAMIC ENVIRONMENTSaessed by the task and returns true if those objets are in a orret state, or falseotherwise. Using guards, the programmer an enfore only as muh onsisteny asthe appliation really needs.Not every onsisteny riterion an be implemented using guards. The riteria an-not be stronger than DAG-onsisteny. As mentioned above, under DAG-onsisteny,a hild task must see updates that its parent has seen, as well as updates made by theparent. It may but need not see updates made by its siblings. A guard has exatlythe same parameter list as the funtion implementing the divide-and-onquer task.Therefore, the guard has aess to the shared objets used by this task and to thetask parameters whih depend on the state of the parent that has spawned that task.Therefore the guard an ensure that the state seen by a task is onsistent with thestate seen by its parent.The runtime system allows replias to beome inonsistent as long as guards aresatis�ed: the updates are propagated to remote replias on a best-e�ort basis. Theruntime system does not guarantee that the updates will not be lost or dupliated.Updates may be applied in a di�erent order on di�erent replias. This makes usingsalable but unreliable broadasting tehniques suh as gossiping possible. Also, nodesdynamially joining or leaving the omputation are supported. When a guard is notsatis�ed, the runtime system invalidates the loal replias of shared objets used bythe task and fethes a onsistent replia from another proessor. This will be explainedin more detail in setion 5.5.Operations on shared objets are exeuted atomially. The runtime system guar-antees that shared objet operations do not run onurrently with eah other or withdivide-and-onquer tasks. An operation performed by a task beomes visible to othertasks only when the system reahes a so-alled safe point : when a task is reating(spawning) subtasks, when a task is waiting for its subtasks to �nish, or when atask ompletes. Tasks an also expliitly poll for shared objet updates. This makesthe model lean and easy to use, as the programmer does not need to use loks andsemaphores to synhronize aess to shared data.5.4 Programming interfae and examplesIn this setion, we desribe the shared objets programming interfae and use simpleexamples to demonstrate how to write parallel appliations with the divide-and-sharemodel.To de�ne a shared objet in Satin, the programmer has to write a lass thatextends the speial lass satin.so.SharedObjet. The programmer also needs to usethe speial interfae satin.so.SharedMethodsInterfae to mark shared methods. Thismehanism is similar to the use of the satin.Spawnable interfae: shared methods mustbe delared in an interfae that extends the empty satin.so.SharedMethodsInterfae.Figures 5.3 and 5.4 show an example appliation that uses shared objets: theTraveling Salesman Problem (TSP). TSP searhes for the shortest path through a setof ities. Figure 5.3 shows how the shared objets are delared. TSP uses two sharedobjets: the Min (line 7) objet holds the length of the shortest path found so far and

5.4. PROGRAMMING INTERFACE AND EXAMPLES 1171 : interfae MinInte r fae extends s a t i n . so . SharedMethodsInter fae {2 :3 : publi void s e t (int va l) ;4 :5 : }6 :7 : f inal lass Min extends s a t i n . so . SharedObjet8 : implements MinInte r fae {9 :1 0 : int va l = In t e g e r .MAX_VALUE;11 :1 2 : publi void s e t (int new_val) {1 3 : i f (new_val < va l) va l = new_val ;1 4 : }15 :1 6 : publi int get () {1 7 : return va l ;1 8 : }19 :2 0 : }21 :2 2 : f inal lass DistTable extends s a t i n . so . SharedObjet {2 3 : / � . . . � /24 : } Figure 5.3: Delaring shared objets in the TSP appliationthe DistTable (line 22) objet ontains a table with distanes between eah pair ofthe ities. The Min objet has two methods: get() and set(). Set() is delared in theMinInterfae (line 1), whih extends the speial satin.so.SharedMethodsInterfae andis therefore a shared method. Get() is not delared in this interfae and is thereforea loal method. The DistTable is a onstant objet � it does not hange during theexeution. Therefore, all its methods are loal (not shown).Figure 5.4 shows how the shared objets are used in the appliation. The tsp()method (lines 3,10) is a spawnable method, sine it is delared in the TspInterfae(line 1) whih extends the satin.Spawnable interfae. All shared objets aessed bya divide-and-onquer task must be passed to this task as parameters. Therefore tsp()has the Min and DistTable objets in its parameter list. In line 22, the tsp() funtionupdates the Min objet by alling its set() method. Sine set() is a shared method,this invoation will be forwarded to other replias of the objet.Shared objets are always passed by-referene, unlike `normal' parameters in Satinwhih an be passed by-referene or by-value depending on whether the task is exe-uted loally or remotely. When a task is exeuted remotely, only the shared objetreferene is transferred to the remote mahine, instead of a opy of the objet. Thetask will then aess the replia of the objet present at the remote mahine. Ifneessary, a new replia will be reated.For eah spawnable funtion, the programmer may de�ne a guard funtion, in thesame lass. The name of the guard funtion is `guard_<spawnable_funtion>'. Itmust have exatly the same parameter list as the spawnable funtion and return a

118 CHAPTER 5. DATA SHARING IN DYNAMIC ENVIRONMENTS1 : publi interfae TspInte r fae extends s a t i n . Spawnable {2 :3 : publi int tsp (int hops , byte [℄ path ,4 : int l en , Min min , DistTable d i s t) ;5 :6 : }7 :8 : publi lass Tsp extends s a t i n . Sat inObjet implements TspInte r fae {9 :1 0 : publi int tsp (int hops , byte [℄ path ,1 1 : int l en , Min min , DistTable d i s t) {12 :1 3 : int [℄ mins = new int [NRTOWNS℄ ;14 :1 5 : /� use the shared ob j e t to genera te a u t o f f �/1 6 : i f (l en >= min . get ()) {1 7 : return l en ;1 8 : }19 :2 0 : /�update minimum�/2 1 : i f (hops == NrTowns) {2 2 : min . s e t (l en) ;2 3 : return l en ;2 4 : }25 :2 6 : for (int i t y : getCitiesNotOn (path)) {2 7 : /� spawn a new task f o r eah i t y not on i n i t i a l path �/2 8 : mins [i ++℄ = tsp (hops+1, extendPath (path , i t y) ,2 9 : l en + d i s t . ge tDi s t (path [path . l ength �1℄ , i t y) ,3 0 : min , d i s t) ;3 1 : }3 2 : syn () ;33 :3 4 : /� r e turn the s h o r t e s t route �/3 5 : return getMinimum(mins) ;3 6 : }37 :3 8 : publi stat i void main (St r ing args [℄) {39 :4 0 : Min min = new Min () ;4 1 : DistTable d i s t = new DistTable () ;4 2 : Tsp tsp = new Tsp () ;4 3 : int r e s u l t = tsp . tsp (0 , new byte [0 ℄ , 0 , min , d i s t) ;4 4 : tsp . syn () ;4 5 : System . out . p r i n t l n (` ` Shor t e s t path : ' ' + r e s u l t) ;46 :4 7 : }48 : } Figure 5.4: Using shared objets in the TSP appliation

5.5. IMPLEMENTATION 119boolean value.Sine TSP does not need any onsisteny guarantees, we use a di�erent appliationas an example: the Barnes-Hut N-body simulation. This appliation simulates thebehavior of N bodies under in�uene of fores (e.g., gravitational or eletrostati).The pseudo-ode for this appliation is shown in �gures 5.5 and 5.6. The positions ofall bodies are stored in a shared objet Bodies. Figure 5.5 shows the delaration of thisobjet. This objet ontains the positions and masses of all bodies (bodyArray, line11) and an otagonal tree whih represents the spae the bodies are in (bodyTreeRoot,line12).Figure 5.6 shows how the shared objet is used. The appliation performs a numberof iterations. At the end of eah iteration, the root task updates the positions of thebodies and the body tree (�gure 5.6, line 52). Before a proessor starts exeuting atask belonging to a ertain iteration, it has to make sure that it reeived the updatesbelonging to the previous iteration, that is, it heks if its shared objet replia isonsistent with the replia aessed by the root task. This is done by means of a guardfuntion. The guard funtion (guard_omputeFores()) is shown in �gure 5.6, line 35.Its signature is idential to the signature of the spawnable funtion (omputeFores(),lines 3,12) exept for the return type.Beause shared objet invoations are serialized and sent over the network toremote proessors, all the parameters of shared methods must be either of basi typesor must be serializable. Also shared objets themselves must be serializable, beausethey are sent to remote proessors while reating new replias. This is, however,ensured by inheriting from the satin.so.SharedObjet lass whih is serializable (inJava, all sublasses of a serializable lass are serializable as well). The programmer isallowed to use standard Java serialization mehanisms, for example he an provide hisown serialization and deserialization methods: readObjet() and writeObjet(). Also,the keyword transient an be used to delare that ertain �elds should not be sentover the network. This mehanism an be used to derease the amount of data sent.For example, in Barnes-Hut, the shared objet Bodies ontains not only the positionsof the bodies, but also the body tree. Sending the entire body tree is very expensive,while it an be reprodued using the body positions. Therefore, the programmer andelare the body tree as transient and write a readObjet() method whih reates thebody tree after reading the positions of the bodies (�gure 5.5, line 26).5.5 ImplementationWe have extended the Satin byteode rewriter and the Satin runtime system to sup-port shared objets. The byteode rewriter searhes for interfaes extending thespeial satin.so.SharedMethodsInterfae. It generates the neessary ommuniationode for all methods found in suh interfaes (shared methods).Unlike the implementation of Java RMI or RepMI [130℄, we do not use stubs :speial proxy objets through whih all aesses to shared objets must go. Instead,the Satin byteode rewriter rewrites the shared methods in suh a way that beforealling the method loally, it is �rst marshaled (i.e., its identi�er and parameters)

120 CHAPTER 5. DATA SHARING IN DYNAMIC ENVIRONMENTS
1 : publi interfae Bod i e s I n t e r f a e2 : extends s a t i n . so . SharedMethodsInter fae {3 :4 : publi void update (L inkedLi s t r e s u l t s , int i t e r a t i o n) ;5 :6 : }7 :8 : publi lass Bodies extends s a t i n . so . SharedObjet9 : implements Bod i e s I n t e r f a e {10 :1 1 : Body [℄ bodyArray ;1 2 : transient BodyTreeNode bodyTreeRoot ;1 3 : publi int i t e r a t i o n ;14 :1 5 : / � . . . � /16 :1 7 : publi void update (L inkedLi s t r e s u l t s , int i t e r a t i o n) {18 :1 9 : this . i t e r a t i o n = i t e r a t i o n ;20 :2 1 : /�update the body array and the body t r e e �/22 :2 3 : }24 :2 5 : /� r e d e f i n e standard d e s e r i a l i z a t i o n method�/2 6 : private void readObjet (java . i o . ObjetInputStream in)2 7 : throws java . i o . IOExeption , ClassNotFoundExeption {28 :2 9 : /� s e t a l l non�t r a n s i e n t f i e l d s �/3 0 : in . defaultReadObjet () ;31 :3 2 : /� r ebu i l d the body t r e e us ing the bodyArray �/3 3 : bodyTreeRoot = buldBodyTree (bodyArray) ;3 4 : }35 : } Figure 5.5: Delaring a shared objet in the Barnes-Hut appliation

