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Chapter 1Introdu
tion1.1 Motivation and goalsGrid environments integrate heterogeneous and geographi
ally-distributed 
omputingresour
es into a single system. Many appli
ations 
an bene�t from su
h environments,for example 
ollaborative appli
ations, whi
h enable remote 
ollaborations and shar-ing of 
omputational resour
es or data-intensive appli
ations, whi
h pro
ess datalo
ated on geographi
ally distributed resour
es. In this thesis, we fo
us on anotherinteresting 
lass of appli
ations: distributed super
omputing appli
ations. Distributedsuper
omputing appli
ations use 
omputational grids to solve 
omputational 
hal-lenges that 
ould not be ta
kled on a traditional parallel systems. Grids provide
omputational power many times larger than that of a traditional super
omputer.However, the 
omplexity of Grid environments also is many times larger than that oftraditional parallel ma
hines. Grid environments are inherently heterogeneous. Grids
onsist of ma
hines with various pro
essor ar
hite
tures and various operating sys-tems. Pro
essor speeds vary dramati
ally. Finally, the quality of network 
onne
tionsvaries from low-laten
y Lo
al Area Networks (LANs) to high-laten
y and possiblylow-bandwidth Wide Area Networks (WANs). Grid environments are also inherentlydynami
. The availability of resour
es is 
onstantly 
hanging. Pro
essors may 
rashor be
ome unavailable be
ause they are 
laimed by a higher-priority appli
ation orbe
ause a reservation has ended. New pro
essors may be
ome available. Also, theload on the resour
es, both network links and pro
essors, is 
onstantly 
hanging.In order to a
hieve good performan
e, grid appli
ations need to be able to toleratehigh wide-area laten
ies (i.e., they need to be laten
y insensitive) and possibly lowbandwidths. They need to be portable (i.e., able to run on multiple ar
hite
tureswithout the need of re
ompilation) and able to e�
iently utilize pro
essors with vari-ous speeds (i.e. the fast pro
essors should not have to wait for the slow ones. Finally,they need to adapt to dynami
 
hara
teristi
s of the environment.Writing grid-enabled appli
ations is therefore an inherently 
omplex task. Theprogrammer does not only need to have deep understanding of the appli
ation problemdomain, but also of the 
omplex parallel and distributed programming issues su
h



2 CHAPTER 1. INTRODUCTIONas: optimizing the inter-pro
essor 
ommuni
ation, load balan
ing, fault toleran
e,adaptivity et
. Be
ause of this 
omplexity, few grid-enabled appli
ations have beendeveloped until now and the tremendous power of grid environments is still mostlyunused. Therefore, the pro
ess of 
reating grid appli
ations needs to be simpli�ed.We believe that this goal 
an be a
hieved with grid programming frameworks(high-level grid programming environments). A framework is a set of tools (su
h as
ompiler, runtime system, libraries et
.) that forms a layer of abstra
tion between theappli
ation and the low-level grid infrastru
ture. Frameworks present a programmerwith a high-level programming model that abstra
ts away the details of the underly-ing platform. Be
ause the programming model is high-level, it does not support allpossible appli
ations, but only a 
ertain 
lass of appli
ations. However, the advan-tage of narrowing the supported appli
ation set is that most of the grid related issues
an be resolved automati
ally by the framework software. In 
ontrast, low-level pro-gramming environments (e.g., message-passing environments su
h as MPICH [112℄)support a wider range of appli
ations, but the appli
ation programmer is responsiblefor dealing with grid issues.In this work we fo
us on the 
lass of divide-and-
onquer appli
ations. Divide-and-
onquer is a popular and e�
ient paradigm for writing grid appli
ations [32, 139℄.Divide-and-
onquer algorithms operate by splitting the problem into subproblems andthen solving them re
ursively. The divide-and-
onquer paradigm is a generalizationof the popular master-worker paradigm. The task graph of a divide-and-
onquerappli
ation is hierar
hi
ally stru
tured. Therefore, su
h appli
ations 
an be exe
utedwith ex
ellent 
ommuni
ation lo
ality in grid environments, whi
h are usually alsohierar
hi
al: they 
onsist of multiple 
lusters or super
omputers with low-laten
yintra-
luster 
ommuni
ation and high-laten
y inter-
luster links.The divide-and-
onquer paradigm has broad appli
ability in many �elds su
h asastrophysi
s, bioinformati
s, 
omputational geometry, numeri
al methods, games andother sear
h and optimization problems. Also, all master-worker 
omputations 
anbe expressed in the divide-and-
onquer model.In earlier work by Rob van Nieuwpoort [175℄ a prototype divide-and-
onquerframework 
alled Satin was designed and implemented. The Satin framework 
on-sists of a 
ompiler and a runtime system, both written entirely in Java. Java is alsoused to write appli
ations with Satin. This allows the appli
ation to run over het-erogeneous ar
hite
tures without the need of re
ompilation (thanks to Java's `writeon
e, run anywhere' property). Satin extends the sequential Java language with twosimple divide-and-
onquer primitives: spawn and syn
. The programmer writes theappli
ation in a re
ursive way and annotates the sequential 
ode with those primitivesto 
reate a grid appli
ation. The Satin 
ompiler generates the ne
essary 
ommuni
a-tion and load-balan
ing 
ode. Satin uses a grid-aware load-balan
ing strategy 
alledCluster-aware Random Work Stealing (CRS) [176℄ whi
h allows Satin appli
ationsto run very e�
iently in a wide-area setting [178℄. Also, be
ause work stealing isa dynami
 load balan
ing strategy [175℄, it allows e�
ient usage of pro
essors withvarious speeds and/or variable load.The 
ombination of Java and CRS allows Satin to resolve a number of grid issues,namely the heterogeneity of pro
essor ar
hite
tures, the heterogeneity of pro
essor



1.2. HETEROGENEITY AND CHANGE 3speeds and large wide-area laten
ies. However, there is still a large number of problemsthat need to be solved before Satin be
omes a mature grid programming framework.In the following se
tions, we will des
ribe those problems and sket
h the solutionswhi
h will be presented in more detail in the remaining part of this thesis. Theresult of the work presented in this thesis is a full-�edged, mature grid programmingframework.1.2 Heterogeneity and 
hangeAn important problem in grid 
omputing is resour
e sele
tion: whi
h resour
es andhow many resour
es should we use to a
hieve good performan
e? Even in traditionalparallel environments (single 
luster or super
omputers) �nding the optimal numberof pro
essors is a di�
ult task and is often solved in a trial-and-error fashion. In gridenvironments, this problem is an order of magnitude harder be
ause of the hetero-geneity of resour
es. Even though Satin 
an handle the heterogeneity of pro
essorar
hite
tures and speeds and 
an run e�
iently on high-laten
y networks, there arestill 
ombinations of resour
es that will result in very poor performan
e. For example,when some very slow pro
essors are used, the performan
e gain they might provide willnot outweigh the load-balan
ing and 
ommuni
ation overhead they introdu
e. Also,if bandwidth on a 
ertain link is lower than a 
ertain minimal bandwidth (whi
h isdi�erent for ea
h appli
ation) the performan
e of the appli
ation dramati
ally de-teriorates. Finally, using more pro
essors than the appli
ation's level of parallelismallows will result in poor resour
e utilization.Another problem is the dynami
 
hara
teristi
s of the grid environment. Theavailability of resour
es 
onstantly 
hanges. Grids are inherently more unreliable thantraditional parallel 
omputers or 
lusters. The number of pro
essors and network linksis mu
h larger and therefore the mean-time-to-failure be
omes mu
h shorter. There isno 
entralized 
ontrol, so (a part of) our resour
es 
an be turned o� for maintenan
eor simply given to another user. The resour
es are shared by many users, so they
an be
ome overloaded. To survive in su
h an environment, the appli
ation needs tobe fault tolerant, that is, able to 
ontinue working in the presen
e of pro
essor andnetwork failures. In order to not only survive but also a
hieve good performan
e, theappli
ation needs to adapt to 
hanging 
onditions. This involves malleability, whi
his the ability to 
hange the number of pro
essors used on the �y and migratability,whi
h is the ability to transfer to another set of resour
es during the appli
ation run.In 
hapters 3 and 4 we will dis
uss the solutions to those problems. First, wedis
uss the question of providing fault toleran
e, malleability and migratability todivide-and-
onquer appli
ations. In 
hapter 3, we will present a simple algorithmthat provides fault toleran
e, malleability and migratability to divide-and-
onquerappli
ations. Using this algorithm, the appli
ations 
an handle joining/leaving pro-
essors and migrate with an overhead that is 
lose to zero.In 
hapter 4, we will show how to use malleability to provide a solution to theadaptation and the resour
e sele
tion problem. Existing solutions to those problemsrequire providing a performan
e model for an appli
ation. Su
h a performan
e model



4 CHAPTER 1. INTRODUCTIONis used to predi
t the running time of the appli
ation on a given set of resour
es.Various resour
e sets are 
ompared using the performan
e model and the resour
eset whi
h yields the shortest runtime is sele
ted for exe
ution. To provide adaptiv-ity, this resour
e sele
tion phase is repeated during appli
ation exe
ution, either atregular intervals or when performan
e degradation is dete
ted. Constru
ting per-forman
e models, however, is inherently di�
ult. Creating su
h a model requiresexpertise whi
h an appli
ation programmer might not have. In 
hapter 4, we dis
ussan alternative approa
h to appli
ation adaptation and resour
e sele
tion. We start anappli
ation on any set of resour
es. During the appli
ation run, we 
olle
t statisti
sabout the run and use them to dedu
e the resour
e requirements of the appli
ation.Next, we adjust the resour
e set the appli
ation is running on by adding or remov-ing nodes. Thus, we are using malleability to a
hieve adaptivity. This approa
hdoes not ne
essarily result in the optimal resour
e set. However, it allows avoidingvarious performan
e bottlene
ks, su
h as slow WAN links or overloaded pro
essors.We demonstrate the working of this approa
h in various s
enarios typi
al for gridenvironments and show that signi�
ant performan
e improvements 
an be a
hieved.1.3 Data sharing in dynami
 environmentsDivide-and-
onquer is a paradigm with a broad range of appli
ations. However, animportant disadvantage is the la
k of global state. The only way of sharing databetween tasks is by expli
it parameter passing and returning results. This modelturns out to be insu�
ient for many appli
ations. One 
lass of su
h appli
ations
onsists of programs that pass large data stru
tures as parameters. With pure divide-and-
onquer, those large parameters need to be 
opied ea
h time a task is exe
utedremotely (stolen), while 
opying the parameters on
e and reusing them later wouldbe more e�
ient. Another 
lass of appli
ations 
onsists of programs that need toshare data between independent tasks. In pure divide-and-
onquer, this form of datasharing is not possible. Bran
h-and-bound appli
ations belong to this 
lass. Sharingthe best known solution between all the pro
essors taking part in the 
omputationallows pruning large parts of the sear
h tree. Another example is game-tree sear
hwhere a transposition table is shared to avoid evaluating the same position twi
e.In 
hapter 5, we investigate the possibility of extending the divide-and-
onquermodel with a shared data abstra
tion. We propose a divide-and-share model: thedivide-and-
onquer model extended with a shared data abstra
tion � shared obje
ts.Implementing a shared data abstra
tion on the Grid is a 
hallenging problem. Pro-viding strong 
onsisten
y while maintaining high performan
e is infeasible even ontightly 
onne
ted systems like 
lusters of workstations. In grid environments, it iseven harder due to large wide-area laten
ies and due to the fa
t that grid environ-ments are inherently dynami
. Lu
kily, many appli
ations 
an tolerate weaker 
on-sisten
y models. In fa
t, only appli
ations that 
an tolerate weaker 
onsisten
y willbe able to e�
iently run in grid environments. Many 
onsisten
y models have beenproposed but none of them are suitable for divide-and-
onquer grid appli
ations. Aswe will explain in more detail in 
hapter 5, they are either too expensive to imple-



1.4. CONTRIBUTIONS 5ment in grid environments, or do not �t the needs of our appli
ations. Therefore,we will introdu
e a new, relaxed 
onsisten
y model, whi
h we 
all guard 
onsisten
y.With guard 
onsisten
y, the programmer 
an de�ne the 
onsisten
y requirements ofan appli
ation by means of boolean guard fun
tions. A guard fun
tion is asso
iatedwith a divide-and-
onquer task and de�nes whether the shared data a

essed by thistask are in a 
orre
t state from the appli
ation's point of view. The runtime systemuses an inexpensive optimisti
 proto
ol whi
h allows the obje
t repli
as to be
omedi�erent as long as guards are satis�ed. Only when a guard be
omes unsatis�ed, doesthe runtime system bring the lo
al repli
a into 
onsistent state whi
h is a potentiallyexpensive operation.Using the divide-and-share model we implement a number of new appli
ations andevaluate them in a real grid environment. We demonstrate that our appli
ations 
ana
hieve high e�
ien
ies in su
h environments.1.4 ContributionsThe starting point for this work was a prototype divide-and-
onquer framework im-plemented by Rob van Nieuwpoort. In this thesis, we will show how we turned it intoa mature, full-�edged grid 
omputing environment. The 
ontributions made in thisthesis 
an be summarized as follows:1. We have designed and implemented a set of algorithms that provide fault tol-eran
e, malleability and migratability to divide-and-
onquer appli
ations. Theresulting system 
an handle a vast variety of s
enarios typi
al for the Grid:� 
rashing pro
essors, in
luding a total 
rash 
an be handled� pro
essors joining and leaving an on-going 
omputation 
an be handledwith high e�
ien
y� an appli
ation 
an be e�
iently migrated� an appli
ation 
an be stopped and restarted later on a possibly di�erentset of resour
es2. We propose a novel approa
h to resour
e sele
tion and adaptation that doesnot require 
onstru
ting analyti
al performan
e models for appli
ations. Ourapproa
h improves appli
ation performan
e in many di�erent situations thatare typi
al for grid 
omputing. It handles all of the following 
ases:� automati
ally adapting the number of pro
essors to the degree of paral-lelism in the appli
ation, even when this degree 
hanges during the 
om-putation� migrating (part of) a 
omputation away from overloaded resour
es� removing resour
es with poor 
ommuni
ation links that slow down the
omputation