5.5. IMPLEMENTATION 1211 : publi interfae BarnesHutInte r fae extends s a t i n . Spawnable {2 :3 : publi LinkedLi s t omputeFores (byte [℄ nodeId ,4 : int i t e r a t i o n , Bodies bod i e s) ;5 :6 : }7 :8 : publi lass BarnesHut extends s a t i n . Sat inObjet9 : implements BarnesHutInte r fae {10 :1 1 : /� spawnable f un t i on �/1 2 : publi LinkedLi s t omputeFores (byte [℄ nodeId ,1 3 : int i t e r a t i o n , Bodies bod i e s) {14 :1 5 : L inkedLi s t r e s [℄ = new LinkedLi s t [8 ℄ ;1 6 : BodyTreeNode treeNode = bod ie s . f indTreeNode (nodeId) ;17 :1 8 : i f (treeNode . h i l d r en = null) {1 9 : /� l e a f node , do s equen t i a l omputation �/2 0 : return treeNode . omputeForesSeq (bod i e s) ;2 1 : } else {2 2 : for (int i = 0 ; i < 8 ; i ++) {2 3 : i f (treeNode . h i l d r en [i ℄ ! = null) {2 4 : /�spawn h i l d tasks �/2 5 : byte [℄ newNodeId = reateNewNodeId (nodeId , i) ;2 6 : r e s [i ℄ = omputeFores (newNodeId , i t e r a t i o n , bod i e s) ;2 7 : }2 8 : }2 9 : syn () ;3 0 : return ombineResults (r e s) ;3 1 : }3 2 : }33 :3 4 : /� guard fun t i on �/3 5 : publi boolean guard_omputeFores(byte [℄ nodeId ,3 6 : int i t e r a t i o n , Bodies bod i e s) {37 :3 8 : return (bod i e s . i t e r a t i o n+1 == i t e r a t i o n) ;39 :4 0 : }41 :4 2 : /�main fun t i on , in whih the body p o s i t i o n s are updated �/4 3 : publi stat i void main (St r ing [℄ a rg s) {4 4 : BarnesHut barnesHut = new BarnesHut () ;4 5 : Bodies bod i e s = new Bodies (NUMBODIES) ;4 6 : for (int i t e r a t i o n = 0 ; i t e r a t i o n < ITERATIONS ; i t e r a t i o n ++) {4 7 : /� spawn�/4 8 : L inkedLi s t r e s u l t s = barnesHut . omputeFores (rootNodeId ,4 9 : i t e r a t i o n , bod i e s) ;5 0 : }5 1 : syn () ;5 2 : bod i e s . update (r e s u l t s , i t e r a t i o n) ;5 3 : }54 : }Figure 5.6: Using a guard funtion to enfore shared objet onsisteny in Barnes-Hut

122 CHAPTER 5. DATA SHARING IN DYNAMIC ENVIRONMENTSand sent to remote replias. The advantage of this solution is that the programmeran aess the �elds of a shared objet diretly whih makes the programming modelmore �exible and easy to use. With stubs, the shared objets ould only be aessedthrough methods. A disadvantage is that shared objet referenes must be handled ina speial way. With RMI and RepMI stubs serve as objet referenes. Stubs ontainspeial serialization and deserialization routines whih take are that after being sentto a remote mahine, the stub points to the right (replia of the) objet. Sine we donot use stubs, the Satin runtime system must searh for shared objet referenes in thedata strutures sent to remote mahines, and ensure that eah suh referene pointsto the right replia on the remote mahine. This ompliates the implementationof the runtime system. Currently, we restrit the way shared objet referenes anbe used: shared objets annot be passed as parameters of shared methods of othershared objets. Shared objets annot have �elds of the SharedObjet type. Creatingdata strutures (suh as arrays, graphs) with shared objet referenes and passingthem as parameters to spawnable methods is also forbidden. Shared objets must beinluded expliitly in the parameter list of a spawnable method. In the future, wewant to extend the Satin byteode rewriter and runtime system to handle also moreadvaned usages of shared objet referenes.Replias of shared objets are reated in the following way. If a proessor reeivesa task with a shared objet as a parameter, it heks if it has a replia of this objet.If it does not have the replia, it opies the objet from the mahine it reeived thetask from. This way of reating replias �ts the open world model well: a proessoran join the omputation at any moment and reeives up-to-date replias of all sharedobjets it needs.Updates to shared objets are forwarded to remote replias asynhronously. Wedo not try to prevent updates from getting lost or being dupliated. We do usereliable ommuniation, but sine proessors an join or leave the omputation at anymoment, also while a broadast takes plae, a proessor an miss an update or reeiveit twie. The updates may also arrive in a di�erent order at di�erent mahines.Guard onsisteny is implemented in the following way. Coneptually, a guardfuntion is evaluated for eah task (if a guard funtion is de�ned). The implementa-tion, however, an make an important optimization. The Satin runtime system onlyneeds to evaluate guards for remote tasks whih were obtained from other mahines.This approah an be used beause the strongest onsisteny model a divide-and-onquer appliation may need is DAG-onsisteny. When a parent and hild tasksare exeuted on the same mahine, if a shared objet was in a onsistent state whenthe parent was exeuted, it will also be onsistent when the hild is exeuted. Thus,it is su�ient to hek the onsisteny of shared objets for remote tasks.If a guard evaluates to false, the following ations are taken. First the systemwaits a ertain amount of time for late updates to arrive. If after this time the guardstill evaluates to false, the runtime system ontats the proessor from whih the taskwas reeived and requests the replias of the shared objets used by this task. Themahine from whih a task was reeived is the mahine on whih the parent of thistask was exeuted. So, this mahine ertainly ontains replias of shared objets thatare onsistent for this task.

5.6. DIVIDE-AND-SHARE APPLICATIONS 1235.6 Divide-and-share appliationsIn this setion, we will desribe our experienes with programming grid appliationsusing the divide-and-share model. For eah of the appliations, we also disuss if itis possible to program it in a pure divide-and-onquer style (i.e., without the shareddata abstration). For the appliations that an be implemented without a shareddata abstration, we disuss the bene�ts of using shared objets. Performane resultswill be given in setion 5.7.5.6.1 Traveling Salesman ProblemThe Traveling Salesman Problem (TSP) appliation omputes the shortest path througha set of ities. Eah ity should be visited exatly one. We use a branh-and-boundalgorithm whih reursively searhes all possible paths and prunes large parts of thesearh spae by maintaining a global variable ontaining the length of the shortestpath found so far. If the length of a partial path is bigger than the urrent minimallength, this path is not expanded further and a part of the searh spae is pruned.The implementation of TSP in Satin is straightforward (see �gures 5.3 and 5.4).A new task is spawned for eah partial path. The global minimum is implementedas a shared objet. Also the stati datastruture ontaining the distanes betweenall ities is implemented as a shared objet to redue ommuniation overhead. Theshared objet does not need to be onsistent to ensure the orretness of the algorithm.However, delays in update propagation may lead to searh overhead.Implementing TSP in a pure divide-and-onquer style, that is, without a shareddata extension, is possible but ine�ient, beause the possibility of pruning parts ofthe searh spae is very limited. Below a ertain depth in the searh tree, subtreesare evaluated sequentially and within those subtrees sharing of the minimum valueand pruning is possible. However, solutions annot be propagated between thosesubtrees. This leads to enormous searh overhead and slows down the exeution ofthe program by a fator of 100 or even 1000, depending on the problem size and thenumber of proessors used. Using the Younger Brothers Wait Conept (YBWC) [81℄an improve the performane. With YBWC, the seond and subsequent subproblemsare not spawned until the �rst subproblem is �nished. The result returned by the �rstsubproblem is passed to the subsequent subproblems and is likely to ause pruningin those subproblems. This tehnique redues the searh overhead but also dereasesthe amount of parallelism and auses load imbalane. Therefore, a pure divide-and-onquer version of TSP with YBWC optimization is still around 40% slower than thedivide-and-share version.5.6.2 LousRouteLousRoute is a VLSI standard ell router. It routes wires between endpoints so asto minimize the total area of the layout. To minimize the area, the algorithm tries toroute wires through regions (routing ells) that have few other wires running throughthem. It alulates a ost funtion for eah route: the number of wires in the routing

124 CHAPTER 5. DATA SHARING IN DYNAMIC ENVIRONMENTSells the route passes, and uses the route with the lowest ost. The total ost of theiruit is the sum of the number of wires running through eah routing ell. Beausethe order of plaement of the wires a�ets the total ost, the program performs anumber of iterations. On every iteration exept the �rst one, eah wire is `ripped out'and re-routed. The LousRoute appliation is a part of the SPLASH suite [157, 182℄.LousRoute was implemented in Satin by reursively splitting the set of wires intotwo subsets. The subsets are routed in parallel. A shared objet is used for storingthe ost array - a data struture that keeps trak of the number of wires runningthrough eah routing ell in the iruit. The data need not be onsistent. However,a delay in update propagation may diminish the quality of the resulting iruit.Implementing LousRoute in a pure divide-and-onquer style is not possible.Without a shared data abstration it is not possible to implement the ost arraydata struture on whih the plaement of wires depends.5.6.3 Barnes-Hut N-body simulationBarnes-Hut simulates the evolution of a large set of bodies under the in�uene offores, for example gravitational or eletrostati fores. The evolution of N bodiesis simulated in iterations of disrete time steps. If all pairwise interations betweenbodies were omputed, the omplexity of the algorithm would be O(N3). The Barnes-Hut algorithm redues this omplexity by approximating far away groups of bodiesby a single body at the enter of the mass of the group of bodies. The preision fatortheta indiates if a group of bodies is far enough to use this optimization. With asmall theta the algorithm is faster while with a big theta it is more aurate. For thepurpose of this optimization, the simulated bodies are organized in a tree struturethat represents the spae the bodies are in. The root node represents the whole spae,its hildren the subspaes of this spae, et. For eah body, the algorithm traversesthe body tree. If a body tree node is far away from the given body, all bodies in thisnode are approximated with a large body in the enter of the node and the fore isomputed. After omputing fores for all bodies, the positions of the bodies and thebody tree are updated.In the Satin implementation of the algorithm, a new task is spawned for eah nodein the body tree. The task alulates fores for all bodies ontained in this node. Thepositions of the bodies and the tree node are stored in a shared objet, so that thisenormous data struture does not have to be sent over the network eah time a taskis exeuted remotely. The shared objet is updated at the end of eah iteration. Theappliation does have onsisteny onstraints: the updates must be propagated to aproessor before it an start working on the next iteration. The onsisteny of thedata is ensured by means of guards, as desribed above (see �gure 5.6).The Barnes-Hut appliation an be also implemented in a pure divide-and-onquerstyle. In that ase, the positions of the bodies and the body tree have to be passedas task parameters. This means, however, that the body tree has to be sent over thenetwork eah time a task is stolen, whih typially is thousands to tens of thousandstimes during the appliation run. This would ause signi�ant overhead, as the bodytree is a large data struture. The amount of data sent over the network an be

5.6. DIVIDE-AND-SHARE APPLICATIONS 125dereased by passing only a neessary tree instead of the full body tree as a parameter.A neessary tree ontains only those parts of the body tree that are needed for thebodies in the task's part of the tree. However, even with this optimization, the amountof ommuniation in the pure divide-and-onquer version is still larger than in thedivide-and-share version.5.6.4 SAT solverThe satis�ability problem (SAT), that is the problem of deiding whether a givenboolean formula is satis�able, is an important NP-omplete problem. The solution ofa SAT problem is either a boolean variable assignment that makes the given formulatrue, or the result `unsatis�able' meaning that no suh assignment exists. Solvinga SAT problem requires a systemati searh over a potentially huge solution spae.Various tehniques have been developed to make this searh more e�ient for pratialproblems, but it is inherently di�ult. Satis�ability solvers are ommonly used inindustry to verify the orretness of omplex digital iruits, suh as out-of-orderexeution units in modern proessors.The SAT solver used for this thesis is based on SAT4J [6℄, a reimplementationin Java of MiniSAT [75℄. Both MiniSAT and SAT4J are `industry strength' solvers,that are ompetitive with other state-of-the-art implementations. The solver uses abaktraking searh that speulatively assigns boolean values to variables until theproblem is satis�ed or a on�it is enountered. Upon a on�it the solver baktraks.Parallelizing SAT4J with Satin was relatively easy. For eah speulative assignmenta task is spawned so that alternative assignments are evaluated in parallel.A hallenging issue in parallelizing SAT solvers arises from the fat that it is hard topredit how muh exeution time is needed to solve a spawned subproblem. For somesubproblems, the osts of spawning may even exeed the exeution time. Therefore, inour implementation we use the approah taken in the GridSAT solver [64℄: eah task�rst performs a ertain amount of sequential searh before splitting up the remainingsearh problem. This guarantees that only `hard' tasks will be split.SAT solvers often implement an iterative strategy to go down the searh tree.The purpose of this is to avoid spending too muh time in very deep subtrees thatmight have been ut o� more easily if an alternative branh was hosen earlier. Insequential SAT solvers, this an easily be implemented by hoosing a ertain bound onthe total number of assignment on�its found, and inreasing that bound graduallyby a ertain fator. However, implementing a similar on�it bound with a parallelversion is harder, sine without ommuniation, a partiular branh does not knowhow many on�its are generated in other branhes, and how the on�its add upglobally. It is possible to make some assumption about the number of on�its stillallowed in a partiular subbranh, but this an easily be over- or underestimated,leading either to more iterative restarts, or more searhing in fruitless subtrees thanthe sequential version does. With shared objets, up-to-date knowledge about theglobal number of on�its remaining an be obtained almost trivially.Other aspets that are urrently implemented using shared objets are the prun-ing of subproblems in ase a truth assignment is found by one of the searhes, and

126 CHAPTER 5. DATA SHARING IN DYNAMIC ENVIRONMENTS

0

10

20

30

40

sp
ee

d
u

p
 o

n
 3

2
cp

u
s

TSP LocusRoute SAT solver Barnes-Hut

divide-and-conquer
divide-and-share

Figure 5.7: Speedups on 32 DAS-2 proessorsan implementation of global learning [64℄. In global learning, information about on-�iting assignments learned loally in one branh of the searh tree is made availableto other branhes in order to potentially ut o� related subtrees. As reported else-where [43, 64℄, sharing these learned lauses an indeed potentially help, but alsointrodues some overhead that has to be earned bak. A simple way to dereasethe overhead is by restriting the use of global learning to lauses up to a ertainlength (in general, the shorter the learned lause, the higher its potential impat). Itappears that a good maximal length for learned lauses is rather SAT problem de-pendent; urrently we limit it to lauses of up to ten literals. Sine knowledge gainedby global learning is basially an additional soure of information, it does not have tobe implemented with strong onsisteny.It is possible to implement the SAT solver in a pure divide-and-onquer style.Suh an implementation, however, is less e�ient. The main reason for this ine�-ieny is that independent branhes annot share the global number of on�its found,as desribed above. Also, global learning is not used in the pure divide-and-onquerversion. However, global learning appears to have less in�uene on the performaneof the solver on the SAT problem used by us in this thesis. Finally, instead of usinga shared objet to notify other branhes that a solution has been found and the om-putation should terminate, the speial abort mehanism would have to be used [175℄.5.7 Performane evaluationIn this setion we will evaluate the performane of the shared objets extension. The�rst part of the evaluation was arried out on the DAS-2 luster omputer (for a de-sription of DAS-2 see setion 3.6). To demonstrate that our model is also suitable for

5.7. PERFORMANCE EVALUATION 127

0 20 40 60 80 100 120

number of processors

0

20

40

60

80

100

120

sp
ee

d
u

p linear
divide-and-share, single cluster
divide-and-share, wide area
divide-and-conquer, single cluster
divide-and-conquer, wide area

Figure 5.8: Speedups of Barnes-Hut on DAS-2grid environments, the seond part of our experiments is performed on the Grid'5000testbed [8℄. Grid'5000 is a wide-area and heterogeneous system whih urrently on-sists of 7 lusters loated aross Frane.In the �rst part of our experiments, we tested the performane of the applia-tions on a single DAS-2 luster. For those appliations whih an be programmedin pure divide-and-onquer style, that is, without shared objets, we ompared theperformane of the divide-and-onquer version with the performane of the divide-and-share version. We always hose the most e�ient divide-and-onquer version,that is, for TSP we hose the Young Brothers Wait version and for Barnes-Hut wehose the Neessary Tree version. We used 32 proessors in a single luster. Fig-ure 5.7 shows the speedups the appliations ahieved on the DAS-2 luster. Thedivide-and-share versions of TSP, SAT solver and Barnes-Hut perform muh betterthan their divide-and-onquer versions. LousRoute annot be programmed withoutshared objets.For TSP and SAT solver, this performane improvement results from the fatthat sharing data allows to diminish the amount of omputation. For Barnes-Hut,the performane improvements results from optimizing the ommuniation, whihmakes the divide-and-share appliation sale better than the pure divide-and-onquerversion. To further study the salability of both version, we performed an extraexperiment with Barnes-Hut. We measured the speedups of both versions on 2 to 128proessors. We tried both a single luster setting (up 96 proessors, beause we ouldnot alloate 128 proessors on a single luster) and a wide-area, multi-luster setting.The results are shown in �gure 5.8.

128 CHAPTER 5. DATA SHARING IN DYNAMIC ENVIRONMENTSloation proessor ahe sizeSophia AMD Opteron 246 2 GHz 1024 KBRennes1 Intel Xeon 2.4 GHz 512 KBRennes2 AMD Opteron 250 2.4 GHz 1024 KBBordeaux AMD Opteron 248 2.2 GHz 1024 KBOrsay AMD Opteron 246 2 GHz 1024 KBLille Intel Xeon 3.0 GHz 1024 KBTable 5.1: Proessor on�gurations in the Grid'5000 testbedlusters and total normalizednr CPUs used nr CPUs nr CPUsSophia 50Rennes1 40TSP Bordeaux 30 120 115Sophia 50Rennes1 40LousRoute Bordeaux 30 120 94Orsay 40Rennes1 32SAT solver Bordeaux 40 112 98Sophia 50Barnes-Hut Rennes2 50theta 5.0 Lille 20 120 136Sophia 50Barnes-Hut Rennes2 50theta 7.0 Lille 20 120 126Table 5.2: Nodes used in the Grid'5000 experimentThe divide-and-share version sales muh better that the pure divide-and-onquerversion in both single luster and wide-area, multi-luster setting.The seond part of the experiments we arried out on the Grid'5000 system. Thisexperiment shows that our model works well in a real grid environment. The latenybetween the lusters used by us ranges from 4 to 10 milliseonds and bandwidthfrom 200 to 1000 Mbit/s. Grid'5000 is also heterogeneous: it ontains mahines withdi�erent arhitetures and di�erent speeds. Table 5.1 lists the on�guration of theGrid'5000 proessors we used.For eah experiment, we use 3 lusters. Table 5.2, lists the lusters and numbersof nodes we used for eah experiment.We ompared the performane of our appliations in the wide-area, heterogeneoussetting with the performane of the same appliation on a single luster. To makethis omparison meaningful, we need to use the same amount of omputational power

5.8. COMPARISON WITH RELATED WORK 129in both wide-area and single-luster experiments. This is not trivial to ahieve due tothe heterogeneous proessor speeds in the grid environment. We used the followingmethodology. We omputed the relative speeds of the proessors in eah luster byrunning a smaller benhmark problem on a single proessor in eah luster. Wenormalized the runtimes of the benhmark problems relative to the runtime on asingle proessor of the Sophia (for TSP, LousRoute and Barnes-Hut) or Orsay (forSAT solver) luster. Next, we omputed the normalized number of CPUs. Thosenumbers are listed in table 5.2. Then, in the single luster run, we used the samenumber of proessors as the normalized number in the grid runs.The runtimes and speedups of the appliations are listed in table 5.3. TSP andLousRoute ahieve high speedups on the Grid'5000 testbed. The SAT solver performsslightly worse than LousRoute and TSP. The reason for that is a highly unbalanedsearh tree whih makes it harder to balane the load in the appliation. Also, theost of spawning in SAT solver is higher than in the other appliations beause thewhole data struture ontaining the desription of the SAT problem is loned for eahspawned job.For Barnes-Hut, we experimented with two values of the theta onstant: 5.0(whih we also used in the DAS-2 experiment) and 7.0. For theta=5.0 the speedup ismediore: 25 whih is muh smaller than the speedup on a similar number of nodes onDAS-2. This is beause the proessors in the Grid'5000 testbed are signi�antly fasterthan the DAS-2 proessors, while the ommuniation speed is similar. Therefore, itis more di�ult to ahieve high speedups on the Grid'5000 testbed. When theta=7.0the appliation omputes the fores with more auray and therefore has a higheromputation-to-ommuniation ratio. Thus, the speedup of this version is higher: 89.For all four appliations, the speedups in the wide-area setting were very lose tothe speedups on a single luster. This indiates that our algorithms an be run e�-iently on wide-area systems even though the appliations share signi�ant amountsof data. The amount of data sent by eah appliation is shown in tables 5.4 and 5.5.Column 5 of table 5.4 lists both loal-area and wide-area point-to-point tra�. Thelast olumn of table 5.5 lists the amount of broadast tra�.5.8 Comparison with related workFew other divide-and-onquer frameworks provide shared data abstrations. Cilk [46℄provides a shared memory abstration for divide-and-onquer omputations on theConnetion Mahine CM-5. Cilk's shared memory implements DAG-onsisteny usingthe Baker algorithm [45℄ whih performs well on a tightly oupled mahine like theCM-5, but is not suitable for wide-area systems. Moreover, Cilk's shared memory wasdeveloped for pure divide-and-onquer appliations whih use large data strutures(suh as Barnes-Hut) and not for appliations that need to share data between siblingtasks (suh as TSP). Updates of shared data are passed only along the edges of theexeution tree, but not to sibling tasks. Only sibling tasks that exeute on the samemahine an see eah other's updates. Therefore Cilk's shared memory is unsuitablefor appliations suh as TSP and SAT solver with learned lause sharing.

130 CHAPTER 5. DATA SHARING IN DYNAMIC ENVIRONMENTSruntime runtime grid single lusterGrid single CPU speedup speedupTSP 200s 5.4h 97 99LousRoute 951s 21.5h 81 89SAT solver 113s 1.7h 54 59Barnes-Hut (� 5.0) 226s 1.6h 25 31Barnes-Hut (� 7.0) 390s 9.6h 89 89Table 5.3: Test results the Grid'5000 testbed
amount of data sentnr tasks nr steal nr tasks for work stealingexeuted requests stolen loal-area/wide-areaTSP 2 000 000 800 000 8 000 33MB/4MBLousRoute 160 000 40 000 000 3 000 1.4GB/22MBSAT solver 160 000 2 000 000 4 000 1.8GB/1GBBarnes-Hut (� 5.0) 335 000 5 600 000 18 000 800MB/300MBBarnes-Hut (� 7.0) 335 000 6 500 000 20 000 800MB/400MBTable 5.4: Statistis for Grid'5000 runs

amount of datanr shared objet broadastinvoations for objet updatesTSP 50 5KBLousRoute 120 000 23MBSAT solver 130 000 17MBBarnes-Hut (� 5.0) 4 200MBBarnes-Hut (� 7.0) 4 200MBTable 5.5: Statistis for Grid'5000 runs - ont.

5.9. CONCLUSIONS 131Peng et al. [143℄ notied this shortoming of Cilk and implemented SilkRoad � anextension to Cilk that provides global user loks and shared memory with lazy releaseonsisteny [114℄. SilkRoad was designed to run in a single luster environment andis not suitable for wide-area grid environments.Javelin [139℄ is a framework for writing branh-and-bound appliations. Branh-and-bound is similar to divide-and-share but more restritive. Javelin provides a verylimited possibility of sharing data between tasks for bound propagation. All tasksare sharing the urrent bound, usually an integer or real number, but Javelin allowsit to be of any objet type. When a task �nds a new bound, it broadasts it to allproessors. This is, in fat, repliation with data shipping whih has been shown tobe less e�ient than funtion shipping for objet-based shared data models. Javelindoes not provide any means of enforing onsisteny.The funtion shipping approah to objet repliation in Satin was inspired byOra [31℄. Ora provides sequential onsisteny whih is implemented using totallyordered broadast. Ora appliations ahieve good performane on a single luster,but beause of the restritive onsisteny model, Ora is less suitable for wide-areasystems.RepMI [130℄ o�ers objet repliation in Java with sequential onsisteny. TheAPI of RepMI is similar to our API: the programmer uses inheritane and markerinterfaes to de�ne repliated objets. The loal and shared methods (read and writemethods in RepMI's terminology), however, are distinguished automatially by theompiler and runtime system. To prevent the programmer from unontrolled aessto repliated objets, RepMI imposes many restritions on the programming model,for example, it does not allow diret aess to the �elds of a shared objet. RepMIahieves good performane on a luster of mahines onneted with Myrinet [48℄.Similar to Ora, however, its restritive onsisteny model makes it unsuitable forwide-area omputing. Also, read/write analysis, thread sheduling, and indiretionin aessing repliated objets adds overhead whih is not justi�ed for appliationsthat do not need strong onsisteny.5.9 ConlusionsWe presented a divide-and-share programming model whih ombines the divide-and-onquer paradigm with a shared data abstration � shared objets. The newdivide-and-share model has a broader appliability than the pure divide-and-onquermodel.Shared objets implement a new onsisteny model, guard onsisteny, designedespeially for grid-enabled divide-and-onquer appliations. Under guard onsisteny,the programmer an de�ne the onsisteny requirements of the appliation using guardfuntions assoiated with divide-and-onquer tasks. A guard funtion spei�es whatthe status of an objet should be for a task to exeute orretly. The runtime systemallows replias of shared objets to beome inonsistent as long as their guards aresatis�ed. When a guard is unsatis�ed, the system brings the loal replia into aonsistent state. The guard onsisteny model is easy to use and allows for e�ient

132 CHAPTER 5. DATA SHARING IN DYNAMIC ENVIRONMENTSimplementation in grid environments. In partiular, nodes dynamially joining orleaving the ongoing omputation an be tolerated.We implemented a number of divide-and-share appliations using the Satin frame-work: Lous Route (VLSI routing), SAT solver, Barnes-Hut (N-body simulation) andTraveling Salesman Problem. We evaluated the performane of our appliations onthe DAS-2 superomputer and showed that they ahieve good speedups on a singleluster. To demonstrate that our model is suitable for real Grid environments, wetested it on the wide-area, heterogeneous Grid'5000 testbed and showed that appli-ations using shared data an ahieve high speedups in a real grid environment.