6 CHAPTER 1. INTRODUCTION� adding new resour
es to repla
e resour
es that have 
rashed3. We have improved the appli
ability of the Satin framework by extending thedivide-and-
onquer programming model with a shared data abstra
tion: sharedobje
ts. Shared obje
ts provide a novel 
onsisten
y model 
alled guard 
on-sisten
y. We have shown that a shared data abstra
tion 
an be implementede�
iently in dynami
 grid environments.1.5 Outline of this thesisThe rest of this thesis is stru
tured as follows. In 
hapter 2, we 
lassify and reviewexisting grid programming environments. Further, we des
ribe the prototype Satinframework designed and implemented by Rob van Nieuwpoort. We outline the is-sues that need to be resolved to turn the prototype Satin into a full-�edged, maturegrid programming environment. Finally, we 
ompare both the prototype and thefull-�edged Satin with other grid programming environments. In 
hapter 3, we willpresent an algorithm that provides fault toleran
e, malleability and migratability todivide-and-
onquer appli
ations. We will des
ribe its implementation in Satin andits performan
e evaluation. In 
hapter 4, we will address the problems of resour
esele
tion and adaptation to 
hanges in grid environments. We will present a simpleapproa
h to those problems and we will evaluate it in a number of s
enarios typi
alfor grid environments. In 
hapter 5, we will show how we 
an improve the appli
abil-ity of the Satin framework by extending its programming model with a shared-dataabstra
tion. We will draw our 
on
lusions in 
hapter 6.



Chapter 2Context: grid programmingenvironments2.1 Introdu
tionIn this 
hapter, we review the related work. We propose a 
lassi�
ation of the existinggrid programming environments (GPEs) and dis
uss the most important of thosetools. Further, we will des
ribe the Satin programming environment and programmingmodel and illustrate it with a number of 
ode samples. We explain the Cluster-awareRandom Work Stealing algorithm and brie�y des
ribe the implementation of Satin.Finally, we will 
ompare Satin to other grid programming models. The remaining
hapters will give more spe
i�
 related work 
on
erning the topi
s des
ribed in those
hapters (fault toleran
e, adaptivity and data sharing).2.2 Grid programming environmentsProgramming grid appli
ations 
onsists of two major tasks: appli
ation developmentand appli
ation deployment. Appli
ation development 
onsists of dividing the probleminto tasks that 
an be done in parallel, mapping those tasks to physi
al pro
essors,providing inter-pro
essor 
ommuni
ation and syn
hronization. Appli
ation deploy-ment involves resour
e sele
tion, dis
overy and reservation, spawning pro
esses andproviding �le I/O. Grid programming tools 
an be roughly divided into two 
lasses:tools that support appli
ation development (grid programming models) and environ-ments that support appli
ation deployment. Typi
ally, a grid programming modelis 
ombined with an appli
ation deployment tool to a
hieve full fun
tionality. Somegrid programming models (e.g., Proa
tive [30℄) provide also appli
ation deploymentfun
tionality.In the rest of this se
tion, we will review a number of grid programming tools. Wedo not attempt to present all existing grid programming tools. We sele
ted those thatin our opinion have the biggest impa
t on the grid 
omputing 
ommunity. We will
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grid programming
environments

application
development

low−level
(explicit parallelization)

high−level
(semi−implicit parallelization)

application
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Globus
Toolkit

Java CoG
Kit

superscalar
GRID workflow

systems

RPCHPJavaMW

ProActive MPI

Satin

KOALA

GAT

P2P supercomputing

XtremWebZorillaFigure 2.1: The 
lassi�
ation of the grid programming environmentsstart with appli
ation deployment tools and des
ribe the Globus Toolkit [86℄ whi
h isde fa
to a standard in grid 
omputing, Java Commodity Grid (CoG) Kit [180℄ whi
hprovides among others a Java binding to Globus tools, KOALA [136℄ whi
h provides
o-allo
ation of multiple sites, Grid Appli
ation Toolkit (GAT) [23℄ whi
h 
an belayered on top of Globus, CoG Kit or other middleware and provides higher-levelappli
ation deployment fun
tionality, and grid middlewares based on peer-to-peerte
hnology: Zorilla [72℄ and XtremWeb [54℄.Next, we will des
ribe appli
ation development tools � grid programming models.We will divide the grid programming models into high-level programming models andlow-level, expli
it 
ommuni
ation models. With high-level models, the programmeronly needs to be 
on
erned with de
omposing the problem into tasks that 
an be donein parallel. The programming environment (the 
ompiler and/or the runtime system)will take 
are of low-level issues su
h as mapping tasks to physi
al pro
essors (loadbalan
ing), inter-pro
essor 
ommuni
ation, fault toleran
e et
. The high-level modelswe dis
uss in
lude: grid supers
alar [29℄, a master-worker framework (MW) and work-�ow systems. Expli
it 
ommuni
ation programming models typi
ally provide only a
ommuni
ation abstra
tion. The programmer needs to not only take 
are of theproblem de
omposition but also of the low-level issues. The expli
it 
ommuni
ationmodels we dis
uss in
lude: HPJava, MPI, ProA
tive and Remote Pro
edure Calls.The 
lassi�
ation of all grid programming environments dis
ussed in this 
hapter isshown in Figure 2.1.2.2.1 Appli
ation deployment toolsThe fun
tionalities that appli
ation deployment tools need to provide in
lude:



2.2. GRID PROGRAMMING ENVIRONMENTS 9� Resour
e dis
overy: �nding 
ompute nodes suitable for the exe
ution of ourappli
ation.� Resour
e reservation: reserving 
ompute nodes, network links and possiblyother resour
es.� Remote exe
ution: 
reating pro
esses on remote resour
es.� File I/O: Staging of the exe
utable, input and output �les. Remote �le a

ess.Appli
ation deployment tools 
an be divided into low-level middleware that ex-poses the 
omplexity of the grid to the programmer and higher-level tools that hidethe grid 
omplexity. The Globus Toolkit and Java CoG Kit belong to the former 
lasswhile the Grid Appli
ation Toolkit belongs to the latter group.GlobusGlobus Toolkit is a set of libraries and programs that address 
ommon problems thato

ur when building grid appli
ations [86℄. Globus is be
oming a standard in grid
omputing. The most important 
omponents on the Globus Toolkit are:� The Monitoring and Dis
overy Servi
e (MDS) whi
h provides information aboutgrid resour
es. MDS 
an be used by appli
ations for resour
e dis
overy.� The Globus Resour
e Allo
ation Manager (GRAM) whi
h provides resour
eallo
ation and remote exe
ution fun
tionalities.� The Globus A

ess to Se
ondary Storage (GASS) whi
h provides a

ess to re-mote �les. GASS is typi
ally used for exe
utable, input and output �le staging.� GridFTP whi
h provides data transfer fun
tionality.The Globus Toolkit provides relatively low-level support for grid programming,i.e. it exposes the 
omplexity of the grid to the programmer instead of hiding it. Theprogrammer must be aware of many details of the underlying platform, for example,he must expli
itly state whi
h lo
al resour
e managers have to be used (e.g., PBSor Condor) when allo
ating resour
es or he must sele
t the appropriate �le transferproto
ol (e.g., FTP, HTTP et
.).Java CoG KitThe Java Commodity Grid (CoG) Kit provides a

ess to grid servi
es for Java appli-
ations. Java CoG Kit is a mapping between Java and the Globus Toolkit. Therefore,Java CoG Kit provides similar fun
tionality as the Globus Toolkit: resour
e manage-ment and remote exe
ution, �le I/O and information servi
es. Additionally, CoGprovides a number of simple GUI 
omponents that 
an be used as building blo
ksfor grid portals. CoG has a layered ar
hite
ture (similar to the GAT below), whi
hallows shielding the appli
ation programmer from the 
onstant 
hanges the GlobusToolkit is undergoing.



10 CHAPTER 2. CONTEXT: GRID PROGRAMMING ENVIRONMENTSKOALAAn important problem of tools su
h as Globus Toolkit or Java CoG Kit is the la
kof 
o-allo
ation, that is, the ability to s
hedule an appli
ation on multiple sites (
lus-ters or super
omputers) simultaneously. For example, using the Globus Toolkit, theprogrammer 
an submit an appli
ation to multiple sites, but there are no guaranteesthat all parts of the appli
ation will be started at the same time.This problem is addressed by the KOALA s
heduler [136℄. KOALA builds on topof the Globus Toolkit � it uses Globus tools to submit jobs to the individual exe
utionsites and to stage in �les. KOALA makes sure that all job 
omponents lo
ated ondi�erent sites start simultaneously. To a
hieve this goal, KOALA repeatedly triesto 
laim pro
essors. If not enough idle pro
essors are available on one or more sites,
laiming is repeated until su

essful. This strategy 
an be optimized if a site supportsadvan
e reservations.GATGrid Appli
ation Toolkit (GAT) [23℄ provides a simple API to grid appli
ations. WhileGlobus and CoG Kit expose the 
omplexity of the grid to the appli
ation programmer,the GAT hides the details of the underlying platform. GAT 
an be layered on top ofthe lower-level grid middleware su
h as Globus, as will be explained below. The GAT
onsists of the following subsystems:� Resour
e Management Subsystem allows the appli
ation to dis
over resour
es,reserve them and submit and manage jobs. An important 
omponent of thissubsystem is the Resour
e Broker. The Resour
e Broker 
an �nd resour
esbased on the hardware and software requirements spe
i�ed by the appli
ationprogrammer (e.g., the amount of memory, minimal CPU speed, operating sys-tem). The Resour
e Broker 
an also reserve the resour
es and spawn remotepro
esses. The appli
ation programmer does not need to be 
on
erned aboutdetails su
h as lo
al resour
e managers types. Su
h issues are resolved auto-mati
ally by the GAT Resour
e Broker.� File Subsystem provides the appli
ation with a

ess to �les. Using this subsys-tem the appli
ation 
an 
reate, destroy, move, read or write �les. The API isbased on POSIX and is very simple to use. The appli
ation programmer needsonly to spe
ify the �le name and lo
ation and the GAT will take 
are of sele
tingthe appropriate a

ess proto
ol (e.g., FTP, HTTP, GridFTP et
.) and auto-mati
ally optimize the adjustable parameters based on the available informationabout the environment. The File Subsystem also provides a logi
al �le abstra
-tion. A logi
al �le is a set of �le repli
as that are geographi
ally distributed. Ifan appli
ation attempts to use a logi
al �le, the GAT will automati
ally sele
tthe 
losest repli
a.� Monitoring and Event Subsystem provides utilities for appli
ation and grid re-sour
e monitoring.



2.2. GRID PROGRAMMING ENVIRONMENTS 11� Information Ex
hange Subsystem whi
h allows advertising and sear
hing forappli
ation metadata.The ar
hite
ture of GAT is based on the prin
iple that the API layer should beindependent of the underlying middleware. GAT features a three-layer ar
hite
ture:the API layer, the GAT engine layer and the GAT adaptors layer. GAT adaptors arebindings of the GAT API to various grid middlewares, e.g. Globus, UNICORE [11℄,Zorilla. GAT adaptors are dynami
ally inter
hangeable at runtime. The GAT enginedispat
hes API 
alls to the adaptor layer. This layered ar
hite
ture ensures that appli-
ations using GAT 
an run without modi�
ations on top of various grid middlewares.The appli
ations are also immune to 
hanges in the grid middleware.Peer-to-Peer Super
omputingPeer-to-peer super
omputing middlewares are an alternative to traditional deploy-ment tools. Peer-to-peer super
omputing middlewares are 
hara
terized by the la
kof 
entralized 
omponents. Therefore, they are inherently more resilient to failuresand easier to set up and maintain than traditional, 
entralized tools.Zorilla [72℄ is one su
h grid middleware based on peer-to-peer te
hnology. Zorillaimplements all fun
tionalities needed by grid appli
ations in a fully de
entralized fash-ion. Those fun
tionalities in
lude resour
e dis
overy and reservation, remote pro
ess
reation and �le staging. Zorilla does not provide remote �le a

ess.The Zorilla system 
onsists of a number of Zorilla nodes whi
h form a peer-to-peernetwork. Nodes 
an be added and removed at any moment. A grid appli
ation dire
tsits requests to its lo
al Zorilla node whi
h 
ooperates with other nodes to grant therequests. Zorilla is implemented entirely in Java and provides a Java API to gridappli
ations.Another example of a peer-to-peer super
omputing middleware is XtremWeb [54℄.XtremWeb has a three-tier ar
hite
ture: it 
onsists of 
lients, workers and the 
oordi-nation servi
e whi
h mediates between 
lients and workers. The 
oordination servi
ea

epts task requests from 
lients and laun
hes the tasks on the available workers.2.2.2 Appli
ation development toolsAppli
ation parallelization 
an be 
lassi�ed into three approa
hes: impli
it, expli
itand semi-impli
it [159℄. With impli
it parallelization, the programmer writes a se-quential appli
ation whi
h is automati
ally parallelized by the environment. Auto-mati
 parallelization is not used in grid 
omputing be
ause it is hard to get satisfa
toryperforman
e with this approa
h.With semi-impli
it parallelization, the programmer identi�es the parts of the prob-lem whi
h 
an be solved in parallel. However, the environment takes 
are of mappingtasks to physi
al pro
essors, load balan
ing and inter-pro
essor 
ommuni
ation. Thesemi-impli
it approa
h is very popular in grid 
omputing. It allows a
hieving high-performan
e while hiding most of the grid 
omplexity from the programmer. The pro-grammer is provided with a high-level and easy to use programming model. Examplesof environments supporting the semi-impli
it approa
h are: grid supers
alar [29℄ (a
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onquer parallelism), MW [95℄ (a master-worker frame-work), work�ow systems and our Satin framework (divide-and-
onquer). Below, wewill refer to those environments as high-level programming models or frameworks.With expli
it parallelization, the programmer is responsible not only for identi-fying work that 
an be done in parallel, but also for mapping the tasks to physi-
al pro
essors, load balan
ing and 
ommuni
ations. Examples are: HPJava [120℄,MPI [96℄, ProA
tive [30℄ and Remote Pro
edure Calls [154℄. Environments that sup-port this approa
h typi
ally provide only some 
ommuni
ation abstra
tion. Addition-ally, some implementations of MPI provide transparent fault toleran
e and/or migra-tion [106℄, however, no grid-enabled implementation 
urrently provides this fun
tion-ality. ProA
tive provides migration support and transparent fault toleran
e. Below,we will refer to those models as expli
it 
ommuni
ation models.For ea
h programming model, we will dis
uss a number of non-fun
tional proper-ties that are vital in grid environments:� Performan
e: One of the major driving for
es behind grid 
omputing is a
hiev-ing higher performan
e than on traditional parallel systems. However, a
hiev-ing high performan
e in grid environments is a 
hallenging task whi
h requires
omplex te
hniques, su
h as laten
y hiding or dynami
 load balan
ing. Typ-i
ally, high-level programming environments apply su
h te
hniques automati-
ally while expli
it 
ommuni
ation models require the programmer to take 
areof performan
e. On the other hand, the expli
it 
ommuni
ation models, bygiving the programmer full 
ontrol over performan
e optimizations, often allowa more e�
ient implementation.� Ease of use: A grid programming environment should hide as mu
h grid 
om-plexity from the programmer as possible. High-level programming models are
learly easier to use than expli
it 
ommuni
ation models as they relieve the pro-grammer from dealing with 
omplex issues su
h as inter-pro
ess 
ommuni
ation,load balan
ing, fault toleran
e et
. Expli
it 
ommuni
ation models require theprogrammer to deal with su
h issues expli
itly.� Appli
ability: It is important that a grid programming environment supportsa broad variety of appli
ations. High-level programming models typi
ally re-quire the appli
ation programmer to use a spe
i�
 programming paradigm whi
hmight not be suitable for all appli
ations. Expli
it 
ommuni
ation models 
anbe used for any type of appli
ation.� Support for fault toleran
e, malleability, migratability: Fault toleran
e, mal-leability and migratability are essential features of a grid appli
ation. On sys-tems 
onsisting of hundreds or thousands of ma
hines, the mean-time-to-failuremay be
ome shorter that the lifetime of an appli
ation. Moreover, grid envi-ronments la
k 
entralized 
ontrol and situations in whi
h part of the 
omputingresour
es is suddenly rebooted or 
laimed by a higher-priority appli
ation arenot rare. Therefore, without support for fault toleran
e, malleability and mi-gration, the 
han
e that a grid appli
ation would ever 
omplete would be small.



2.2. GRID PROGRAMMING ENVIRONMENTS 13High-level programming models typi
ally provide transparent support for faulttoleran
e, malleability and migration. Expli
it 
ommuni
ation models oftenrequire the programmer to take 
are of those issues.� Adaptivity: Grid environments are inherently dynami
. Not only the availabil-ity of resour
es 
hanges 
onstantly, but also the performan
e 
hara
teristi
s ofavailable resour
es vary. On time-shared ma
hines the pro
essors may be
omeoverloaded by another, higher-priority appli
ation. Also network links may be-
ome overloaded and the available bandwidth may de
rease dramati
ally. Inorder to a
hieve a reasonable performan
e, an appli
ation 
onstantly has toadapt to 
hanges in the grid environment. The adaptation support may beprovided by the programming environment or may be added by the appli
ationprogrammer. Currently, few programming environments and appli
ations haveadaptation support.� Portability: Grids are inherently heterogeneous. Therefore, a grid programmingenvironment should not be tied to any spe
i�
 platform. It should abstra
taway various platform-spe
i�
 issues from the appli
ation. Another importantissue is the programming language supported by a grid programming environ-ment. Therefore, languages su
h a Java are be
oming popular in grid 
omputing.Thanks to the virtual ma
hine te
hnology, Java appli
ations 
an run on hetero-geneous ar
hite
tures without the need of re
ompilation and porting. Thanksto JIT te
hnology, the performan
e of Java appli
ations is 
urrently 
omparablewith the performan
e of C appli
ations [51℄.Grid supers
alarWhen programming with the grid supers
alar model [29℄, the programmer has tostru
ture the appli
ation as a set of possibly repetitive, sequential tasks. Su
h tasks
an be exe
uted in parallel on the grid. The programmer must provide an IDL �lespe
ifying whi
h tasks should be 
onsidered for a parallel exe
ution. The IDL usedin grid supers
alar is based on CORBA IDL.Ea
h task operates on a set of �les. Tasks that operate on the same �le 
an havea data dependen
y. The grid supers
alar 
ompiler analyzes the data dependen
iesautomati
ally. The grid supers
alar runtime system maintains a graph of tasks. Edgesof this graph denote data dependen
ies. When a task is 
ompleted, it is removed fromthe graph and the graph is sear
hed for tasks with no in
oming edges (i.e., no datadependen
ies). Su
h tasks are submitted for exe
ution. The user is required to spe
ifya �le with a list of nodes that will be used for the exe
ution. The runtime system usesthe Globus Toolkit (see se
tion 2.2.1) to exe
ute tasks on those servers. However, the
ore of grid supers
alar is independent of the grid middleware and 
an be 
ombinedwith any software from se
tion 2.2.1.� Performan
e: No extensive performan
e evaluation of the grid supers
alar sys-tem has been performed yet. In [29℄ experiments on up to 8 CPUs (on 2 nodes)are reported. A 6-fold speedup was the maximal speedup a
hieved on this



14 CHAPTER 2. CONTEXT: GRID PROGRAMMING ENVIRONMENTStestbed. At the moment, it is not 
lear how mu
h performan
e 
an be ex-pe
ted from the grid supers
alar appli
ations. However, sin
e a GRAM 
all isperformed to spawn ea
h task, �ne-grained appli
ations will not perform well,sin
e the 
ost of the GRAM 
all will not be amortized by the exe
ution time ofthe task. Therefore, grid supers
alar is only suitable for 
oarse-grained appli
a-tions.� Ease of use: Grid supers
alar provides a high-level programming model whi
hhides most of the grid 
omplexity and parallel-programming issues from theprogrammer.� Appli
ability: The fork-join/divide-and-
onquer parallelism supported by thegrid supers
alar is appli
able to a large 
lass of problems. However, only
oarse-grained parallel appli
ations 
an be implemented e�
iently with gridsupers
alar, as explained above.� Fault toleran
e, malleability, migration: Currently grid supers
alar does notsupport fault toleran
e, malleability and migration. Adding transparent supportfor fault toleran
e is planned in the future.� Adaptivity: Currently, grid supers
alar does not provide support for adap-tation. In the future, a s
heduling poli
y that takes into a

ount dynami
information on the system load will be used.� Portability: Grid supers
alar appli
ations are written in C++ or Perl. Appli-
ations written in C++ need to be re
ompiled for ea
h ar
hite
ture/operatingsystem and therefore their portability is limited. Perl is an interpreted languageand therefore appli
ations written in Perl 
an be run on di�erent systems with-out the need of re
ompilation, as long as a Perl interpreter is available on agiven system.MW � a master-worker frameworkMW [95℄ is a framework for writing grid-enabled master-worker appli
ations. Inmaster-worker appli
ations, a single pro
ess 
alled the master divides the problem tobe solved into independent tasks and dispat
hes those tasks to the worker pro
esses.After solving a task, a worker pro
ess returns the result to the master and requests anew task. The master-worker paradigm is very popular in grid 
omputing. Sin
e thetasks are independent, little 
ommuni
ation is needed and high performan
e 
an bea
hieved even on wide-area networks.The MW API is extremely simple: the programmer needs to provide only a smallnumber of fun
tions: a fun
tion to split up work, worker initialization routine, afun
tion performing the a
tual task et
. The runtime system takes 
are of loadbalan
ing, inter-pro
essor 
ommuni
ation and fault-toleran
e. MW also abstra
tsan Infrastru
ture Programming Interfa
e (IPI) whi
h allows to port the frameworkto di�erent Grid middleware. MW was implemented on top of Condor [169℄ andPVM [162℄. In the future, it will be ported to Globus Toolkit [86℄
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e: Master-worker appli
ations typi
ally a
hieve high performan
eon the grid. MW has been reported to a
hieve high e�
ien
ies. It has beenused to solve a 
ombinatorial optimization problem on a heterogeneous, wide-area testbed 
onsisting of 502 pro
essors in 7 
lusters. A parallel e�
ien
y of80% was a
hieved on this testbed.� Ease of use: MW provides a very high-level programming model and is thereforeextremely easy to use. The appli
ation programmer is shielded both from the
omplexity of the grid environment and from 
omplex parallel programmingissues su
h as load balan
ing and 
ommuni
ation.� Appli
ability: MW supports only embarrassingly parallel appli
ations. However,many useful problems exhibit this stru
ture.� Fault toleran
e, malleability, migration: MW transparently handles worker 
rashes.If a worker fails, the task exe
uted by this worker is re-assigned to anotherworker by the runtime system. A failure of the master has to be treated in aspe
ial way. MW o�ers a feature to 
he
kpoint the state of the master. Theprogrammer, however, needs to provide fun
tions that write and read the stateof the master. MW is also malleable. Leaving workers are handled using thefault-toleran
e me
hanism. Joining workers re
eive tasks from the work queueof the master.� Adaptivity: Master-worker appli
ations use dynami
 load-balan
ing whi
h al-lows them to adapt to varying pro
essor speeds: slower pro
essors get fewertasks to pro
ess.� Portability: MW appli
ations are written in C++ and they have to be 
ompiledseparately for ea
h platform, whi
h limits their portability.Work�ow systemsGrid work�ows are meta-appli
ations running on the 
omputational grid. A work�owis an aggregation of multiple sequential or parallel appli
ations (
alled 
omponentsin this 
ontext) whi
h 
ooperate by passing �les or data. The simplest work�ow is apipeline in whi
h 
omponents are arranged in a 
hain and ea
h 
omponent re
eivesdata from the previous 
omponent in the 
hain, pro
esses the data and passes it tothe following 
omponent. In general, a work�ow is a dire
ted graph of 
omponents,in whi
h edges express data dependen
ies between the 
omponents.Work�ow systems are environments whi
h allow building work�ows out of indi-vidual 
omponents. Work�ow systems often provide a graphi
al user interfa
e thatallows rapid development of work�ow appli
ations. Alternatively, the programmer
an use te
hnologies su
h as XML to de�ne the dependen
ies between the 
ompo-nents. Work�ow systems automati
ally map work�ow 
omponents onto the availablegrid resour
es. This mapping is performed in su
h a way that the runtime of thework�ow appli
ation is minimized and/or other user 
onstraints are met (e.g., the a
-
ura
y of the result). Work�ow systems typi
ally use appli
ation development tools,
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h as the Globus Toolkit or GAT, to �nd the appropriate grid resour
es, s
heduleand exe
ute work�ow appli
ations.A vast number of work�ow systems exist, for example: DAGMan [166℄, Pega-sus [66℄, Triana [168℄, ICENI [134℄, GridAnt [26℄, GridFlow [53℄, Gridbus work-�ow [187℄, Kepler [25℄, Taverna [141℄, Askalon [79℄, VLAM-G [13℄, GrADS [172℄ andASSIST [20℄ (see [188℄ for a detailed overview of many of those systems).� Performan
e: Work�ow systems automati
ally map work�ow 
omponents ontothe Grid to maximize the performan
e of the work�ow. To a
hieve this goal,stati
 and/or dynami
 information about the grid environment (e.g. the numberof available pro
essors, estimated data transfer times et
.) is used.� Ease of use: Work�ow systems are extremely easy to use. The appli
ationprogrammer needs to spe
ify only the data dependen
ies between work�ow 
om-ponents. The programmer does not need to expli
itly deal with the 
omplexityof the grid environment.� Appli
ability: The work�ow model is suitable only for 
oarse-grained parallelappli
ations.� Fault toleran
e, malleability and migration: Most work�ow systems supportfault toleran
e. A vast variety of te
hniques is used. Most 
ommonly, fault tol-eran
e is provided transparently to the appli
ation programmer. For example,a failed 
omponent 
an restarted on the same or alternative resour
e. Com-ponents 
an be also repli
ated on multiple resour
es or 
he
kpointed. Somesystems provide support for migration, for example the GrADS systems.� Adaptivity: Most work�ow systems maps work�ow appli
ation to grid re-sour
es stati
ally, i.e., after the exe
ution of the appli
ation has started, themapping 
annot be 
hanged. Su
h systems, therefore, do not support adaptiv-ity. Pegasus [66℄ handles dynami
 
hanges in grid environment using just-in-times
heduling. With just-in-time s
heduling, rather than mapping all 
omponentsat on
e, ea
h 
omponent is mapped to a physi
al resour
e only after all its datadependen
ies have been resolved, that is, after all 
omponents it depends onhave �nished exe
ution. Just-in-time s
heduling performs better in dynami
environments than stati
 s
heduling. However, on
e a 
omponent is startedit 
annot be remapped to a di�erent resour
e, whi
h 
an result in poor per-forman
e. GrADS [172℄ and ASSIST [20℄ support adaptivity by monitoringperforman
e of the appli
ation 
omponents and migrating them to better re-sour
es if a performan
e degradation is required. Those systems assume thata performan
e model (i.e., a mathemati
al formula that allows to predi
ts theruntime of a 
omponent of a given resour
e) is known for ea
h 
omponent.� Portability: The portability of work�ow systems varies greatly. Many of thosesystems are based on the Java te
hnology whi
h enhan
es their portability.