Chapter 6Summary and onlusionsThe goal of the researh presented in this thesis was simplifying the proess of reatinggrid enabled appliations. We proposed that this goal an be ahieved by reatinga grid programming framework � a set of tools that forms a layer of abstrationbetween the appliation and the Grid. A framework provides a high-level and easy touse programming model and transparently resolves many grid programming issues.We started with a prototype divide-and-onquer framework (Satin) designed andimplemented by Rob van Nieuwpoort. Thanks to an e�ient, grid-aware load-balaningalgorithm, the original system ould run e�iently over wide-area, heterogeneous sys-tems. However, many issues still needed to be addressed before Satin would beomea mature grid programming framework. Those issues we address in this thesis.In hapter 3, we investigated the problem of fault tolerane, malleability and mi-gration. Grid environments are inherently dynami, nodes an beome available orunavailable at any moment and the appliation must be able to ope with it. Wedesigned a simple and e�ient fault-tolerane algorithm based on reomputing worklost in rashes and restruturing the exeution tree to minimize the amount of reom-putation. We extended this algorithm to be able to reuse work done by the leavingproessors, if they leave graefully. We also added a simple hekpointing failitythat stores intermediate results on a stable storage. This set of algorithms allowsdivide-and-onquer appliations to handle a number of grid senarios. Appliationsan tolerate proessor rashes and proessors dynamially joining and leaving an on-going omputation. Appliations an be e�iently migrated or stopped and restartedlater on the same or a di�erent set of resoures.In hapter 4, we have investigated the problems of resoure seletion and adaptiveexeution. Existing solutions to those problems require that a performane model foran appliation is known. However, onstruting performane models is an inherentlydi�ult task. Therefore, we investigated if it is possible to provide a solution that doesnot require a performane model. We propose an approah in whih an appliationis started on an arbitrary set of resoures. Some simple heuristis an be used toselet this initial set (e.g., the fastest available proessors), but no advaned modelsare needed. During the run, we monitor the appliation performane by olleting

134 CHAPTER 6. SUMMARY AND CONCLUSIONSstatistis about how muh time proessors spend ommuniating or being idle. Weuse those statistis to dedue the appliation requirements and adjust the resoureset to better �t the appliation needs. This adjustment is performed by adding orremoving nodes to/from the running appliation. To implement this approah, weadded an extra proess � an adaptation oordinator, whih ollets the appliationstatistis and ontrols adding and removing nodes. We evaluated our approah in anumber of senarios typial for grid environments and we have shown that we anahieve signi�ant performane improvements (10�60% in our experiments).In hapter 5, we have extended the programming model of our framework. Theoriginal Satin framework provided the divide-and-onquer model. A limitation of thismodel is the lak of a data-sharing abstration. Therefore, we have extended thedivide-and-onquer model with a shared-objet abstration. The API of the shared-objet extension is similar to the original Satin API: the programmer uses standardJava mehanisms suh as inheritane and marker interfaes to de�ne shared objetsand operations on them. The ompiler generates the neessary ommuniation ode.Therefore, the shared-objet model is extremely easy to use.Implementing a shared-data abstration in grids is a hallenging task due to thedistributed and dynami nature of suh environments. Traditional onsisteny mod-els suh as sequential onsisteny are not suitable for wide-area, dynami systems.We have designed a novel onsisteny model, guard onsisteny, whih is suitable fordivide-and-onquer appliations and allows for e�ient implementation in grid envi-ronments. Under guard onsisteny, the programmer de�nes the appliation onsis-teny requirements using boolean guard funtions assoiated with divide-and-onquertasks. The runtime system propagates updates to remote replias optimistially, thatis, without guaranteeing that updates will be applied in a ertain order, will not belost or dupliated. The replias are allowed to beome inonsistent as long as guardsare satis�ed. When a guard beomes not satis�ed, the runtime system brings theloal replia into a onsistent state.We implemented a number of appliations using shared objet abstration andhave shown that it simpli�es the programming task, improves appliation performaneand extends the appliability of the Satin framework. We have tested our model bothin a single luster environment and in a wide-area, heterogeneous grid environmentand have shown that shared-data appliations an ahieve high e�ienies in suhenvironments.The Satin framework that is the result of the work desribed in this thesis anhandle a vast number of senarios typial for grid environments. Below, we list anumber of suh senarios.� A Satin appliation an tolerate rashing nodes with minimal loss of work. If thenumber of rashed nodes is substantial, the adaptation omponent will attemptto replae the rashed nodes.� The user an add or remove nodes to a running appliation. The user an alsomigrate a running appliation to a di�erent set of resoures.� The user an stop a Satin appliation and restart it at a later time on a possibly

135di�erent set of resoures.� A Satin appliation an run in a yle-stealing environment, that is, expandto new proessors if they are idle and release them if another higher-priorityappliation arrives.� If the user starts a Satin appliation on an inappropriate set of resoures, theresoure set will be adjusted. For example, if the initial number of proessorsis smaller than the appliation degree of parallelism would allow, the applia-tion will automatially expand to more proessors. If one of the sites is badlyonneted, the appliation will be automatially migrated away from this site.� If during the appliation run part of the resoures beome overloaded (e.g.,proessors or network links) to an extent that the appliation performane suf-fers, the appliation will be automatially migrated away from the overloadedresoures. New resoures may be added to replae the removed resoures.� If the appliation degree of parallelism is hanging during the run, the numberof proessors the appliation is running on will be automatially adjusted.The resulting Satin system has also improved appliability. Below, we list appli-ation lasses that an be programmed using the Satin framework.� Searh and optimization problems, for example the satis�ability problem, theTraveling Salesman Problem, the Knapsak problem, N Queens, et.� Astrophysial simulations, for example the Barnes-Hut N-body algorithm [34℄.� Grammar based learning [12℄.� Parallel rendering (raytraing).� Bioinformatis omputations, for example sequene alignment.� VLSI routing.� Game tree searhing, for example Othello or Awari.� Numerial appliations, for example matrix multipliation or Fast Fourier Trans-form.To summarize, in this thesis we have demonstrated that it is indeed possible tosimplify the task of reating grid appliations by providing a high-level grid pro-gramming framework. The Satin framework that is the result of the work presentedin this thesis allows rapid development of grid enabled appliations. The program-mer expresses the problem at hand in a divide-and-onquer fashion and annotates thesequential ode with divide-and-onquer and data-sharing primitives. The Satin byte-ode rewriter generates the ommuniation, load-balaning and fault-tolerane ode.All grid-related issues are resolved by the framework transparently to the appliation

136 CHAPTER 6. SUMMARY AND CONCLUSIONSprogrammer. Therefore, the appliation programmer needs to fous his attention onlyon the problem domain of the appliation and not on the omplexity of the platformthe appliation will be running. We believe that our approah will lead to makingthe tremendous power of the Grid more aessible and will therefore allow taklinggrand omputational hallenges that ould not be solved before.

Bibliography[1℄ Einstein�home website. http://einstein.phys.uwm.edu.[2℄ Folding�home website. http://folding.stanford.edu.[3℄ Java GAT API Desription. Online: http://www.s.vu.nl/ rob/JavaGAT-javado/.[4℄ LHC�home website. http://lhathome.ern.h.[5℄ Preditor�home website. http://preditor.sripps.edu.[6℄ SAT4J website: http://www.sat4j.org.[7℄ SETI�home website. http://setiathome.berkeley.edu.[8℄ The Grid'5000 Projet. http://www.grid5000.fr.[9℄ Distributed Resoure Management System (DRMS) User's Guide. Online:http://www.researh.ibm.om/drms/api.html, 1995.[10℄ Sun Mirosystems. Java Remote Method Invoation Spei�ation. Online athttp://java.sun.om, 2003.[11℄ Uniore plus �nal report � uniform interfae to omputing resoures. Online:http://www.uniore.org/douments/UNICOREPlus-Final-Report.pdf, 2003.[12℄ P. Adriaans and C. Jaobs. Using MDL for grammar indution. In 8th Inter-national Colloquim on Gramatila Inferene (ICGI'06), Tokyo, Japan, 2006.[13℄ H. Afsarmanesh, R. G. Belleman, A. S. Z. Belloum, A. Benabdelkader, J. F. J.van den Brand, G. B. Eijkel, A. Frenkel, C. Garita, D. L. Groep, R. M. A.Heeren, Z. W. Hendrikse, L. O. Hertzberger, J. A. Kaandorp, E. C. Kaletas,V. Korkhov, C. T. A. M. de Laat, P. M. A. Sloot, D. Vasunin, A. Visser, andH. H. Yakali. VLAM-G: A grid-based virtual laboratory. Sienti� Program-ming, 10(2):173�181, 2002.[14℄ A. Agbaria and R. Friedman. Star�sh: Fault-tolerant dynami MPI programson lusters of workstations. Cluster Computing, 6(3):227�236, 2003.

138 BIBLIOGRAPHY[15℄ D. Agrawal, M. Choy, H. V. Leong, and A. K. Singh. Evaluating Weak Memorieswith Maya. Tehnial Report TRCS93-23, 30, 1994.[16℄ D. Agrawal, M. Choy, H. V. Leong, and A. K. Singh. Mixed Consisteny:A Model for Parallel Programming (Extended Abstrat). In Symposium onPriniples of Distributed Computing, pages 101�110, 1994.[17℄ M. Ahamad, R. A. Bazzi, R. John, P. Kohli, and G. Neiger. The power ofproessor onsisteny. In 5th Annual ACM Symposium on Parallel Algorithmsand Arhitetures (SPAA'93), pages 251�260, 1993.[18℄ S. Ahuja, N. Carriero, and D. Gelernter. Linda and friends. IEEE Computer,19(8):26�34, August 1986.[19℄ M. Aldinui, F. Andre, J. Buisson, S. Campa, M. Coppola, M. Danelutto, andC. Zoolo. Parallel program/omponent adaptivity management. In ParCo2005, Malaga, Spain, September 2005.[20℄ M. Aldinui, S. Campa, P. P. Ciullo, M. Coppola, S. Magini, P. Pesiulle-sio, L. Potiti, R. Ravazzolo, M. Torquati, M. Vanneshi, and C. Zoolo. Theimplementation of ASSIST, an environment for parallel and distributed pro-gramming. In 9th International Euro-Par: Parallel and Distributed Comput-ing, volume 2790 of LNCS, pages 712�721, Klagenfurt, Austria, August 2003.Springer Verlag.[21℄ G. Allen, D. Angulo, I. Foster, G. Lanfermann, C. Liu, T. Radke, E. Seidel, andJ. Shalf. The atus worm: Experiments with resoure disovery and alloationin a grid environment. International Journal of High Performane ComputingAppliations, 15(4):345�358, 2001.[22℄ G. Allen, W. Benger, T. Goodale, H. Hege, G. Lanfermann, A. Merzky,T. Radke, E. Seidel, and J. Shalf. The Catus Code: A problem solving environ-ment for the grid. In 9th IEEE International Symposium on High PerformaneDistributed Computing (HPDC'00), page 253, Pittsburgh, August 2000.[23℄ G. Allen, K. Davis, T. Goodale, A. Hutanu, H. Kaiser, T. Kielmann, A. Merzky,R. van Nieuwpoort, A. Reinefeld, F. Shnitke, T. Shutt, E. Seidel, andB. Ullmer. The Grid Appliation Toolkit: Towards Generi and Easy Ap-pliation Programming Interfaes for the Grid. Submitted to IEEE.[24℄ R. Alonso, D. Barbara, and H. Garia-Molina. Data ahing issues in an infor-mation retrieval system. ACM Transations on Database Systems, 15(3):359�384, 1990.[25℄ I. Altintas, A. Birnbaum, K. K. Baldridge, W. Sudholt, M. Miller, and C. Amor-eira. A framework for the design and reuse of grid work�ows. In 1st Interna-tional Workshop on Sienti� Appliations of Grid Computing (SAG 2004),pages 120�133. Springer-Verlag, LNCS 3458, September 2004.