2.2. GRID PROGRAMMING ENVIRONMENTS 17HPJavaHPJava [120℄ is a Java-based framework supporting data-parallel programming style.It extends sequential Java with support for distributed arrays : arrays that are physi-
ally distributed over the memories of the parti
ipating pro
essors. The programmermanipulates those arrays using high-level 
onstru
ts su
h as the overall 
onstru
twhi
h denotes a distributed, parallel loop.The programming model of HPJava has been inspired by the High Performan
eFortran (HPF) programming model [85℄ and many 
onstru
ts look similar to the
onstru
ts used in HPF, for example overall resembles HPF's forall. In fa
t, theprogramming model provided by HPJava is lower-level than that of HPF. The maindi�eren
e between HPJava and HPF is that with HPJava a pro
ess 
an only a

esslo
ally held elements of distributed arrays. If a pro
ess needs to a

ess an element heldby another pro
essor, expli
it 
ommuni
ation must take pla
e. With HPF, pro
essesare allowed to a

ess any element of a distributed array and the 
ompiler takes 
areof the 
ommuni
ation.HPJava provides a 
ommuni
ation library 
alledAdlib whi
h implements 
olle
tive
ommuni
ation primitives. Those primitives are expressed in terms of distributed-array operations. Some examples of operations provided by Adlib are: remap whi
h
hanges the mapping of a distributed array to pro
essors, shift whi
h 
opies a givenarray to a new array and shifts all elements by a given number of positions, andmaxval whi
h returns the maximum element of a given distributed array.Currently, distributed implementations of the HPJava 
olle
tive 
ommuni
ationrely on availability of native 
ommuni
ation interfa
es� Performan
e: No extensive performan
e evaluation of HPJava has been per-formed. In [120℄ experiments on up to 36 CPUs (in as single, homogeneous
luster) and speedups up to 17 are reported. However, sin
e HPJava is anexpli
it 
ommuni
ation programming model, the appli
ation programmer willhave to take the responsibility for grid-spe
i�
 optimizations, su
h as dynami
load balan
ing and laten
y hiding.� Ease of use: HPJava o�ers a relatively low-level programming model and there-fore burdens the programmer with tasks su
h as load balan
ing and inter-pro
ess
ommuni
ation. Programming the 
ommuni
ation is somewhat simpli�ed bythe array primitives provide by the Adlib 
ommuni
ation library. Also, theprogrammer has to expli
itly deal with some grid-related issues.� Appli
ability: HPJava supports data-parallel appli
ations. Many importants
ienti�
 problems 
an be programmed in this style.� Fault toleran
e, malleability, migration: HPJava 
urrently does not supportfault toleran
e, malleability or migration.� Adaptivity: HPJava does not provide support for adaptivity. Adaptive featuresneed to be programmed by the appli
ation programmer.



18 CHAPTER 2. CONTEXT: GRID PROGRAMMING ENVIRONMENTS� Portability: The use of Java te
hnology enhan
es the portability of HPJavaappli
ation. Thanks to Java's `write on
e, run anywhere', HPJava's appli
ations
an be run unmodi�ed in heterogeneous environments. However, 
urrently thedistributed-memory implementation of HPJava relies on native 
ommuni
ationinterfa
es (MPI or LAPI) whi
h severely redu
es the portability of the system.A pure Java implementation is planned in the futureMPIExpli
it message passing is a popular parallel programming paradigm. Message-passing appli
ations are stru
tured as a set of pro
esses 
ommuni
ating via messages.The Message Passing Interfa
e (MPI) [71℄ is a standard that de�nes the syntax andsemanti
s of a set of 
ommuni
ation primitives useful for that type of appli
ations.MPI features syn
hronous and asyn
hronous point-to-point 
ommuni
ation and var-ious forms of 
olle
tive 
ommuni
ation, e.g. broad
ast, s
atter, gather and all-to-allex
hanges. MPI is typi
ally used for SPMD (Single ProgramMultiple Data) style pro-grams. In SPMD programs, all pro
essors exe
ute the same program on a di�erentpart of the data.Multiple implementations of the MPI standard exist. MPICH-G2 [112℄ is a grid-enabled implementation that allows running MPI appli
ations a
ross multiple 
lus-ters. MPICH-G2 is an integration of the popular MPICH [96℄ implementation with theGlobus Toolkit [86℄. The Globus Toolkit is used to stage in/stage out exe
utables and�les, start pro
esses on remote resour
es and 
ombine di�erent 
ommuni
ation meth-ods available in a heterogeneous environment (e.g., vendor-spe
i�
 proto
ols within
lusters with TCP/IP on the inter-
luster links).Other implementations of MPI whi
h address some grid issues are PACX-MPI [90℄whi
h provide grid-aware 
olle
tive 
ommuni
ations or MetaMPI [76℄ whi
h supportmultiple 
ommuni
ation proto
ols. MagPIE [115℄ is a library of MPI-like 
olle
tiveoperations optimized for hierar
hi
al, wide-area systems.� Performan
e: MPI appli
ations typi
ally a
hieve high performan
e on 
lustersuper
omputers. A
hieving high performan
e in grid 
omputing requires theprogrammer to expli
itly manage heterogeneity. For example, the programmerhas to take various pro
essor speeds into a

ount when distributing work. Also,the 
ommuni
ation hierar
hy has to be taken into a

ount. MPI provides fea-tures that make su
h optimizations possible. Asyn
hronous operations 
an beused for laten
y hiding. MPICH-G2 uses the 
ommuni
ator 
onstru
t to deliverthe topology of the underlying platform to the programmer.� Ease of use: Message passing is a 
umbersome and error-prone programmingstyle 
ompared to semi-automati
 parallelization provided by higher-level mod-els, su
h as grid supers
alar or master-worker. The programmer has to expli
-itly deal with load-balan
ing and inter-pro
essor 
ommuni
ation. As mentionedabove, in order to a
hieve satisfying performan
e, the programmer also needsto expli
itly manage some aspe
ts of the underlying platform, su
h as 
ommu-ni
ation hierar
hy and large di�eren
es in pro
essor speeds.



2.2. GRID PROGRAMMING ENVIRONMENTS 19� Appli
ability: The majority of appli
ations 
an be programmed in message-passing style. MPI is espe
ially suitable for SPMD programs.� Fault toleran
e, malleability, migration: There are two approa
hes to providingfault toleran
e, malleability and migration in MPI appli
ations. One approa
his providing them transparently to the appli
ation programmer. This is usuallydone using system-level 
he
kpointing and/or message logging. This approa
hwas adopted for example in: Co-
he
k MPI [160℄, Star�sh [14℄ MPI and MPICH-V [49℄. A transparent implementation of task migration has been proposed inMPI-TM [152℄. AMPI [101℄ supports malleability and migration via pro
essorvirtualization: the programmer is presented with a virtual pro
essor abstra
-tion and the runtime system dynami
ally maps virtual pro
essors to physi
alpro
essors. An advantage of system-level approa
hes is that little or no e�ort isrequired from the appli
ation programmer. Disadvantages are 
omplexity, largeamount of data that needs to be saved and la
k of portability.Another approa
h is to let the programmer provide fault toleran
e, malleabilityor migration. Various extensions and modi�
ations of the MPI standard wereproposed. For example, the MPI-2 standard [137℄ extends the basi
 MPI stan-dard with primitives for dynami
 pro
ess management: 
reating new pro
essesand pro
ess termination. FT-MPI [78℄ proposes extending the set of possible
ommuni
ator states from valid, invalid to (OK, PROBLEM, FAILED). If a
ommuni
ator is in an erroneous state, it needs to be rebuilt a

ording to thespe
i�ed semanti
s: shrink (shrink the 
ommuni
ator to ex
lude the failed pro-
essors), blank (
reates a 
ommuni
ator with `gaps' that have to be �lled beforethe 
ommuni
ator 
an be used for 
ommuni
ation), rebuild (rebuilds the 
om-muni
ator by starting new pro
esses to �ll the `gaps'). SRS [171℄ is a librarysupporting appli
ation-level 
he
kpointing for MPI appli
ations. With SRS theprogrammer has to spe
ify whi
h variables need to be 
he
kpointed and when
he
kpointing has to take pla
e.� Adaptivity: MPI itself does not provide support for adaptivity. Adding adap-tivity to an MPI appli
ation is the responsibility of the appli
ation program-mer. Adaptive MPI appli
ations have been developed in the 
ontext of theGrADS proje
t [173℄. Ea
h time a performan
e degradation of the appli
ationwas dete
ted, the appli
ation was 
he
kpointed and restarted on another setof resour
es. The SRS software has been used to perform the migration. Theappli
ation programmer needs to supply a performan
e model for the appli
a-tion whi
h allows predi
ting appli
ation runtimes on various set of resour
es.Also a resour
e sele
tor has to be 
reated whi
h uses the performan
e model tosele
t a resour
e set whi
h results in the shortest appli
ation runtime. Further,the appli
ation needs to be instrumented with sensors that 
olle
t appli
ationinformation and dete
t a performan
e degradation.� Portability: Grid-enabled MPI implementations hide many platform-spe
i�
details whi
h enhan
es portability. However, MPI is typi
ally used in 
ombi-nation with C or Fortran. Appli
ations written in those languages 
annot be
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hite
ture without re
ompilations. Java bindings of theMPI interfa
e exist, su
h as MPJ [55℄. However, the message-passing paradigmdoes not integrate well with obje
t-oriented Java [131℄. Communi
ation modelsbased on method invo
ations, su
h as Group Method Invo
ation (GMI) [131℄�t better into the Java model.ProA
tiveProA
tive [30℄ is a Java middleware whi
h supports the so-
alled Obje
t-OrientedSPMD programming model [35℄. This model is similar to the SPMD model supportedby MPI. Whereas an MPI appli
ation 
onsists of a number of pro
esses, a ProA
tiveappli
ation is stru
tured as a set of a
tive obje
ts. Like passive obje
ts, a
tive obje
tsserve in
oming method invo
ations. Additionally, ea
h a
tive obje
t has its ownthread of 
ontrol. Method 
alls to a
tive obje
ts are asyn
hronous with transparentfuture obje
ts. ProA
tive provides various group 
ommuni
ation primitives based onmethod invo
ations.ProA
tive provides a 
onvenient deployment me
hanism: deployment des
riptors.The goal is to remove any referen
es to the software and hardware 
on�guration fromthe appli
ation 
ode, so that the appli
ation 
an run unmodi�ed on di�erent 
on�gu-rations. The appli
ation has a

ess to virtual nodes. An external XML des
riptor �lespe
i�es the mapping of the virtual nodes to JVMs and the ways the JVMs shouldbe started, for example it spe
i�es the shell 
ommand that should be used to starta JVM or a lo
al resour
e manager to obtain nodes. Starting JVMs 
an also involveusing grid appli
ation deployment tools su
h as the Globus Toolkit.� Performan
e: ProA
tive appli
ations 
an a
hieve high performan
e. In [103℄a speedup of 100 on 150 nodes has been reported for a parallel solver for 3DMaxwell equations. However, sin
e ProA
tive is an expli
it 
ommuni
ationmodel, the programmer is responsible for applying grid-spe
i�
 optimizations.� Ease of use: ProA
tive supports an expli
it message passing programmingmodel. The disadvantages of expli
it message passing has been already men-tioned in the dis
ussion of MPI. However, ProA
tive is based on Java whi
h is ahigher-level programming language than C or Fortran, whi
h are typi
ally usedin 
ombination with MPI.� Appli
ability: Sin
e the programming model supported by ProA
tive is rela-tively low-level, a broad variety of appli
ations 
an be programmed with thisprogramming environment.� Fault toleran
e, malleability, migration: ProA
tive supports migration of a
tiveobje
ts between JVMs. The migration is either self-triggered or initiated by anexternal entity. This fa
ility 
an be used to implement appli
ation malleabilityand migration. ProA
tive also provides transparent fault toleran
e throughCommuni
ation Indu
ed Che
kpointing.� Adaptivity: Providing adaptivity is the responsibility of the appli
ation pro-grammer. No adaptive ProA
tive appli
ations have been developed to date.



2.2. GRID PROGRAMMING ENVIRONMENTS 21� Portability: Portability of ProA
tive appli
ations is ensured through the useof the Java te
hnology. The deployment des
riptors hide the details of theunderlying platform from the appli
ation enhan
ing its portability.Remote Pro
edure CallsThe 
on
ept of Remote Pro
edure Calls (RPC) [40℄ has been widely used in program-ming distributed appli
ations. RPC is similar to message passing, however, insteadof sending a message to a remote ma
hine, a routine is 
alled on this ma
hine. Withmessage passing the message has to be expli
itly re
eived. With RPC this is notthe 
ase. Typi
ally a new thread is 
reated on the re
eiver to serve the in
omingpro
edure 
all.Java's Remote Method Invo
ation (RMI) [10℄ is an obje
t-oriented variant of RPC.RMI allows invoking methods on obje
ts lo
ated in remote Java Virtual Ma
hines.The suitability of Java RMI for grid 
omputing was investigated in [177℄. This re-sear
h has shown that many high-performan
e appli
ations 
an be programmed usingRemote Method Invo
ations and run e�
iently in grid environments. The disadvan-tages of RMI are similar to other expli
it message-passing models (su
h as MPI):the programmer has to expli
itly deal with issues like load balan
ing, 
ommuni
ationhierar
hy and varying pro
essor speeds. Additional disadvantages of RMI are: la
kof asyn
hronous method 
alls whi
h makes laten
y-hiding di�
ult and la
k of groupoperations.GridRPC [154℄ extends RPC with a number of important primitives. Apart fromsyn
hronous pro
edure 
alls, the GridRPC API de�nes also asyn
hronous 
alls andprimitives to operate on those 
alls, e.g. to monitor the status of a previously sub-mitted 
all, to 
an
el a 
all or to wait for any of multiple, previously submitted 
alls.In that way, GridRPC supports fork-join type of parallelism. GridRPC is suitable formedium-to-
oarse-grained parallel appli
ations but not for �ne-grained parallelism.Example implementations of GridRPC are Netsolve [27℄ and Ninf [164℄.� Performan
e: Appli
ations based on RPCs 
an a
hieve high performan
ein grid environments. For example, in [177℄ a data-parallel appli
ation pro-grammed with RMI has been shown to a
hieve in wide-area setting perfor-man
e 
lose to single-
luster performan
e. However, it is the responsibility ofthe programmer to apply grid spe
i�
 optimizations. GridRPC supports thisby providing for example asyn
hronous pro
edure 
alls.� Ease of use: Like other expli
it 
ommuni
ation models, programming withRPCs is di�
ult sin
e the programmer has to expli
itly deal with 
omplex gridprogramming issues.� Appli
ability: A broad variety of appli
ations 
an be programmed with RPCs.� Fault toleran
e, malleability, migration: Some RPC frameworks, su
h as RPC-V [69℄ provide transparent fault toleran
e. With other frameworks, providingfault-toleran
e, malleability and migration is the responsibility of the program-mer.



22 CHAPTER 2. CONTEXT: GRID PROGRAMMING ENVIRONMENTS� Adaptivity: When programming with RPCs, providing adaptivity is the re-sponsibility of the appli
ation programmer. However, some implementations ofGridRPC API provide a form of transparent adaptivity. For example, Ninf-Guses dynami
 information from Network Weather Servi
e [181℄ to dynami
allysele
t the best resour
e to exe
ute an RPC 
all.� Portability: The portability of an RPC/RMI appli
ation depends on the se-quential language used. Using Java enhan
es the portability of an appli
ation.2.3 Satin: a divide-and-
onquer frameworkSatin is a framework for writing divide-and-
onquer appli
ations developed by Robvan Nieuwpoort [175℄. Satin has been inspired by Cilk [46℄ (hen
e the name) � aC-based divide-and-
onquer framework designed for shared-memory ma
hines. Satinhas been designed to run e�
iently in grid environments. Satin is Java-based whi
hallows Satin appli
ations to run a
ross heterogeneous grids without the need of re-
ompilation. Programming with Satin is very easy: in order to 
reate a parallel gridappli
ation, the programmer annotates the sequential 
ode with divide-and-
onquerprimitives. The Satin 
ompiler and runtime system take 
are of the low-level issues,su
h as inter-pro
essor 
ommuni
ation and load balan
ing. Satin uses a load balan
ingalgorithm 
alled Cluster-aware Random Work Stealing. This algorithm allows Satinappli
ations to a
hieve high performan
e in heterogeneous, wide-area environments.In the remainder of this se
tion, we will des
ribe Satin's programming model andillustrate it with 
ode examples. Next, we will brie�y des
ribe Satin's runtime systemand the Cluster-aware Random Work Stealing load-balan
ing algorithm.2.3.1 The divide-and-
onquer paradigmDivide-and-
onquer algorithms operate by dividing the problem at hand into smallersubproblems. The division pro
ess 
ontinues until the problems be
ome trivial tosolve. The solutions of subproblems are 
ombined to provide the solution of theparent problem. A typi
al example of a divide-and-
onquer algorithm is the famousqui
ksort algorithm for sorting arrays of real or integer numbers (Figure 2.2). In thedivide phase, a pivot element is 
hosen (thi
k lines in Figure 2.2) � this 
an be anyelement of the array, for example the �rst one. Next, the array is partitioned into 2smaller arrays: an array 
onsisting of elements smaller or equal to the pivot elementand and array 
onsisting of elements greater than the pivot element. This partitioningis performed in pla
e by swapping elements that are in wrong positions. Then thesame pro
edure is applied to the smaller arrays and is repeated until the size of thearrays rea
hes 1. In the 
ombine phase arrays are `glued' together.Be
ause the subproblems (also 
alled tasks or jobs) in a divide-and-
onquer 
om-putation are independent, su
h a 
omputation 
an be parallelized by exe
uting dif-ferent tasks on di�erent ma
hines. Moreover, the task graph of a divide-and-
onquerappli
ation has a hierar
hi
al stru
ture. Therefore, su
h appli
ations 
an be exe
utedwith good 
ommuni
ation lo
ality on hierar
hi
al grids.
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ksort algorithm
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onquer model has many appli
ations. Examples of divide-and-
onquer 
omputations in
lude: sear
h and optimization problems (e.g. the satis�-ability problem [97℄), astrophysi
al simulations (e.g., the Barnes-Hut N-body algo-rithm [34℄), grammar based learning [12℄, parallel rendering (raytra
ing), bioinfor-mati
s 
omputations, 
omputational geometry problems (e.g., 
onvex hull 
al
ula-tion), adaptive data 
lassi�
ation pro
edures and numeri
al methods (e.g multigridalgorithms [184℄). Also, all the master-worker 
omputations 
an be expressed inthe divide-and-
onquer model. In fa
t, divide-and-
onquer is a generalization of themaster-worker model: master-worker 
an be seen as a divide-and-
onquer with onelevel of re
ursion. The master-worker paradigm has gained extreme popularity ingrid 
ommunity and a vast majority of existing grid appli
ations has been writtenusing this paradigm, for example the famous SETI�home proje
t [7℄ and similarinitiatives [2, 4, 1, 5℄, the GridSAT satis�ability solver [64℄, et
. The advantage ofdivide-and-
onquer over master-worker is not only its broader appli
ability, but italso solves several performan
e issues. With master-worker 
omputations, the per-forman
e of the master pro
ess 
an be
ome a bottlene
k of appli
ation performan
e:the speed of the master limits the number of workers that 
an be used and thereforeit limits the speedup that 
an be a
hieved. Moreover, master-worker may su�er from
ommuni
ation overhead between the master and workers, espe
ially if they are lo-
ated on di�erent 
lusters. This problem 
an be alleviated by using the hierar
hi
almaster-worker paradigm [110℄. The hierar
hi
al master-worker grid system uses twolevels: a single supervisor pro
ess 
ontrols multiple master pro
esses. There is onemaster per site and ea
h master 
ontrols a set of workers lo
ated on the same site. Inthis way the amount of wide-area 
ommuni
ation is redu
ed. The divide-and-
onquerparadigm 
an be seen as a further generalization of the hierar
hi
al master-workerparadigm.2.3.2 The Satin programming modelSatin extends the Java model with two Cilk-like divide-and-
onquer primitives: spawnand syn
. While Cilk introdu
es new keywords into C to implement those primitives,Satin integrates 
leanly into Java, without the need of language extensions.The spawn operation is a spe
ial form of method invo
ation. A spawnable method
an potentially be exe
uted in parallel with the method that has invoked it. We 
allsu
h an invo
ation a spawned method invo
ation. The programmer indi
ates whi
hmethods are spawnable by means of marker interfa
es (this me
hanism is used in JavaRMI). The programmer de
lares spawnable methods in an interfa
e whi
h extends thespe
ial, empty satin.Spawnable interfa
e. Ea
h invo
ation of a method de
lared insu
h a way is a spawned method invo
ation.Syn
 is a syn
hronization operation with the following semanti
s: wait until allthe methods spawned by the 
urrent method 
omplete and return their results. Onlyafter the syn
 operation has returned are the results of the spawned methods available.Before syn
, the values of the variables 
ontaining those results are unde�ned. Syn
is a method de�ned in the 
lass satin.SatinObje
t. Ea
h 
lass that spawns work needsto extend the SatinObje
t 
lass and inherits the syn
() method.
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e Rayt r a 
 e r I n t e r f a 
 e extends s a t i n . Spawnable ( ) {2 : BitMap render ( S
ene s
ene , int x , int y , int w, int h ) ;3 : }4 :5 : 
lass Raytra
er extends s a t i n . Sat inObje
t6 : implements s a t i n . Spawnable {7 :8 : BitMap render ( S
ene s
ene , int x , int y , int w, int h ) {9 :1 0 : BitMap p i 
 tu r e 1 , p i 
 tu r e 2 , p i 
 tu r e 3 , p i 
 tu r e 4 ;11 :1 2 : i f (w < THRESHOLD && h < THRESHOLD) {1 3 : return r ende rS equen t i a l l y ( s
ene , x , y , w , h ) ;1 4 : } else {1 5 : p i 
 tu r e 1 = render ( s
ene , x , y , w/ 2 , h / 2 ) ; /�spawn�/1 6 : p i 
 tu r e 2 = render ( s
ene , x+w/2 , y , w/ 2 , h / 2 ) ; /�spawn�/1 7 : p i 
 tu r e 3 = render ( s
ene , x , y+h / 2 , w/ 2 , h / 2 ) ; /�spawn�/1 8 : p i 
 tu r e 4 = render ( s
ene , x+w/2 , y+h / 2 , w/ 2 , h / 2 ) ; /�spawn�/1 9 : syn
 ( ) ;2 0 : return 
ombinePi
tures ( p i 
 tu r e 1 , p i 
 tu r e 2 , p i 
 tu r e 3 , p i 
 tu r e 4 ) ;2 1 : }2 2 : }23 :2 4 : }Figure 2.3: Raytra
er: an example divide-and-
onquer appli
ation in SatinFigure 2.3 shows an example Satin appli
ation: Raytra
er: a rendering appli
ationthat uses the raytra
ing method. It takes an abstra
t s
ene des
ription as an inputand outputs a bitmap. The appli
ation is parallelized by re
ursively dividing thepi
ture into four smaller pi
tures until a 
ertain threshold is rea
hed. Below thethreshold the pi
tures are rendered sequentially. After rendering the smaller pi
turesthe �nal image is reassembled.In Figure 2.3 the interfa
e Raytra
erInterfa
e (line 1) extends the satin.Spawnableinterfa
e. Therefore, the render(...) method (line 2) de
lared in the Raytra
erIn-terfa
e is marked as spawnable. Ea
h invo
ation of this method (lines 15�18) willbe a spawned invo
ation, whi
h means that pi
ture1, pi
ture2, pi
ture3 and pi
-ture4 will be (potentially) rendered in parallel. The Raytra
er 
lass extends thesatin.SatinObje
t 
lass to inherit the syn
() method and implements the Raytra
er-Interfa
e.The parameter-passing semanti
s of spawnable methods are di�erent than thesemanti
s of normal Java methods. Where a spawnable method is exe
uted remotely,the 
all-by-value semanti
s are used. However, when a spawnable method is exe
utedlo
ally, the 
all-by-referen
e semanti
s are applied to avoid the overhead of 
opying thepossibly large parameters. Sin
e at the moment a method is spawned it is unknownwhether it will be exe
uted remotely or lo
ally, the programmer 
annot assume either
all-by-value or 
all-by-referen
e semanti
s. Therefore, the programmer must makesure that the appli
ation works 
orre
tly if either 
all-by-value or 
all-by-referen
esemanti
s is used.
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JVMFigure 2.4: Compiling Satin appli
ationsSatin does not provide shared memory. The only way of sharing data betweentasks is by expli
it parameter passing and returning results. Global variables shouldnot be used by spawnable methods. In other words, spawnable methods should nothave side e�e
ts. In 
hapter 5, we will show how this model 
an be extended with ashared-obje
t abstra
tion whi
h allows data sharing between independent tasks.2.3.3 ImplementationThe Satin framework 
onsists of a byte
ode rewriter and a runtime system. The appli-
ation 
ode is �rst 
ompiled with a standard Java 
ompiler (java
) and then rewrittenby the byte
ode rewriter whi
h transforms it into a parallel appli
ation (Figure 2.4).The byte
ode rewriter repla
es ea
h spawned method invo
ation and ea
h syn
() op-eration with a 
all to the Satin runtime system. For ea
h spawned method invo
ationthe Satin runtime system 
reates a datastru
ture 
alled invo
ation re
ord. An invo
a-tion re
ord 
ontains the referen
es to the parameters of the method (not 
opies of theparameters; the parameters are 
opied only if the method is exe
uted remotely) andsome extra administration data. The method des
ribed by the invo
ation re
ord isnot invoked immediately. Instead, the invo
ation re
ord is pla
ed in the work queue �a datastru
ture maintained by the runtime system and 
ontaining unpro
essed tasks(spawned method invo
ations).For ea
h method that spawns work a spawn 
ounter is 
reated - an obje
t that
ounts the outstanding spawned method invo
ations. Ea
h time a method is spawned,the spawn 
ounter of its parent (the method that invoked it) is in
reased. Ea
h timea spawned method returns, the spawn 
ounter is de
reased.In the syn
 