BIBLIOGRAPHY 139[26℄ K. Amin, G. von Laszewski, M. Hategan, N. J. Zaluze, S. Hampton, andA. Rossi. GridAnt: A lient-ontrollable grid work�ow system. In 37th An-nual Hawaii International Conferene on System Sienes (HICSS'04), January2004.[27℄ D. Arnold, S. Agrawal, S. Blakford, J. Dongarra, M. Miller, K. Seymour,K. Sagi, Z. Shi, and S. Vadhiyar. Users' guide to NetSolve V1.4.1. Tehni-al Report ICL-UL-02-05, University of Tennessee, Knoxville, TN, USA, June2002.[28℄ H. Attiya and J. L. Welh. Sequential onsisteny versus linearizability. ACMTransations on Computer Systems (TOCS), 12(2):91�122, May 1994.[29℄ R. M. Badia, J. Labarta, R. Sirvent, J. M. Perez, J. M. Cela, and R. Grima.Programming Grid Appliations with GRID Supersalar. Journal of Grid Com-puting, 1(2), 2003.[30℄ L. Baduel, F. Baude, D. Caromel, A. Contes, F. Huet, M. Morel, and R. Quilii.Grid Computing: Software Environments and Tools, hapter Programming,Composing, Deploying, for the Grid. Springer Verlag, January 2006.[31℄ H. E. Bal, R. Bhoedjang, R. Hofman, C. Jaobs, K. Langendoen, T. Ruehl, andM. F. Kaashoek. Performane Evaluation of the Ora Shared Objet System.ACM Transations on Computer Systems, 16(1), February 1998.[32℄ J. Baldeshwieler, R. Blumofe, and E. Brewer. ATLAS: An Infrastruture forGlobal Computing. In 7th ACM SIGOPS European Workshop on System Sup-port for Worldwide Appliations, pages 165�172, Connemara, Ireland, Septem-ber 1996.[33℄ A. Baratloo, M. Karaul, Z. M. Kedem, and P. Wyko�. Charlotte: Metaom-puting on the Web. In 9th International Conferene on Parallel and DistributedComputing Systems (PCDS-96), pages 181�188, Dijon, Frane, September 1996.[34℄ J. Barnes and P. Hut. A hierarhial O(NlogN) fore-alulation algorithm.Nature, 324:446�449, 1986.[35℄ L. Baudel, F. Baude, and D. Caromel. Objet-oriented SPMD. In 5th Inter-national Symposium on Cluster Computing and the Grid (CCGrid05), Cardi�,UK, May 2005.[36℄ J. K. Bennett, J. B. Carter, and W. Zwaenepoel. Munin: Distributed sharedmemory based on type-spei� memory oherene. In 2nd Symposium on Prini-ples and Pratie of Parallel Programming (PPoPP'90), pages 168�176, Seattle,WA, USA, Marh 1990.[37℄ F. Berman, R. Wolski, H. Casanova, W. Cirne, H. Dail, M. Faerman, S. Figueira,J. Hayes, G. Obertelli, J. Shopf, G. Shao, S. Smallen, N. Spring, A. Su, andD. Zagorodnov. Adaptive Computing on the Grid Using AppLeS. IEEE Trans-ations on Parallel and Distributed Systems, 14(4):369�382, April 2003.

140 BIBLIOGRAPHY[38℄ B. N. Bershad and M. J. Zekauskas. Midway: Shared memory parallel program-ming with entry onsisteny for distributed memory multiproessors. TehnialReport CMU-CS-91-170, 1991.[39℄ R. Bhoedjand, T. Ruhl, R. Hofman, K. Langendoen, H. E. Bal, and M. F.Kaashoek. Panda: A portable platform to support parallel programming lan-guages. In Symposium on Experienes with Distributed and Multiproessor Sys-tems, pages 213�226, September 1993.[40℄ A. D. Birrel and B. J. Nielson. Implementing Remote Proedure Calls. ACMTransations on Computer Systems (TOCS), 2(1):39�59, February 1984.[41℄ R. Bisiani and A. Forin. Multilanguage parallel programming on heterogeneousmahines. IEEE Transations on Computers, 37:930�945, August 1998.[42℄ R. Bisiani and M. Ravishankar. Plus: a distributed shared-memory system. In17th Annual International Symposium on Computer Arhiteture (ISCA'90),pages 115�124, New York, NY, USA, 1990. ACM Press.[43℄ W. Blohinger, C. Sinz, and W. Kühlin. A Universal Parallel SAT Chek-ing Kernel. In International Conferene on Parallel and Distributed ProessingTehniques and Appliations (PDPTA'03), volume 4, pages 1720�1725, Las Ve-gas, Nevada, USA, 2003. CSREA Press.[44℄ R. Blumofe and P. Lisieki. Adaptive and Reliable Parallel Computing on Net-works of Workstations. In USENIX 1997 Annual Tehnial Conferene on UNIXand Advaned Computing Systems, pages 133�147, Anaheim, California, Jan-uary 1997.[45℄ R. D. Blumofe, M. Frigo, C. F. Joerg, C. E. Leiserson, and K. H. Randall. Dag-Consistent Distributed Shared Memory. In 10th International Parallel Proess-ing Symposium (IPPS '96), pages 132�141, Honolulu, Hawaii, April 1996.[46℄ R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall,and Y. Zhou. Cilk: An E�ient Multithreaded Runtime System. Journal ofParallel and Distributed Computing, 37(1):55�69, 1996.[47℄ R. D. Blumofe and C. E. Leiserson. Sheduling multithreaded omputations bywork stealing. In 35th Annual Symposium on Foundations of Computer Siene(FOCS'94), pages 356�368, November 1994.[48℄ N. Boden, D. Cohen, R. Felderman, A. Kulawik, C. Seitz, J. Seizovi, andW. Su. Myrinet: A Gigabit-per-seond Loal Area Network. IEEE Miro,15(1):29�36, February 1995.[49℄ A. Bouteiller, T. Herault, G. Krawezik, P. Lemarinier, and F. Cappello. MPICH-V: A multiprotool fault tolerant MPI. International Journal of High Perfor-mane Computing and Appliations, to appear, 2006.

BIBLIOGRAPHY 141[50℄ D. M. Breuker. Memory versus Searh in Games. PhD thesis, UniversiteitMaastriht, 1998.[51℄ J. M. Bull, L. A. Smith, M. D. Westhead, D. S. Henty, and R. A. Dawey. Abenhmark suite for high-performane Java. Conurreny: Pratie and Expe-riene, 12(6):375�388, 2000.[52℄ R. Buyya, D. Abramson, and J. Giddy. Nimrod/G: An arhiteture for a re-soure management and sheduling system in a global omputational grid. In4th International Conferene on High Performane Computing in Asia-Pai�Region, Beijing China, 2000.[53℄ J. Cao, S. A. Jarvis, S. Saini, and G. R. Nudd. Grid�ow: Work�ow managementfor grid omputing. In 3rd International Symposium on Cluster Computing andthe Grid (CCGrid03), pages 198�205, May 2003.[54℄ F. Cappello, S. Djilali, G. Fedak, T. Herault, F. Magniette, V. N�©ri, andO. Lodygensky. Computing on large sale distributed systems: XtremWebarhiteture, programming models, seurity, tests and onvergene with grid.Future Generation Computer Siene, to appear, 2005.[55℄ B. Carpenter, V. Getov, G. Judd, A. Skjellum, and G. Fox. MPJ: MPI-likemessage passing for Java. Conurreny: Pratie and Experiene, 12(11):1019�1038, 2000.[56℄ N. Carriero, E. Freeman, D. Gelernter, and D. Kaminsky. Adaptive parallelismand Piranha. Computer, 28(1):40�49, January 1995.[57℄ H. Casanova, D. Zagorodnov, F. Berman, and A. Legrand. Heuristis forsheduling parameter sweep appliations in grid environments. In 9th Het-erogeneous Computing Workshop, pages 349�363, 2000.[58℄ M. Castro, M. Sequeira, M. Costa, and P. Guedes. E�ient and �exible objetsharing. In International Conferene on Parallel Proessing, pages 128�137,Bloomingdale, IL, USA, August 1996.[59℄ J. S. Chase, F. G. Amador, E. D. Lazowska, H. M. Levy, and R. J. Little�eld.The Amber system: Parallel programming on a network of multiproessors.In 15th ACM Symposium on Operating Systems Priniples (SOSP'89), pages147�158, 1989.[60℄ D. Chen, C. Tang, B. Sanders, S. Dwarkadas, and M. Sott. Exploiting High-level Coherene Information to Optimize Distributed Shared State. In 9th ACMSymposium on Priniples and Pratie of Parallel Programming (PPoPP'03),San Diego, CA, June 2003.[61℄ A. Cherif. Repliation for Fault Tolerant Software Using a Funtional and At-tribute Grammar Based Computational Model. PhD thesis, Shool of Informa-tion Siene, Japan Advaned Institute of Siene and Tehnology, 1998.

142 BIBLIOGRAPHY[62℄ D. R. Cheriton. Preliminary thoughts on problem-oriented shared memory: adeentralized approah to distributed systems. ACM SIGOPS Operating Sys-tems Review, 19(4):26�33, 1985.[63℄ D.-M. Chiu, M. Kadansky, J. Provino, and J. Wesley. Experienes in program-ming a tra� shaper. In 5th IEEE Symposium on Computers and Communi-ations (ISCC 2000), pages 470�476, 2000.[64℄ W. Chrabakh and R. Wolski. GridSAT: A Cha�-based Distributed SAT Solverfor the Grid. In 2003 ACM/IEEE onferene on Superomputing (SC '03),page 37, Washington, DC, USA, 2003. IEEE Computer Soiety.[65℄ H. Dail, H. Casanova, and F. Berman. A deoupled sheduling approah for theGrADS program development environment. In 2002 ACM/IEEE Confereneon Superomputing (SC'02), pages 1�14, Baltimore, Maryland, USA, November2002.[66℄ E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi, K. Blakburn,A. Lazzarini, A. Arbree, R. Cavanaugh, and S. Koranda. Mapping abstrat om-plex work�ows onto grid environments. Journal of Grid Computing, 1(1):25�39,2003.[67℄ G. S. Delp. The arhiteture and implementation of MEMNET: a high�speedshared-memory omputer ommuniation network. PhD thesis, University ofDelaware, Newark, DE, USA, 1988.[68℄ M. den Burger, T. Kielmann, and H. E. Bal. Balaned multiasting: High-throughput ommuniation for grid appliations. In Superomputing 2005(SC05), page 46, Seattle, USA, November 2005.[69℄ S. Djilali, T. Herault, O. Lodygensky, T. Morlier, G. Fedak, and F. Capello.RPC-V: Towards fault-tolerant RPC for internet onneted desktop grids withvolatile nodes. In 2004 ACM/IEE Superomputing Conferene (SC'04), page 39,November 2004.[70℄ M. Dobber, G. Koole, and R. van der Mei. Dynami load balaning experimentsin a grid. In 5th International Symposium on Cluster Computing and the Grid(CCGrid05), pages 1063�1070, May 2005.[71℄ J. J. Dongarra, S. W. Otto, M. Snir, and D. Walker. A message passing standardfor MPP and workstations. Communiations of the ACM, 39:84�90, July 1996.[72℄ N. Drost, R. V. van Nieuwport, and H. E. Bal. Simple loality-aware o-alloation in peer-to-peer superomputing. In 6th International Workshop onGlobal Peer-2-Peer Computing (GP2P), Singapore, May 2005.[73℄ M. Dubois, C. Sheurih, and F. Briggs. Memory aess bu�ering in multipro-essors. ACM SIGARCH Computer Arhiteture News, pages 434�442, 1986.