all, the spawn 
ounter of the 
urrent method is 
he
ked. If its valueis 0, the 
ontrol is returned to the 
urrent method. Otherwise, tasks from the workqueue are exe
uted. If the work queue is empty, the Satin runtime system performsload balan
ing by means of work stealing: it 
onta
ts another node, and downloadsa task (an invo
ation re
ord), whi
h it subsequently exe
utes. The 
hoi
e of a vi
tim
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Figure 2.5: The design of Ibisfor work stealing is very important for the appli
ation performan
e. The Satin's workstealing algorithm will be des
ribed in more detail in the next se
tion.When an invo
ation re
ord is inserted in the work queue, it is put at the head ofthe queue. In a syn
 operation, if a lo
al task is exe
uted, it is also taken from thehead of the queue, so that the queue works as a sta
k. However, if a task is stolenfrom a remote node, it is taken from the tail of the remote node's work queue. Individe-and-
onquer 
omputation, larger jobs tend to be lo
ated towards the tail ofthe queue and stealing large jobs redu
es 
ommuni
ation overhead.The Satin runtime system has been implemented on top of the Ibis 
ommuni
ationlibrary [179℄. The stru
ture of Ibis is shown in Figure 2.5. The 
ore of Ibis is theIbis Portability Layer whi
h 
onsists of a number of well-de�ned interfa
es. Theappli
ation programmer 
an use the IPL dire
tly or 
an program with one of thehigher-level programming models implemented on top of IPL. Those models in
lude:RMI (remote method invo
ations), GMI (asyn
hronous and group 
ommuni
ation),RepMI (obje
t repli
ation), Satin and MPJ (MPI-like message passing in Java).The IPL 
an have di�erent implementations that 
an be sele
ted and pluggedinto the appli
ation at runtime. The appli
ation needs to spe
ify its 
ommuni
a-tion requirements, su
h as unreliable/reliable 
ommuni
ation, point-to-point/group
ommuni
ation, et
., and the Ibis runtime system sele
ts the appropriate Ibis imple-mentation.Ibis in
ludes both pure Java implementations based on the TCP, UDP or peer-
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hnology and a number of spe
ialized implementations with native 
ode,for example an implementation based on the Panda 
ommuni
ation library [39℄, MPIor GM. The pure Java implementation 
an be used everywhere, but if an Ibis appli-
ation is running on a system where Panda, GM or MPI is available, a spe
ializedimplementation 
an be used. Ibis in
ludes a number of optimizations that make the
ommuni
ation more e�
ient. For example, Ibis o�ers an optimized obje
t serializa-tion implementation.Ibis, apart from 
ommuni
ation fa
ilities, provides the Ibis Registry. The Reg-istry provides, among others, a membership servi
e to the pro
essors taking part inthe 
omputation. The appli
ation pro
esses 
an use this servi
e to dis
over otherpro
esses taking part in the appli
ation. The Registry also o�ers fault dete
tion.Finally, the Registry provides the possibility to send signals to appli
ation pro
esses.Currently the Registry is implemented as a 
entralized server.2.3.4 Load balan
ingSatin balan
es the load using a work stealing approa
h. When a pro
essor runsout of work, it steals a task from another pro
essor. The 
hoi
e of the vi
tim isimportant for the performan
e of the appli
ation. For homogeneous systems, RandomStealing (RS) has been shown to be the optimal strategy [47℄. With RS, the vi
tim is
hosen at random, with uniform probability, from all pro
essors. In grid environments,however, RS performs suboptimally. Be
ause of the uniform probability with whi
hthe vi
tim is sele
ted, typi
ally the majority of steal requests are sent to a remote site(
luster/super
omputer). Stealing is done syn
hronously, that is, the thief waits idlyuntil a reply arrives. In grid environments, this means waiting a wide-area round tripmost of the times.Cluster-aware Random Stealing (CRS) [176℄ is a load-balan
ing algorithm designedespe
ially for hierar
hi
al systems. CRS distinguishes between nodes in the lo
al siteand in remote sites. When a node runs out of work, it �rst tries to steal from a node ina remote site. However, this wide-area steal request is performed asyn
hronously : thethief does not wait until a reply arrives. Instead, it sets a �ag indi
ating that a wide-area steal is in progress and starts syn
hronous stealing in the lo
al site. Even if thenode �nds a job in the lo
al 
luster, the wide-area steal request is not 
an
eled. If it issu

essful, the job is simply put in the work queue. Only one wide-area steal requestat a time is allowed � as long as the �ag is set, only lo
al stealing will be performed.Vi
tims for both wide-area and lo
al stealing are 
hosen at random. With wide-areastealing, ea
h node in any remote site has the same probability of being 
hosen. Withlo
al stealing, nodes in the lo
al site are 
hosen with uniform probability.Be
ause wide-area stealing is done asyn
hronously, CRS e�
iently hides wide-arealaten
ies. Also, 
ompared to RS, CRS sends mu
h less wide-area messages and thussaves wide-area bandwidth. The performan
e of CRS was evaluated both in simula-tions and in a real grid environment � the GridLab testbed. On the GridLab testbed,it a
hieves 80% e�
ien
y, while the e�
ien
y of RS ranges from 26% (daytime) to62% (nighttime). Table 2.3.4 
ontains some information about the nodes used inthis experiment. The laten
ies between the nodes ranged from 1 millise
ond to 3.5
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ation ar
hite
ture System nodes node CPUsVrije Universiteit Intel Red HatAmsterdam Pentium-III LinuxThe Netherlands 1 GHz kernel 2.4.18 8 1 8Vrije Universiteit Sun Fire 280RAmsterdam UltraSPARC-III SunThe Netherlands 750 MHz 64bit Solaris 8 1 2 2ISUFI/High Perf. Compaq CompaqComputing Center Alpha Tru64 UNIXLe

e, Italy 667 MHz 64bit V5.1A 1 4 4Cardi� Intel Red HatUniversity Pentium-III Linux 7.1Cardi�, Wales, UK 1 GHz kernel 2.4.2 1 2 2Masaryk Univ.Brno Intel Xeon Debian LinuxCze
h Republi
 2.4 GHz kernel 2.4.20 4 2 8Konrad-Zuse SGIZentrum für Origin 3000Informationte
hnik MIPS R14000Berlin, Germany 500 MHz IRIX 6.5 1 16 16Table 2.1: Nodes used in the GridLab experimentse
onds. The bandwidths ranged from 9 KByte/s to 11 MByte/s. The appli
ationused in this experiment was the Raytra
er. More details about his experiment 
an befound in [178℄.2.4 Satin vs other GPEsSatin is an appli
ation development tool. It does not provide appli
ation deploymentfun
tionalities. Satin 
an be 
ombined with any appli
ation deployment tool, forexample, in our grid experiments we have used Satin in 
ombination with the GlobusToolkit and Zorilla.Satin provides the programmer with a high-level programming model. The appli-
ation programmer needs only to de
ompose the problem into tasks that 
an be donein parallel. The Satin 
ompiler and runtime system take 
are of the low-level issuessu
h as load balan
ing and inter-pro
ess 
ommuni
ation. Below, we will investigatewhi
h non-fun
tional properties we have identi�ed in se
tion 2.2.2 are met by Satin.� Performan
e: Satin a
hieves ex
ellent performan
e in grid environments. ASatin appli
ation has been shown to a
hieve parallel e�
ien
y of 80% in a het-erogeneous, wide-area environment. Su
h high performan
e 
an be a
hieved
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ause of the hierar
hi
al stru
ture of divide-and-
onquer appli
ations whi
hsuits the stru
ture of grid platforms and the use of the CRS load balan
ing algo-rithm. The appli
ation programmer does not need to make any spe
ial e�ort tooptimize the appli
ation for grid environments. The grid-spe
i�
 optimizationsare applied by the 
ompiler and the runtime system.� Ease of use: As a high-level programming model, Satin is extremely easy to use.To 
reate a grid appli
ation, the appli
ation programmer only needs to annotatethe sequential 
ode with the simple divide-and-
onquer primitives: spawn andsyn
. The runtime system takes 
are of the low-level issues.� Appli
ability: A broad range of appli
ations 
an be expressed in the divide-and-
onquer model. This in
ludes all master-worker 
omputations (as divide-and-
onquer is a generalization of master-worker), sear
h and optimization problems,astrophysi
al simulations, parallel rendering et
.However, the appli
ability of the divide-and-
onquer paradigm is limited bythe la
k of global state. The only way of sharing data between tasks is byexpli
it parameter passing. This model is insu�
ient for many appli
ations.In 
hapter 5, we will show how the divide-and-
onquer model 
an be extendedwith a shared-abstra
tion: shared obje
ts. This will extend the appli
ability ofour programming model to for example bran
h-and-bound appli
ations, gameswith transposition tables, VLSI routing and many others.� Fault toleran
e, malleability and migration: In 
hapter 3, we will show how we
an provide transparent support for fault-toleran
e, malleability and migration.We will present a divide-and-
onquer-spe
i�
 algorithm whi
h allows Satin ap-pli
ations to run on variable numbers of nodes with little overhead.� Adaptivity: Sin
e Satin uses a dynami
 load-balan
ing algorithm, it 
an adapt tovarying pro
essor speeds. However, if a di�eren
e in pro
essor speeds be
omestoo large, for example be
ause another, high-priority appli
ation overloads partof the pro
essors, the performan
e might su�er. The overloaded pro
essorswill not perform enough 
omputation to amortize the overhead they 
ause bystealing work from other pro
essors. Also, the prototype Satin implementa-tion 
ould not adapt to 
hanging network 
onditions. If a 
ertain network linkbe
ame overloaded and the bandwidth drops beneath a 
ertain threshold, theperforman
e of the appli
ation would de
rease dramati
ally. In 
hapter 4 wewill show, how we 
an make Satin appli
ations adapt to 
hanging 
onditions ingrid environments.� Portability: The portability of Satin is ensured by the use of the Java te
hnology.Thanks to Java's `write on
e, run anywhere' property, Satin appli
ations 
anrun unmodi�ed on heterogeneous resour
es.Tables 2.2 and 2.3 provide an overview of all appli
ation development toolsdis
ussed in se
tion 2.2.2 and a 
omparison of those systems to the Satin frame-work. We 
ompare them to both the prototype Satin system implemented by



2.4. SATIN VS OTHER GPES 31Rob van Nieuwpoort and to the full system whi
h is the result of the workdes
ribed in this thesis.
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perf. optimizationsapplied ease of use appli
ationsGRID fork/joinsupers
alar automati
ally + 
oarse grainedMW automati
ally + master-workerWork�ow verysystems automati
ally + 
oarse grainedall, but most suitableHPJava by programmer +/- for data-parallelall, but most suitableMPI by programmer - for SPMD appli
ationsProA
tive by programmer - allRPC by programmer - allSatin(prototype) automati
ally + divide-and-
onquerSatin divide-and-
onquer(full system) automati
ally + with data sharingTable 2.2: The 
omparison of Satin and other grid programming environments