BIBLIOGRAPHY 143[74℄ D. L. Eager, J. Zahorjan, and E. D. Lazowska. Speedup versus e�ieny inparallel systems. IEEE Transations on Computers, 38(3):408�423, Marh 1989.[75℄ N. Eén and N. Sörensson. An Extensible SAT-solver. In 6th International Con-ferene on Theory and Appliations of Satis�ability Testing (SAT 2003), volume2919 of Leture Notes in Computer Siene, pages 502�518, Santa MargheritaLigure, Italy, 2003. Springer.[76℄ T. Eikermann, H. Grund, and J. Henrihs. Performane issues of distributedMPI appliatins in a German gigabit testbed. In 6th European PVM/MPI Users'Group Meeting on Reent Advanes in Parallel Virtual Mahine and MessagePassing Interfae, pages 3�10. Springer-Verlag, LNCS 1697, 1999.[77℄ E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson. A surveyof rollbak-reovery protools in message-passing systems. ACM ComputingSurveys, 34(3):375�408, September 2002.[78℄ G. E. Fagg and J. J. Dongarra. FT-MPI: Fault tolerant MPI, supporting dy-nami appliations in a dynami world. In 7th European PVM/MPI Users'Group Meeting on Reent Advanes in Parallel Virtual Mahine and MessagePassing Interfae, pages 346�353, Balatonfured, Hungary, September 2000.Springer-Verlag, LNCS 1908.[79℄ T. Fahringer, A. Jugravu, S. Pllana, R. Prodan, C. S. Jr., and H.-L. Truong.ASKALON: A tool set for luster and grid omputing. Conurreny and Com-putation: Pratie and Experiene, 17(2�4):143�169, February 2005.[80℄ S. Feldman and C. Brown. Igor: A system for program debugging via reversibleexeution. In ACM SIGPLAN Noties, Workshop on Parallel and DistributedDebugging, pages 112�123, 1989.[81℄ R. Feldmann, P. Mysliwietz, and B. Monien. Game Tree Searh on a MassivelyParallel System. In H. J. van den Herik, I. S. Hershberg, and J. W. H. M.Uiterwijk, editors, Advanes in Computer Chess7, pages 203�218, Maastriht,The Netherlands, 1994. University of Limburg.[82℄ C. J. Fidge. Time stamps in message-passing systems that preserve the partialordering. Australian Computer Siene Communiations, 10(1):56�66, 1988.[83℄ R. Finkel and U. Manber. DIB � A Distributed Implementation of Baktrak-ing. ACM Transations of Programming Languages and Systems, 9(2):235�256,April 1987.[84℄ B. Fleish and G. Popek. Mirage: a oherent distributed shared memory design.In 12th ACM Symposium on Operating Systems Priniples (SOSP'89), pages211�223, New York, NY, USA, 1989. ACM Press.[85℄ I. Foster. Designing and Building Parallel Programs, hapter High PerformaneFortran. Addison Wesley, 1995.

144 BIBLIOGRAPHY[86℄ I. Foster. Globus Toolkit Version 4: Software for Servie-Oriented Systems. InIFIP International Conferene on Network and Parallel Computing, pages 2�13.Springer-Verlag LNCS 3779, 2005.[87℄ E. Freeman, S. Hupfer, and K. Arnold. JavaSpaes(TM) Priniples, Patterns,and Pratie. June 1999.[88℄ R. Friedman. Implementing hybrid onsisteny with high-level synhroniza-tion operations. In 12th Annual ACM symposium on Priniples of DistributedComputing (PODC'93), pages 229�240. ACM Press, 1993.[89℄ M. Frigo and V. Luhango. Computation-entri memory models. In 10thACM Symposium on Parallel Algorithms and Arhitetures (SPAA'98), pages240�249, Puerto Vallarta, Mexio, 1998.[90℄ E. Gabriel, M. Resh, T. Beisel, and R. Keller. Distributed omputing in a het-erogeneous omputing environment. In 5th European PVM/MPI Users' GroupMeeting on Reent Advanes in Parallel Virtual Mahine and Message PassingInterfae, pages 180�187. Springer-Verlag, LNCS 1497, 1998.[91℄ K. Gharahorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hen-nessy. Memory onsisteny and event ordering in salable shared-memory mul-tiproessors. In International Conferene on Computer Arhiteture, pages 376�387, 1998.[92℄ A. Gianelle, M. Sgaravatto, and R. Peluso. DataGrid: Job partitioning andhekpointing, 2003.[93℄ E. Godard, S. Setia, and E. L. White. DyReT: Software support for adap-tive parallelism on NOWs. In 15th IPDPS 2000 Workshops on Parallel andDistributed Proessing, pages 1168�1175. Springer-Verlag, LNCS 1800, 2000.[94℄ J. R. Goodman. Cahe onsisteny and sequential onsisteny. Tehnial Re-port 61, Marh 1989.[95℄ J.-P. Goux, S. Kulkarni, M. Yoder, and J. Linderoth. An Enabling Frameworkfor Master-Worker Appliations on the Computational Grid. In 9th IEEE Inter-national Symposium on High Performane Distributed Computing (HPDC'00),pages 43�50, Pittsburgh, Pennsylvania, USA, August 2000.[96℄ W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performane, portableimplementation of the MPI message passing interfae. Parallel Computing,22(6):789�828, September 1996.[97℄ J. Gu, P. W. Purdom, J. Frano, and B. W. Wah. Algorithms for the satis�a-bility (SAT) problem: A survey. DIMACS Series in Disrete Mathematis andTheoretial Computer Siene, 35:19�153, 1996.[98℄ A. Heddaya and H. Sinha. Distributed Parallel Computing in Mermera: MixingNonoherent Shared Memories. Tehnial Report 1996-005, 7, 1996.

BIBLIOGRAPHY 145[99℄ M. P. Herlihy and J. M. Wing. Linearizability: a orretness ondition foronurrent objets. ACM Transations on Programming Languages and Systems(TOPLAS), 12(3):463�492, July 1990.[100℄ E. Heymann, M. A. Senar, E. Luque, and M. Livny. Adaptive sheduling formaster-worker appliations on the omputational grid. In 1st IEEE/ACM In-ternational Workshop on Grid Computing (Grid 2000), pages 214�227, London,UK, 2000. Springer Verlag LNCS 1971.[101℄ C. Huang, G. Zheng, S. Kumar, and L. V. Kale. Performane evaluation ofAdaptive MPI. In ACM SIGPLAN Symposium on Priniples and Pratie ofParallel Programming (PPoPP'06), Marh 2006.[102℄ E. Huedo, R. S. Montero, and I. M. Llorente. A framework for adaptive exeu-tion in grids. Software � Pratie & Experiene, 34(7):631�651, 2004.[103℄ F. Huet, D. Caromel, and H. E. Bal. A high performane Java middleware witha real appliation. In 2004 ACM/IEEE onferene on Superomputing (SC '04),Pittsburgh, Pennsylvania, USA, November 2004.[104℄ P. W. Hutto and M. Ahamad. Slow memory: Weakening onsisteny to enhaneonurreny in distributed shared memories. In 10th International Confereneon Distributed Computing Systems, pages 302�311. IEEE Computer Soiety,1990.[105℄ G. G. R. III. E�ient vetor time with dynami proess reation and termina-tion. Journal of Parallel and Distributed Computing, 55(1):109�120, 1998.[106℄ K. A. Iskra, F. van der Linden, Z. W. Hendrikse, B. J. Overeinder, G. D. vanAlbada, and P. M. A. Sloot. The implementation of Dynamite: An environmentfor migrating PVM tasks. ACM SIGOPS Operating Systems Review, 34:40�55,July 2000.[107℄ C. F. Joerg. The Cilk System for Parallel Multithreaded Computing. PhD thesis,MIT Departement of Eletrial Engineering and Computer Siene, 1996.[108℄ D. B. Johnson. Distributed System Fault Tolerane Using Message Logging andChekpointing. PhD thesis, Rie University, 1989.[109℄ E. Jul, H. Levy, N. Huthinson, and A. Blak. Fine-grained mobility in theEmerald system. ACM Transations on Computer Systems, 6:109�133, 1988.[110℄ Y. F. K. Aida, W. Natsume. Distributed omputing with hierarhial master-worker paradigm for parallel branh and bound algorithm. In 3rd InternationalSymposium on Cluster Computing and the Grid (CCGrid03), pages 156�163,Tokyo, Japan, May 2003.[111℄ L. V. Kale, S. Kumar, and J. DeSouza. A malleable-job system for timesharedparallel mahines. In 2nd IEEE/ACM International Symposium on ClusterComputing and the Grid (CCGrid02), pages 230�237, May 2002.

146 BIBLIOGRAPHY[112℄ N. T. Karonis, B. Toonen, and I. Foster. MPICH-G2: A grid-enabled imple-mentation of the Message Passing Interfae. Journal of Parallel and DistributedComputing, 63(5):551�563, May 2003.[113℄ P. Keleher, A. L. Cox, S. Dwarkadas, and W. Zwaenepoel. TreadMarks: Dis-tributed shared memory on starndard workstations and operating systems. InWinter 1994 USENIX Conferene, pages 115�131, 1994.[114℄ P. Keleher, A. L. Cox, and W. Zwaenepoel. Lazy Release Consisteny forSoftware Distributed Shared Memory. In 19th Annual International Symposiumon Computer Arhiteture (ISCA'92), pages 13�21, 1992.[115℄ T. Kielmann, R. F. Hofman, H. E. Bal, A. Plaat, and R. A. Bhoedjang. MagPIe:MPI's olletive ommuniation operations for lustered wide area systems. InACM SIGPLAN Symposium on Priniples and Pratie of Parallel Program-ming (PPoPP'99), pages 131�140, Atlanta, Georgia, USA, Marh 1999.[116℄ M. F. K. Kirk L. Johnson and D. A. Wallah. CRL: High-performane all-software distributed shared memory. In 15th ACM Symposium on OperatingSystems Priniples (SOSP'89), pages 213�228, Copper Mountain Resort, CO,USA, 1995.[117℄ N. Krishnakumar and A. J. Bernstein. Bounded ignorane: a tehnique forinreasing onurreny in a repliated system. ACM Transations on DatabaseSystems, 19(4):586�625, 1994.[118℄ L. Lamport. Time, loks and the ordering of events in a distributed system.Communiations of the ACM, 21(7):558�565, July 1978.[119℄ L. Lamport. How to make a orret multiproess program exeute orretly ona multiproessor. IEEE Transations on Computers, 46(7):779�782, July 1997.[120℄ H.-K. Lee, B. Carpenter, G. Fox, and S. B. Lim. HPJava: Programming Sup-port for High-Performane Grid-Enabled Appliations. International Journalof Parallel Algorithms and Appliations (to appear).[121℄ T. J. Lehman, S. W. MLaughry, and P. Wyko�. T Spaes: The next wave.In Hawaii International Conferene on System Sienes (HICSS-32), January1999.[122℄ W. G. Levelt, M. F. Kaashoek, H. E. Bal, and A. S. Tanenbaum. A ompari-son of two paradigms for distributed shared memory. Software � Pratie andExperiene, 22(11):985�1010, 1992.[123℄ K. Li and P. Hudak. Memory oherene in shared virtual memory systems. In5th ACM Symposium on Priniples of Distributed Computing (PODC), pages229�239, New York, NY, 1986. ACM Press.