2.4. SATIN VS OTHER GPES 33

FT, malleability, migration adaptivity portabilityGRIDsupers
alar - - +/-MW + +/- -Work�owsystems + only some varies
hHPJava - - +only someMPI implementations - -ProA
tive + - ++ (RMI)RPC - - - (others)Satin(prototype) - - +Satin(full system) + + +Table 2.3: The 
omparison of Satin and other grid programming environments
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Chapter 3Fault toleran
e, malleability andmigration3.1 Introdu
tionIn grid environments, the availability of 
omputing resour
es 
hanges 
onstantly. Pro-
essor 
rashes are more likely to o

ur than in traditional parallel environments. Also,sin
e there is no 
entralized 
ontrol, 
omputing nodes may be rebooted or shut downfor maintenan
e with or without prior noti
e. Finally, pro
essors may be taken awayfrom the appli
ation be
ause they are 
laimed by another, higher-priority appli
ation,be
ause a pro
essor reservation has ended. On the other hand, new pro
essors mightbe
ome available.A grid appli
ation must be able to adapt to su
h 
hanges in order to survive ina grid environment and a
hieve good performan
e. In this 
hapter, we will dis
ussthree issues that are important for grid appli
ations to adapt to 
hanges in gridenvironments:� fault toleran
e � the ability of an appli
ation to operate in the presen
e ofhardware and software failures, i.e. pro
essors and network 
rashes.� malleability � the ability of an appli
ation to handle pro
essors joining andleaving an on-going 
omputation.� migratability � the ability of an appli
ation to transfer to a di�erent set of
omputational resour
es during the run.The three above issues are 
losely related to ea
h other. For example, if an ap-pli
ation 
an handle 
rashing pro
essors (fault toleran
e) and 
ontinue working onthe diminished number of pro
essors, it 
an also handle leaving pro
essors (partialmalleability). However, if the pro
essors are leaving gra
efully (i.e., after a prior no-ti
e) handling it may be more e�
ient than handling 
rashing pro
essors. Further, ifan appli
ation is malleable, it is also migratable: it 
an be migrated from one set of
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es to another by �rst adding the new pro
essors to the 
omputation and thenremoving the old ones.In this 
hapter, we will present a novel te
hnique to provide fault toleran
e, mal-leability and migratability to divide-and-
onquer appli
ations. We will des
ribe itsimplementation in Satin and evaluate its performan
e.The rest of this 
hapter is stru
tured as follows. Se
tion 3.2 
ontains ba
kgroundinformation on fault toleran
e, malleability and migration. In se
tion 3.3, we willpresent our fault-toleran
e algorithm. In se
tion 3.4, we will des
ribe how the fault-toleran
e algorithm 
an be extended to handle malleability. In se
tion 3.5, we willfurther extend our fault-toleran
e algorithm to handle total 
rashes. In se
tion 3.6,we will evaluate the performan
e of our algorithms. In se
tion 3.7, we 
ompare ourapproa
h with related work. Finally, we 
on
lude in se
tion 3.8.3.2 Ba
kgroundIn this se
tion, we will dis
uss some ba
kground information on fault toleran
e, mal-leability and migration issues.3.2.1 Failure modelsTo a
hieve fault toleran
e in a distributed system or appli
ation, it is important toknow the failure model of the system 
omponents. A failure model 
hara
terizes thebehavior of a 
omponent in 
ase of a failure. The literature lists a vast number offailure models with various degrees of `severity'. A failure model is more severe thananother failure model if the set of faulty behaviors allowed by it is a superset of the setof behaviors allowed by the other model [138℄. The most 
ommonly used models are
rash failure and arbitrary failure also known as Byzantine failure. Crash failure is theleast severe failure model. In this model, a faulty pro
ess stops prematurely but it wasworking 
orre
tly before it stopped. Byzantine failure is the most severe failure modeland it states that a faulty pro
ess might exhibit any behavior whatsoever. Most fault-toleran
e te
hniques, in
luding the one presented in this 
hapter, assume the 
rashfailure model. There are also te
hniques known that 
an deal with Byzantine failures.The te
hniques for handling both 
rash and Byzantine failures will be des
ribed brie�yhereafter.3.2.2 Fault-toleran
e te
hniquesIn this se
tion, we will des
ribe the most important approa
hes to implementing faulttoleran
e in distributed appli
ations. We will 
over 
he
kpointing, message logging,retry (re
omputing) and repli
ation.Che
kpointingThe most popular fault-toleran
e me
hanism is 
he
kpointing, i.e., periodi
ally sav-ing the state of the appli
ation on stable storage, a devi
e that 
an survive failures



3.2. BACKGROUND 37� usually one or more hard disks. The information stored on the stable storage is
alled a 
he
kpoint. After a 
rash, the appli
ation is restarted from the last 
he
k-point rather than from the beginning [165℄. Che
kpointing 
omes in three varieties:un
oordinated 
he
kpointing, 
oordinated 
he
kpointing and 
ommuni
ation indu
ed
he
kpointing [77℄.With un
oordinated 
he
kpointing, ea
h pro
ess takes its 
he
kpoints indepen-dently. This allows to avoid the syn
hronization overhead. Finding a 
onsistent setof 
he
kpoints to roll ba
k to might be di�
ult, however. Rolling ba
k a 
rashedpro
ess may 
ause rolling ba
k other, dependent pro
esses that have sent or re
eivedmessages from the 
rashed pro
ess. This rollba
k propagation might extend ba
k tothe initial state of the 
omputation (domino e�e
t) [149℄.The domino e�e
t 
an be avoided by using 
oordinated 
he
kpointing or 
ommuni-
ation indu
ed 
he
kpointing. With 
oordinated 
he
kpointing, the pro
esses syn
hro-nize before taking a 
he
kpoint to make sure that the resulting set of 
he
kpoints is
onsistent. The disadvantage of 
oordinated 
he
kpointing over un
oordinated 
he
k-pointing is the syn
hronization overhead. The advantage is that the re
overy is fasterand easier to implement.With 
ommuni
ation indu
ed 
he
kpointing, pro
esses take two kinds of 
he
k-points: lo
al and for
ed. Lo
al 
he
kpoints are taken independently by ea
h pro
ess.For
ed 
he
kpoints are taken if a message ex
hanged by two pro
esses 
ould 
ause
reation of a useless 
he
kpoint, that is, a 
he
kpoint that will never be a part of a
onsistent global state [77℄. This guarantees that the domino e�e
t will not o

ur.In pra
ti
e, the most 
ommonly used te
hnique is 
oordinated 
he
kpointing [77℄.The reason is that, 
urrently, the main 
ause of overhead is a

ess to stable storage andnot syn
hronization. The simpli
ity of the re
overy pro
edure is also an importantargument.Che
kpointing 
an be done either at the system level or at the appli
ation level.With system-level 
he
kpointing, the system-level state of the appli
ation is saved.The advantage of system-level 
he
kpointing is that it is 
ompletely transparent to theappli
ation programmer. However, the system-level implementation of 
he
kpointing
an be extremely 
omplex, as has been shown in the Dynamite proje
t [106℄. Notonly do the memory image, sta
k and registers of a pro
ess need to be saved, but alsoits signal mask, open �le des
riptors and open network 
onne
tions. Reprodu
ingthe open �le des
riptors after a pro
ess has been restarted from a 
he
kpoint is non-trivial, be
ause the �les might not be a

essible on the ma
hine where the pro
ess isrestarted. Restoring network 
onne
tions requires 
omplex proto
ols. Finally, system-level 
he
kpointing is inherently not portable, sin
e pro
ess 
he
kpoints 
ontain OS-spe
i�
 data, and a pro
ess 
he
kpointed under one OS 
annot be restarted on anotherOS.With appli
ation-level 
he
kpointing, the appli
ation itself saves its 
riti
al vari-ables and datastru
tures. Appli
ation-level 
he
kpointing is typi
ally easier to im-plement. It often requires the 
ooperation of the appli
ation programmer, however,and is therefore not transparent. Further, appli
ation-level 
he
kpointing is moreportable than system-level 
he
kpointing, as the 
he
kpoint data does not 
ontainOS-dependent information. Finally, appli
ation-level 
he
kpointing is more e�
ient
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e smaller amounts of data need to be saved.Che
kpointing is used in grid 
omputing by su
h systems as Condor [169℄, Dy-namite [106℄ (system-level 
he
kpointing), Ca
tus [22℄ (appli
ation-level 
he
kpoint-ing) and the European DataGrid proje
t [92℄ (appli
ation-level 
he
kpointing). Also,several MPI implementations provide 
he
kpointing fa
ilities, for example CoChe
kMPI [160℄, Star�sh MPI [14℄ and MPICH-V [49℄.The main advantage of 
he
kpointing is that it is a very general te
hnique whi
h
an be applied to any type of parallel appli
ations. The disadvantage is that it 
ausesexe
ution time overhead, even if there are no 
rashes. This overhead depends on thefrequen
y with whi
h 
he
kpoints are taken and the programmer must be 
areful in
hoosing a reasonable frequen
y. In [185℄ and [174℄, formulas are presented whi
h 
anbe used to 
al
ulate the optimal 
he
kpointing frequen
y. However, the programmerneeds to have a detailed knowledge about the 
hara
teristi
s of the appli
ation andthe system it is running on, su
h as the time it takes to save a 
he
kpoint and themean-time-to-failure.The overhead of 
he
kpointing 
an be redu
ed using su
h te
hniques as 
on
urrent
he
kpointing [145℄ and in
remental 
he
kpointing [80℄. With 
on
urrent 
he
kpoint-ing, the exe
ution of a pro
ess is 
ontinued while its state is being saved to stablestorage. In
remental 
he
kpointing avoids rewriting the portions of the pro
ess statethat have not 
hanged sin
e the previous 
he
kpoint.Another problem of most 
he
kpointing s
hemes is the 
omplexity of the 
rash re-
overy pro
edure, espe
ially in dynami
 and heterogeneous grid environments whereres
heduling the appli
ation and retrieving and transferring the 
he
kpoint data be-tween nodes is non-trivial. The �nal problem of 
he
kpointing is that in most existingimplementations, the appli
ation needs to be restarted on the same number of pro-
essors as used before the 
rash, so it does not support malleability. An ex
eption isSRS [171℄, a 
he
kpointing library for MPI appli
ations whi
h saves data in su
h away that an appli
ation 
an be restarted on a di�erent number of pro
essors.Message LoggingAn alternative fault-toleran
e te
hnique is message logging : during failure-free opera-tion, ea
h pro
ess logs sent or re
eived messages (depending on the variant of messagelogging algorithm) from other pro
esses [77℄. After a failure, the 
rashed pro
ess is re-exe
uted and the logged messages are replayed. Message logging proto
ols assume apie
ewise deterministi
 model : the exe
ution of ea
h pro
ess is deterministi
 betweeno

urren
es of non-deterministi
 events. The non-deterministi
 events are usually re-
eipts of messages, but the proto
ol 
an be easily extended to handle other types ofnon-deterministi
 events. All non-deterministi
 events need to be logged.Message logging is typi
ally 
ombined with 
he
kpointing to redu
e the amountof re-exe
ution needed � message logging enables the system to re
over beyond thelast 
he
kpoint [77℄. Therefore, message logging is also often used to provide theappli
ations the ability to intera
t with the outside world. Message logging is usedless often than 
he
kpointing. An example of a system that uses a 
ombination ofmessage logging and 
he
kpointing is MPICH-GF [183℄ or MPICH-V [49℄. Message
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an also be 
ombined with other fault-toleran
e te
hniques. For example,RPC-V [69℄ 
ombines message logging with repli
ation.Message logging s
hemes 
ome in three �avours: pessimisti
 message logging, opti-misti
 message logging and 
ausal message logging. Pessimisti
 message logging doesnot allow any message to be re
eived before it is logged. This approa
h guaranteesthat so-
alled orphan pro
esses are never 
reated. An orphan pro
ess is a pro
essthat depends on a message that has not been logged and whose sender has 
rashed.The disadvantage of this approa
h is a high performan
e overhead. Logging messagesa�e
ts 
ommuni
ation throughput and laten
y. The advantage of pessimisti
 loggingis the simpli
ity of the re
overy pro
edure: pro
esses other than the 
rashed pro
essare not a�e
ted by the 
rash.Optimisti
 logging tries to redu
e the logging overhead by making the optimisti
assumption that logging will 
omplete before a 
rash o

urs [77℄. Messages are loggedasyn
hronously so a message 
an be re
eived before it is logged. This redu
es thelogging overhead but signi�
antly 
ompli
ates the re
overy pro
edure. Optimisti
logging does not ex
lude the 
reation of orphan pro
esses. Su
h pro
esses must berolled ba
k during the re
overy pro
edure.Causal message logging also avoids syn
hronous a

ess to stable storage whileavoiding 
reating orphan pro
esses at the same time. Causal logging ensures thatea
h message on whi
h a pro
ess 
ausally depends (a

ording to Lamport's happened-before relation [118℄) is either logged or available lo
ally (in the volatile memory) tothat pro
ess. This is implemented by piggyba
king messages in the pro
ess' memorywhi
h have not been logged on ea
h message the pro
ess sends to another pro
ess.The re
overy pro
edure with 
ausal logging is more 
omplex than in 
ase of pes-simisti
 logging. In pra
ti
e, pessimisti
 logging is most 
ommonly used be
ause ofthe simpli
ity of the re
overy pro
edure [77℄.The advantages and disadvantages of message logging te
hniques are similar tothose of 
he
kpointing te
hniques. Message logging is a very general te
hnique but it
an 
ause high exe
ution time overhead. It 
an a�e
t 
ommuni
ation throughput andlaten
y. With some message-logging proto
ols, if stable storage is a