BIBLIOGRAPHY 147[124℄ K. Li, J. F. Naughton, and J. S. Plank. Real-time, onurrent hekpointingfor parallel programs. In 2nd ACM SIGPLAN Symposium on Priniples andPratie of Parallel Programming (PPoPP'90), pages 79�88, Marh 1990.[125℄ K. Li and R. Shaefer. A hyperube shared virtual memory system. In Inter-national Conferene on Parallel Proessing, pages 125�131, August 1989.[126℄ F. C. H. Lin and R. M. Keller. Distributed Reovery in Appliative Systems. In1986 International Conferene on Parallel Proessing, pages 405�412, UniversityPark, PA, USA, August 1986.[127℄ R. J. Lipton and J. S. Sandberg. PRAM: A salable shared memory. TehnialReport CS-TR-180-88, September 1988.[128℄ C. Liu, L. Yang, I. Foster, and D. Angulo. Design and evaluation of a resoureseletion framework for grid appliations. In 11th IEEE Symposium on HighPerformane Distributed Computing (HPDC'02), pages 63�72, July 2002.[129℄ D. B. Lomet. Proess struturing, synhronization, and reovery using atomiations. ACM SIGOPS Operating Systems Review, 11(2):128�137, April 1977.[130℄ J. Maassen. Method Invoation Based Communiation Models for Parallel Pro-gramming in Java. PhD thesis, Vrije Universiteit Amsterdam, 2003.[131℄ J. Maassen, T. Kielmann, and H. E. Bal. GMI: Flexible and e�ient groupmethod invoation for parallel programming. In 6th Workshop on Languages,Compilers, and Run-time Systems for Salable Computers (LCR-02), Washing-ton,DC,USA, Marh 2002.[132℄ S. Matsuoka and S. Kawai. Using tuple spae ommuniation in distributedobjet-oriented languages. In Conferene on Objet Oriented Programming Sys-tems, Languages and Appliations, pages 276�284, San Diego, CA, USA, 1988.[133℄ F. Mattern. Virtual time and global states of distributed systems. pages 215�226, 1989.[134℄ S. MGough, L. Young, A. Afzal, S. Newhouse, and J. Darlington. Work�ow en-atment in ieni. In UK e-Siene All Hands Meeting, pages 894�900, September2004.[135℄ R. G. Minnih. Mether: A Memory System for Network Multiproessors. PhDthesis, University of Pennsylvania, 1991.[136℄ H. H. Mohamed and D. H. J. Epema. Experienes with the KOALA o-alloating sheduler in multilusters. In 5th IEEE/ACM Symposium on ClusterComputing and the GRID (CCGrid05), pages 784�791, May 2005.[137℄ M. P. I. F. MPIF. MPI-2: Extensions to the Message-Passing Interfae. Teh-nial Report, University of Tennessee, Knoxville, 1996.

148 BIBLIOGRAPHY[138℄ S. Mullender, editor. Distributed Systems. Addison Wesley, 1993.[139℄ M. O. Neary and P. Cappello. Advaned Eager Sheduling for Java-BasedAdaptively Parallel Computing. In ACM Java Grande/ISCOPE Conferene,pages 56�65, November 2002.[140℄ B. Nitzberg and V. Lo. Distributed shared memory: A survey of issues andalgorithms. IEEE Computer, 24(8):52�60, August 1991.[141℄ T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood, T. Carver,K. Glover, M. R. Pook, A. Wipat, and P. Li. Taverna: A tool for the ompo-sition and enatment of bioinformati work�ows. Bioinformatis, 20(17):3045�3054, November 2004.[142℄ A. Patterson and J. Hennessy. Computer Organization and Design � The Hard-ware/Software Interfae. Morgan Kaufmann Publishers, 1998.[143℄ L. Peng, W. F. Wong, M. D. Feng, and C. K. Yuen. SilkRoad: A MultithreadedRuntime System with Software Distributed Shared Memory for SMP Clusters.In IEEE International Conferrene on Cluster Computing (Cluster2000), pages243�249, November 2000.[144℄ A. Petitet, S. Blakford, J. Dongarra, B. Ellis, G. Fagg, K. Rohe, and S. Vad-hiyar. Numerial libraries and the grid: the GrADS experiments with SaLA-PACK. In 2001 ACM/IEEE Conferene on Superomputing (SC'01), November2001.[145℄ J. Plank. E�ient Chekpointing on MIMD arhitetures. PhD thesis, PrinetonUniversity, 1993.[146℄ J. Proti, M. Tomasevi, and V. Milutinovi. Distributed shared memory: Con-epts and systems. IEEE Parallel and Distributed Tehnology: Systems andTehnology, 4(2):63�79, June 1996.[147℄ K. R. M. Rahid Guerraoui, Benoit Garbinato. The GARF Library Of DSMConsisteny Models. In 6th ACM SIGOPS European Workshop, pages 51�56,1994.[148℄ U. Ramahandran and M. Y. A. Khalidi. An implementation of distributedshared memory. Software � Pratie and Experiene, 21(5):443�464, May 1991.[149℄ B. Randell. System struture for software fault tolerane. IEEE Transationson Software Engineering, 1(2):220�232, 1975.[150℄ D. A. Reed, C. L. Mendes, and C. da Lu. The Grid: Bluepring for a NewComputing Infrastruture (Seond Edition), hapter Appliation Tuning andAdaptation. Morgan Kaufmann Publishers, 2004.

BIBLIOGRAPHY 149[151℄ R. L. Ribler, J. S. Vetter, H. Simiti, and D. A. Reed. Autopilot: Adaptive on-trol of distributed appliations. In 7th IEEE Symposium on High-PerformaneDistributed Computing (HPDC'98), pages 172�179, Chiago, IL, USA, July1998.[152℄ J. Robinson, S. Russ, B. Hekel, and B. Flahs. A task migration implementa-tion of the Message-Passing Interfae. In 5th IEEE International Symposium onHigh Performane Distributed Computing (HPDC'96), pages 61�68, Syrause,NY, USA, August 1996. IEEE Computer Soiety.[153℄ D. J. Sales and M. S. Lam. The design and evaluation of a shared objet systemfor distributed memory mahines. In 1st USENIX Symposium on OperatingSystems Design and Implementation, pages 101�114, November 1994.[154℄ K. Seymour, H. Nakada, S. Matsuoka, J. Dongarra, C. Lee, and H. Casanova.Overview of GridRPC: A Remote Proedure Call API for grid omputing. In3rd International Workshop on Grid Computing (GRID 2002), pages 274�278,Baltimore, MD, USA, November 2002. Springer Verlag, LCNS 2536.[155℄ G. Shao, F. Berman, and R. Wolski. Master/slave omputing on the grid. InHeterogeneous Computing Workshop, pages 3�16, 2000.[156℄ E. H. Siegel and E. C. Cooper. Implementing distributed Linda in StandardML. Tehnial Report CMU-CS-91-151, Carnegie Mellon University.[157℄ J. P. Singh, W.-D. Weber, and A. Gupta. SPLASH: Stanford parallel applia-tions for shared-memory. SIGARCH Computer Arhiteture News, 20(1):5�44,1992.[158℄ A. Singla, U. Ramahandran, and J. Hodgins. Temporal notions of synhroniza-tion and onsisteny in Beehive. In 9th Annual ACM symposium on ParallelAlgorithms and Arhitetures (SPAA'97), pages 211�220. ACM Press, 1997.[159℄ H. Soh, S. Haque, W. Liao, and R. Buyya. Advaned Parallel and DistributedComputing, hapter Grid Programming Models and Environments. Nova Si-ene Publishers, 2006.[160℄ G. Stellner. CoChek: Chekpointing and proess migration for MPI. In 10thInternational Parallel Proessing Symposium, pages 526�531. IEEE ComputerSoiety, 1996.[161℄ M. Stumm and S. Zhou. Algorithms implementing distributed shared memory.IEEE Computer, 23:54�64, May 1990.[162℄ V. S. Sunderam. PVM:a framework for parallel distributed omputing. Con-urreny: Pratie and Experiene, 2(4):315�339, Deember 1990.[163℄ H. Tamaki and T. Sato. OLD Resolution with Tabulation. In 3rd InternationalConferene on Logi Programming, pages 84�98, London, UK, July 1986.

150 BIBLIOGRAPHY[164℄ Y. Tanaka, H. Nakada, S. Sekiguhi, T. Suzumura, and S. Matsuoka. Ninf-G:A referene implementation of RPC-based programming middleware for gridomputing. Journal of Grid Computing, 1(1):41�51, 2003.[165℄ A. S. Tanenbaum and M. van Steen. Distributed Systems, Priniples andParadigms. Prentie Hall, 2002.[166℄ T. Tannenbaum, D. Wright, K. Miller, and M. Livny. Condor � a distributedjob shedurer. In T. Sterling, editor, Beowulf Cluster Computing with Linux.MIT Press, Otober 2001.[167℄ K. Taura, K. Kaneda, T. Endo, and A. Yonezawa. Phoenix: A parallel pro-gramming model for aommodating dynamially joining/leaving resoures. InACM SIGPLAN Symposium on Priniples and Pratie of Parallel Program-ming (PPoPP'03), pages 216�229, Otober 2003.[168℄ I. Taylor, M. Shields, and I. Wang. Resoure management for the Triana peer-to-peer servies. In J. Nabrzyski, J. M. Shopf, and J. Weglarz, editors, GridResoure Management, pages 451�462. Kluwer Aademi Publisher, 2004.[169℄ D. Thain, T. Tannenbaum, and M. Livny. Distributed omputing in pratie:The Condor experiene. Conurreny and Computation: Pratie and Experi-ene, 17(2�4):323�356, February�April 2005.[170℄ F. J. Torres-Rojas, M. Ahamad, and M. Raynal. Timed onsisteny for shareddistributed objets. In 18Th Annual ACM Symposium on Priniples of Dis-tributed Computing (PODC'99), pages 163�172. ACM Press, 1999.[171℄ S. S. Vadhiyar and J. J. Dongarra. SRS:a framework for developing malleableand migratable parallel appliations for distributed systems. Parallel ProessingLetters, 13(2):291�312, 2003.[172℄ S. S. Vadhiyar and J. J. Dongarra. Self adaptivity in Grid omputing. Conur-reny and Computation: Pratie and Experiene, 17(2�4):235�257, 2005.[173℄ S. S. Vadhiyar and J. J. Dongarra. Self adaptivity in grid omputing. Conur-reny and Computation: Pratie and Experiene, 17(2�4):235�257, 2005.[174℄ N. H. Vaidya. Impat of hekpoint lateny on overhead ratio of a hekpointingsheme. IEEE Transations on Computers, 46(8):942�947, August 1997.[175℄ R. V. van Nieuwpoort. E�ient Java-Centri Grid Computing. PhD thesis,Vrije Universiteit Amsterdam, 2003.[176℄ R. V. van Nieuwpoort, T. Kielmann, and H. E. Bal. E�ient load balaning forwide-area divide-and-onquer appliations. In 8th ACM SIGPLAN symposiumon Priniples and praties of parallel programming (PPoPP '01), pages 34�43,New York, NY, USA, 2001. ACM Press.

BIBLIOGRAPHY 151[177℄ R. V. van Nieuwpoort, J. Maassen, H. E. Bal, T. Kielmann, and R. Veldema.Wide-area parallel omputing in Java. In ACM Java Grande Conferene, pages8�14, San Franiso, CA, USA, June 1999.[178℄ R. V. van Nieuwpoort, J. Maassen, T. Kielmann, and H. E. Bal. Satin: Simpleand e�ient Java-based grid programming. Salable Computing: Pratie andExperiene, 6(3):19�32, September 2005.[179℄ R. V. van Nieuwpoort, J. Maassen, G. Wrzesinska, R. Hofman, C. Jaobs,T. Kielmann, and H. E. Bal. Ibis: a �exible and e�ient Java based gridprogramming environment. Conurreny and Computation: Pratie and Ex-periene, 17(7�8):1079�1107, June 2005.[180℄ G. von Laszewski, I. Foster, J. Gawor, and P. Lane. A Java Commodity GridKit. Conurreny and Computation: Pratie and Experiene, 13(8�9):643�662,2001.[181℄ R. Wolski, N. Spring, and J. Hayes. The network weather servie: A distributedresoure performane foreasting servie for metaomputing. Journal of FutureGeneration Computing Systems, 15(5�6):757�768, Otober 1999.[182℄ S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The SPLASH-2programs: haraterization and methodologial onsiderations. In 22nd AnnualInternational Symposium on Computer Arhiteture (ISCA '95), pages 24�36,New York, NY, USA, 1995. ACM Press.[183℄ N. Wooy, S. Choi, H. Jung, J. Moon, H. Y. Yeom, T. Park, and H. Park.MPICH-GF: Providing fault tolerane on grid environments. In 3rd IEEE/ACMSymposium on Cluster Computing and the Grid (CCGrid03), May 2003.[184℄ I.-C. Wu and H. T. Kung. Communiation omplexity for parallel divide-and-onquer. In 32nd Annual Symposium on Foundations of Computer Siene,pages 151�162, San Juan, Puerto Rio, 1991.[185℄ J. W. Young. A �rst order approximation to the optimum hekpoint interval.Communiations of the ACM, 17(9):530�531, September 1974.[186℄ H. Yu and A. Vadhat. Design and Evaluation of a Conit-Based ContinuousConsisteny Model for Repliated Servies. ACM Transations on ComputerSystems, 20(3):239�282, 2002.[187℄ J. Yu and R. Buyya. A novel arhiteture for realizing grid work�ow using tuplespaes. In 5th IEEE/ACM International Workshop on Grid Computing (Grid2004), pages 119�128, November 2004.[188℄ J. Yu and R. Buyya. A taxonomy of work�ow management systems for gridomputing. Journal of Grid Computing, 3(3�4):171�200, September 2005.

152 BIBLIOGRAPHY

Complexiteit en verandering ingrid omputingHet doel van grid omputing is het aan elkaar koppelen en integreren van vershillendeomputersystemen zodat ze gebruikt kunnen worden als een virtuele superomputer,die we een grid of een gridomgeving noemen. De rekenkraht van zo'n virtuele su-peromputer is vele malen groter dan de rekenkraht van een traditionele parallelleomputer. Een grid kan daarom gebruikt worden om uitermate ingewikkelde pro-blemen op te lossen die niet opgelost zouden kunnen worden door een traditionelesuperomputer.De omplexiteit van gridomgevingen is ehter ook vele malen groter dan de om-plexiteit van traditonele superomputers. In de eerste plaats zijn gridomgevingenheterogeen, dat wil zeggen dat ze uit systemen bestaan die mogelijk vershillend zijnvoor wat betreft proessoren en besturingssytemen. De vershillen in proessorsnel-heden kunnen enorm zijn. Ook de kwaliteit van netwerkverbindingen varieert vansnelle LAN netwerken tot langzame WAN netwerken.In de tweede plaats zijn gridomgevingen dynamish. Ze bestaan uit grote hoeveel-heden omputers en daarom is de kans dat sommige omputers uitvallen groot. Eengedeelte van de door een appliatie gebruikte omputers kan ook overgenomen wordendoor een andere appliatie met een hogere prioriteit. Ook varieert de belasting opomputers en netwerken ontinu.Daarom is het shrijven van gridappliaties een uitermate ingewikkelde taak. Deprogrammeur moet een goed begrip hebben van niet alleen het appliatiedomein maarook van omplexe problemen van het domein van parallel programmeren, zoals hetoptimaliseren van de ommuniatie tussen de proessoren, foutbestendigheid, adap-tiviteit, enzovoort.In deze dissertatie kijken we naar mogelijkheden om het shrijven van gridappli-aties te vergemakkelijken. We geloven dat dit doel bereikt kan worden door gebruikvan gridprogrammeeromgevingen. Een gridprogrammeeromgeving is een verzamelingprogramma's, zoals ompilers en bibliotheken, die bepaalde taken van de gridpro-grammeur overnemen, bijvoorbeeld het verdelen van taken tussen proessoren, hetoptimaliseren van de ommuniatie of het foutbestendig maken van de appliatie.De gridprogrammeeromgeving die beshreven wordt in dit proefshrift spitst zihtoe op een bepaalde klasse van appliaties, namelijk verdeel-en-heersappliaties. Ap-

154 SAMENVATTINGpliaties van die soort splitsen een probleem op in deelproblemen, totdat het werkzover opgesplitst is dat het eenvoudig uitgevoerd kan worden. Tenslotte worden alledeeloplossingen geombineerd tot het uiteidelijke resultaat. Verdeel-en-heersappliatieskunnen e�iënt worden uitgevoerd op parallelle omputers door vershillende taken(deelproblemen) te laten berekenen door vershillende proessoren.Onze programmeeromgeving heet Satin en is gebaseerd op een prototype dat isontwikkeld door Rob van Nieuwpoort. Van Nieuwpoorts prototype implementeerteen e�iënt taakverdelingsalgoritme: Cluster-aware Random Work Stealing (CRS).CRS is gebaseerd op het stelen (overnemen) van taken van willekeurige mahines inhet systeem. Dankzij dit algoritme kunnen Satin-appliaties erg e�iënt draaien inomgevingen met langzame WAN netwerken.In hoofdstuk 2 van dit proefshrift beshrijven en lassi�ieren we de bestaandegridprogrammeeromgevingen en beshrijven we het Satin prototype. We leggen uitwat er nog moet gebeuren om dit prototype om te zetten in een volwaardige gridpro-grammeeromgeving.In hoofstuk 3 onderzoeken we hoe we verdeel-en-heersappliaties foutbestendig enmalleable kunnen maken. We zeggen dat een appliatie foutbestendig is als zij uit-vallende proessoren kan tolereren. We noemen een appliatie malleable als ze opeen steeds veranderende verzameling proessoren kan draaien, dat wil zeggen, datproessoren kunnen komen en gaan terwijl de appliatie draait. Beide eigenshap-pen zijn belangrijk voor appliaties die in dynamishe gridomgevingen draaien. Webeshrijven een verzameling algoritmes die verdeel-en-heersappliaties foutbestendigen malleable maken. De basis van die algoritmes is steeds dezelfde: de resultaten dieverloren gingen door het wegvallen van een proessor worden herberekend. Ehter,om de hoeveelheid werk dat herberekend moet worden te minimalizeren, gebruikenwe vershillende tehnieken:� We gebruiken de resultaten van zogenaamde weestaken opnieuw. Weestakenzijn taken (deelproblemen) die werden gestolen van weggevallen proessoren.� Als we weten dat sommige proessoren binnenkort niet meer ter beshikkingvan de gridappliatie zullen staan, slaan we de door die proessoren berekenderesultaten op, om ze later opnieuw te kunnen gebruiken.� We slaan regelmatig de resultaten van deelproblemen op op een vaste shijf. Alseen proessor wegvalt, kunnen wij de resultaten van deze proessor terughalenvan de harde shijf en ze hergebruiken.Dankzij deze algoritmen kan een appliatie vershillende situaties overleven diekenmerkend zijn voor een grid omgeving:� Een appliatie kan blijven draaien ondanks wegvallende proessoren.� Proessoren kunnen worden toegevoegd aan of weggehaald van een draaiendeappliatie.� Een appliatie kan gemigreerd worden naar een andere verzameling proessoren.

155� Een appliatie kan worden gestopt en later opnieuw gestart op een vershillendeverzameling proessoren.In hoofdstuk 4 kijken we naar het probleem van seletie van proessoren en adap-tiviteit. Om e�iënt te kunnen draaien heeft een appliatie een juiste verzameling pro-essoren nodig. De hoeveelheid proessoren moest juist zijn, de proessoren moetenniet te langzaam zijn en de netwerkverbindingen tussen proessoren moeten voldoendesnel zijn. De vereisten vershillen per appliatie. Vaak moet de verzameling proes-soren worden aangepast tijdens de berekening omdat de belasting van proessoren ennetwerkverbindingen kan veranderen, een gedeelte van de proessoren kan wegvallen,of sommige fasen van de apliatie meer rekenkraht nodig hebben.Van oudsher werden deze problemen opgelost door middel van een performanemodel. Een dergelijk model is een wiskundige formule die gebruikt wordt om te bereke-nen hoe snel een appliatie zou draaien op een gegeven verzameling proessoren. Omde optimale verzameling proessoren te seleteren worden vershillende verzamelin-gen geëvalueerd door middel van een performane model. De verzameling waaropde appliatie het snelst zou draaien wordt gekozen. Tijdens de berekening wordt deverzameling proessoren herhaaldelijk opnieuw geëvalueerd. Als er een betere verza-meling proessoren is gevonden wordt de appliatie daarnaar gemigreerd, waardoorzij zih kan aanpassen aan de veranderingen in de gridomgeving waarin ze draait.Het vinden van een performane model voor een appliatie is ehter uitermategeomplieerd. Daarom wordt in dit hoofdstuk een alternative benadering gepre-senteerd. In deze benadering wordt een appliatie op een willekeurige verzamelingproessoren gestart. Terwijl de appliatie loopt worden statistishe gegevens verza-meld, onder meer over de mate waarin de appliatie een beroep doet op de proessorof het netwerk. Deze gegevens worden gebruikt om af te leiden hoe de verzamelingproessoren aangepast kan worden om de appliatie e�iënter te laten draaien. Welaten zien dat we met deze benadering:� De verzameling proessoren automatish kunnen aanpassen aan de behoeftenvan de appliatie. Als sommige fasen van de appliatie bijvoorbeeld meerrekenkraht nodig hebben, wordt de verzameling proessoren automatish uit-gebreid.� De appliatie automatish kunnen migreren van een zwaar belaste verzamelingproessoren naar een andere, mogelijk minder zwaar belaste, verzameling.� Proessoren met langzame netwerkverbindingen kunnen laten weghalen.� Nieuwe proessoren kunnen toevoegen als een gedeelte van de proessoren weg-valt.In hoofdstuk 5 kijken we naar het programmeermodel van onze omgeving. Eenbelangrijk nadeel van het verdeel-en-heersmodel is het ontbreken van globale vari-abelen. Daarom breiden we het verdeel-en-heersmodel uit met globale objeten diedoor alle taken gelezen en geshreven kunnen worden. Een belangrijk probleembij het implementeren van zulke globale objeten is de onsisteny. Traditionele

156 SAMENVATTINGonsisteny-modellen zijn moeilijk e�iënt te implementeren in gridomgevingen om-dat netwerkverbindingen traag zijn en omdat de verzameling proessoren waarop deappliatie draait kan veranderen. Daarom hebben wij een nieuw onsisteny-modelontwikkeld onder de naam guard onsisteny. In dit model de�nieert de programmeurwanneer de objeten onsistent zijn door middel van booleaanse guard funtions. Deprogrammeeromgeving zorgt er niet voor dat alle kopieën van een globaal objetidentiek zijn. Het zorgt er alleen voor dat de guardfunties altijd true retourneren.In dit hoofdstuk worden globale objeten gebruikt om een aantal nieuwe appliatieste implementeren om aan te tonen dat deze appliaties e�iënt kunnen draaien ingridomgevingen.Het resultaat van deze dissertatie is een programmeeromgeving die het eenvoudigermaakt om gridappliaties te shrijven. Grid-gerelateerde problemen zoals ommu-niatie, taakverdeling tussen proessoren of foutbestendigheid worden automatishopgelost door de programmeeromgeving. De appliaties die geïmplementeerd wor-den binnen deze programmeeromgeving kunnen e�iënt draaien in gridomgevingenen ze zijn bestand tegen situaties die kenmerkend zijn voor dat soort omgevingen,zoals wegvallende proessoren of veranderende belasting op proessoren en netwerkverbindingen.

Publiations1. Gosia Wrzesi«ska, Jason Maassen and Henri E. Bal. Self-Adaptive Appliationson the Grid. ACM SIGPLAN Symposium on Priniples and Pratie of ParallelProgramming (PPoPP'07), pp. 121�129, San Jose, CA, USA, 14-17 Marh2007.2. Gosia Wrzesi«ska, Jason Maassen, Kees Verstoep and Henri E. Bal. Satin++:Divide-and-Share on the Grid. 2nd IEEE International Conferene on e-Sieneand Grid Computing, Amsterdam, The Netherlands, 4-6 Deember 2006.3. Gosia Wrzesi«ska, Rob V. van Nieuwpoort and Henri E. Bal. Fault-tolerane,Malleability and Migration for Divide-and-Conquer Appliations on the Grid.19th International Parallel and Distributed Proessing Symposium (IPDPS 2005),4�8 April 2005, Denver, CO, USA.4. Gosia Wrzesi«ska, Rob V. van Nieuwpoort, Jason Maassen, Thilo Kielmann,and Henri E. Bal. Fault-tolerant Sheduling of Fine-grained Tasks in GridEnvironments. International Journal of High Performane Appliations, Vol.20, No. 1, pp. 103�114, Spring 2006.5. Rob V. van Nieuwpoort, Jason Maassen, Gosia Wrzesi«ska, Thilo Kielmann,and Henri E. Bal. Adaptive Load Balaning for Divide-and-Conquer Grid Ap-pliations. Journal of Superomputing, 2006.6. Rob V. van Nieuwpoort, Jason Maassen, Gosia Wrzesi«ska, Rutger Hofman,Ceriel Jaobs, Thilo Kielmann, and Henri E. Bal. Ibis: a Flexible and E�-ient Java-based Grid Programming Environment Conurreny & Computation:Pratie & Experiene, Vol. 17, No. 7�8, pp. 1079�1107, June�July 2005.