essed throughthe network, the bandwidth required by the appli
ation doubles. Also, message log-ging 
annot be used to implement malleability: the appli
ation 
annot 
ontinue ex-e
ution on the diminished number of pro
essors, the 
rashed pro
essor needs to berepla
ed.Repli
ationRepli
ation is another approa
h to implementing fault toleran
e. Multiple 
opies ofthe same task/pro
ess are run on separate pro
essors. If one of the 
opies 
rashes,other 
opies are used. This te
hnique 
an be used not only for tolerating 
rash failuresbut also Byzantine failures. In the latter 
ase, repli
ation is 
ombined with voting:the result returned by the majority of repli
as is 
onsidered valid, other results aredis
arded. To tolerate N 
rash failures, N+1 repli
as are needed. To tolerate NByzantine failures, 3N+1 repli
as are needed. This te
hnique is suitable for systemsof whi
h high-availability is required, sin
e the re
overy is fast � it basi
ally requires
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hing to another repli
a.Repli
ation is often used in hardware-based fault toleran
e. An example is TripleModular Redundan
y used in ele
troni
 systems.An example of software-based fault toleran
e using the repli
ation prin
iple isthe me
hanism used in the FTAG runtime system [61℄. The FTAG programminglanguage is based on the fun
tional paradigm. A FTAG program is stru
tured as aset of modules. Modules 
an be de
omposed into sub-modules, whi
h resembles thedivide-and-
onquer style programming. With FTAG, the user 
an sele
t one of thetwo supported failure models: 
rash failure or Byzantine failure. The 
omputation isrepli
ated for fault-toleran
e purposes. The repli
as ex
hange partial results. If the
rash failure model is sele
ted, this ex
hange of partial results is used to speed up the
omputation: if a repli
a re
eives a result of a 
ertain sub-module and it does notneed to 
ompute this sub-module anymore. If the Byzantine failure model is used,majority voting is used for ea
h partial result to determine its 
orre
tness.Another example of a system that uses software-based repli
ation is RPC-V [69℄.RPC-V 
ombines repli
ation with message logging.RetryAnother te
hnique used for providing fault toleran
e is retry � re
omputing parts ofthe work that were lost in a 
rash. This te
hnique 
annot be applied to an arbitraryappli
ation. One group of appli
ations to whi
h this te
hnique 
an be applied areappli
ations stru
tured as a series of (possibly nested) atomi
 a
tions [129℄. In 
ase ofa pro
essor 
rash, an atomi
 a
tion 
an be aborted without side-e�e
ts and restartedfrom the beginning.Appli
ations that adhere to the fun
tional programming paradigm 
an also usethis prin
iple [108℄. Fun
tional programming appli
ations 
onsist of fun
tions with noside-e�e
ts. There is no notion of global state and the result of a fun
tion depends onlyon its input parameters. Fun
tion exe
ution will always produ
e the same outputs ifgiven the same inputs, a property known as referential transparen
y [61℄. So, in 
aseof a 
rash, fun
tions exe
uted by 
rashed pro
essors 
an be re-exe
uted.One example of appli
ations that adhere to the fun
tional programming paradigmare master-worker appli
ations. Master-worker tasks are typi
ally fun
tions whoseresults depend solely on their parameters and with no side-e�e
ts. Fault toleran
ein master-worker appli
ations is typi
ally implemented by re
omputing tasks doneon 
rashed workers. A separate fault-toleran
e te
hnique needs to be applied to themaster � usually 
he
kpointing or repli
ation. An example of a master-worker frame-work that adopts this fault-toleran
e me
hanism is MW [95℄ (see also se
tion 2.2.2).Charlotte [33℄ introdu
es a fault-toleran
e me
hanism 
alled eager s
heduling. Itres
hedules a task to idle pro
essors as long as the task's result has not been re-turned. Crashes 
an be handled without the need of dete
ting them. Assigning asingle task to multiple pro
essors also guarantees that a slow pro
essor will not slowdown the progress of the whole appli
ation.Divide-and-
onquer appli
ations also adhere to the fun
tional paradigm and there-fore the retry prin
iple 
an be used for providing fault toleran
e in this type of appli-
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ations. However, this naive approa
h might lead to large amounts of re
omputationwhen a task lo
ated high in the hierar
hi
al task graph is lost in a 
rash. Also, naivere
omputation might 
ause the need of re
omputing work done by pro
essors thathave not 
rashed. In this 
hapter, we will explain in more detail why the naive re-
omputing approa
h is not adequate for divide-and-
onquer appli
ations and we willpresent a more e�
ient solution. Other divide-and-
onquer frameworks whi
h use re-
omputing to a
hieve fault toleran
e are: Cilk [46℄, CilkNow [44℄, Atlas [32℄, DIB [83℄and Lin and Keller's work [126℄. A more detailed des
ription of the algorithms usedby those systems and their 
omparison to the algorithm des
ribed in this 
hapter willbe given in the related work se
tion at the end of the 
hapter.3.2.3 Malleability te
hniquesThe basi
 idea behind implementing transparent malleability in parallel appli
ationsis separating parallelizing, that is, identifying what 
an be done in parallel, from map-ping to physi
al pro
essors [101℄. For SPMD (MPI-like) appli
ations, this 
an be doneby pro
essor virtualization. The programmer operates on virtual pro
essors, the num-ber of whi
h is typi
ally many times bigger than the number of physi
al pro
essors.The runtime system takes 
are of mapping the virtual pro
essors to the physi
al one.Malleability 
an be a
hieved in two ways. One way is migrating virtual pro
essors o�leaving or to joining physi
al pro
essors. Another way is 
he
kpointing the appli
ationin su
h a way that ea
h virtual pro
ess has a separate 
he
kpoint �le. The appli
ation
an then be stopped, 
he
kpoint �les rearranged and the appli
ation restarted on adi�erent number of pro
essors. This approa
h is used in Adaptive MPI [101℄ (virtualpro
essor migration and 
he
kpointing) and Phoenix (only 
he
kpointing).Another approa
h is to treat the number of pro
essors the appli
ation is runningon as a variable. The data partitioning depends on the value of this variable. Whenthis value is �xed at the time the job starts and 
annot be 
hanged during the run,we 
all the appli
ation moldable [111℄. Many data-parallel and SPMD appli
ationsare written in that way. Moldable appli
ations 
an be turned into malleable appli-
ations by introdu
ing re
on�guration points at whi
h the number of pro
essors 
anbe 
hanged. This approa
h is used in DyRe
T [93℄, DRMS [9℄ and SRS [171℄. Ata re
on�guration point, global syn
hronization and data redistribution takes pla
e.Data redistribution 
an be done by means of group 
ommuni
ation (DyRe
T, DRMS)or 
he
kpointing (SRS).Master-worker and divide-and-
onquer paradigms are espe
ially attra
tive whenimplementing malleability. When programming with those paradigms the program-mer does not use the notion of pro
essors. Instead the notion of tasks or jobs is used.The tasks are mapped to the physi
al pro
essors by the 
ompiler or runtime system.Joining pro
essors are handled in a straightforward manner by assigning tasks fromthe pool of free tasks to those pro
essors. Leaving pro
essors 
an be handled usingthe fault-toleran
e me
hanism: leaving pro
essors are treated as 
rashing pro
essors.Some systems, however, 
an handle gra
efully leaving pro
essors (i.e., after a priornoti�
ation) more e�
iently than pro
essor 
rashes. For example, Piranha [56℄ al-lows the programmer to spe
ify a `
leanup' pro
edure whi
h is 
alled when a task
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ate a leaving pro
essor. In this thesis, we will also present a malleabilityme
hanism that is an `optimized' version of the fault-toleran
e me
hanism.3.2.4 Migration te
hniquesIn sequential appli
ations, migration is traditionally a
hieved by stopping the appli-
ation exe
ution on the 
urrent node, transferring the whole appli
ation state to thenew node and restarting the appli
ation on the new node from the point where it wasstopped on the old node. Migration 
an also be implemented on top of 
he
kpointing:a 
he
kpoint �le is 
reated on the old node and transferred to the new node wherethe appli
ation is restarted from the 
he
kpoint �le rather than from the beginning.Those two approa
hes are very similar. In fa
t, dire
t migration 
an be seen as anoptimized version of 
he
kpoint-based migration: the data is transferred dire
tly intothe memory of the new ma
hine instead of via stable storage [160℄.Similarly to 
he
kpointing, migration 
an be implemented either on the operatingsystem level (system-level migration) or in the appli
ation itself (appli
ation-levelmigration). As explained in se
tion 3.2.2, system-level implementations are extremely
omplex. Care needs to be taken to properly save and restore open �le des
riptors andopen network 
onne
tions [106℄. Also, system-level implementations are not portable.However, implementing migration on the OS level is transparent and therefore more
onvenient for the programmer. Appli
ation-level te
hniques are less 
omplex toimplement and more portable. Typi
ally, they are also more e�
ient, sin
e less dataneeds to be saved and transferred. However, appli
ation-level te
hniques are nottransparent.Parallel appli
ations 
an be migrated using the same approa
h: ea
h pro
ess ismigrated separately by dire
t transfer of the pro
ess state or by 
he
kpointing. Spe-
ial 
are needs to be taken to guarantee that the states of all migrated pro
esses are
onsistent and that the 
ommuni
ation 
hannels between pro
esses are 
orre
tly re-stored after migration. Migration of MPI appli
ations was studied in the Dynamiteproje
t [106℄ also in [101℄, [152℄ and [167℄.Another approa
h to migrating parallel appli
ations is using malleability to a
hievemigration. An appli
ation 
an be migrated from one set of resour
es to another by�rst adding the new set of resour
es to the 
omputation and then removing the oldset.3.3 Fault-toleran
e for SatinThe divide-and-
onquer paradigm is well suited for implementing fault-toleran
e, mal-leability and migration. There is no notion of global state in a divide-and-
onquerappli
ation: fun
tion exe
ution does not have side-e�e
ts and the result of a fun
tiondepends only on its input parameters. Fun
tion exe
ution will always produ
e thesame outputs if given the same inputs, a property known as referential transparen
y.So, the work lost in a 
rash of a pro
essor 
an be redone at any time during exe
utionof the appli
ation.
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rashing pro
essors by re
omputingwork done by those pro
essors. Su
h a me
hanism has low overhead, as no syn-
hronization between pro
essors is needed and no data needs to be stored on stablestorage. Several su
h te
hniques have been proposed [32, 44, 83, 126℄. However, the
ommon problem of those te
hniques is redundant 
omputation whi
h degrades theirperforman
e. They do not reuse orphan work, that is, tasks that are dependent ontasks done by leaving pro
essors. Orphan work is dis
arded and re
omputed.In this se
tion, we will des
ribe a re
overy me
hanism whi
h salvages orphan workand thus avoids redundant 
omputations. Orphan work is salvaged by restru
turingthe exe
ution tree. The overhead of our me
hanism during 
rash-free exe
ution is verysmall. Our me
hanism 
an handle 
rashes of multiple pro
essors or entire 
lusters.In the following se
tions, we will dis
uss two simple extensions to the fault-toleran
e me
hanism. First, we extend the orphan saving s
heme in su
h a waythat we 
an also reuse partial results 
omputed by the gra
efully leaving pro
essors.This o

urs, for example, when the pro
essor reservation is 
oming to an end or whenthe appli
ation re
eives a noti�
ation that it should va
ate part of its pro
essors foranother, higher-priority appli
ation. When the pro
essors leave gra
efully, the workdone by them is randomly distributed over the other pro
essors. Then, the orphansaving s
heme is used to reuse those partial results. When pro
essors are leavinggra
efully, our me
hanism 
an save nearly all the work done by the leaving pro
es-sors. That, 
ombined with the fa
t that adding pro
essors to ongoing divide-and-
onquer 
omputations is straightforward (they just start stealing), results in e�
ientmalleability. We 
an also use our te
hnique for e�
ient migration of the 
omputation:to migrate the 
omputation from one 
luster to another, we �rst add the new 
lusterto the 
omputation and then (gra
efully) remove the old one.The disadvantage of this s
heme is that always at least one pro
essor must berunning, or else all work will be lost. This makes it impossible to stop an appli
ationand restart it later from the point where it was stopped. It is also impossible tosurvive total 
rashes, i.e. the situations when all pro
essors have 
rashed. Therefore,we extended the basi
 s
heme with the possibility of storing partial results in a user-de�ned �le. The results stored in the �le 
an be reused using the orphan-savingme
hanism.The resulting system 
an handle a vast variety of s
enarios typi
al for the Grid:� Crashing pro
essors, in
luding a total 
rash 
an be handled.� Pro
essors joining and leaving an on-going 
omputation 
an be handled withhigh e�
ien
y.� An appli
ation 
an be e�
iently migrated.� An appli
ation 
an be stopped and restarted later on a possibly di�erent set ofresour
es.In the remainder of this se
tion, we will des
ribe the basi
 fault-toleran
e me
ha-nism. The extensions will be des
ribed in the following se
tions.
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tionWe use two di�erent me
hanisms to dete
t pro
essor 
rashes. One me
hanism isimplemented in the 
ommuni
ation layer (Ibis). If a 
onne
tion between two hostsis broken, the 
ommuni
ation layer noti�es the Satin runtime system. The se
ondme
hanism is implemented in the Ibis Registry. The Registry periodi
ally sends akeep-alive message to every node. If a node does not respond to this message withinthe spe
i�ed timeout, the Registry noti�es the remaining nodes that this node hasdied.In general, it is impossible to dete
t failures reliably in asyn
hronous systems wheremessage propagation time is unbounded. Therefore, both of our failure dete
tionmethods assume that there exist an upper bound on message propagation time. Thismay result in false positives in some 
ases. Also, the system 
annot distinguishbetween a 
rashed pro
essor and a broken network 
onne
tion. This may also resultin false positives. False positives, however, a�e
t the performan
e of our failurere
overy algorithm, as some jobs might be re
omputed unne
essarily, but not its
orre
tness. The system will 
ontinue to work 
orre
tly as long as the following
ondition is satis�ed:If pro
essor A thinks that pro
essor B has 
rashed, then either pro-
essor B has indeed 
rashed or pro
essor B thinks that pro
essor A has
rashed.We make sure that this 
ondition always holds by breaking all 
onne
tions with pro-
essors that we assume to be 
rashed.3.3.2 Re
omputing jobs stolen by leaving pro
essorsTo be able to re
ompute jobs stolen by leaving pro
essors, we keep tra
k of all thejobs stolen in the system. Ea
h pro
essor maintains an outstandingJobs list 
ontain-ing the invo
ation re
ords of jobs stolen from this pro
essor (invo
ation re
ords aredatastru
tures des
ribing the jobs, see se
tion 2.3.3). For ea
h job, the pro
essorIDof the thief is stored. When one or more pro
essors are leaving or 
rashing, ea
h ofthe remaining pro
essors traverses its outstandingJobs list and sear
hes for jobs stolenby the leaving pro
essors. If su
h a job is found, it is put ba
k in the work queue ofthe pro
essor from whi
h the job was stolen. Later, this job will be re
omputed bythe lo
al pro
essor or stolen by another pro
essor. Figure 3.1 (a) shows an example
omputation tree. Four pro
essors are taking part in the 
omputation. Pro
essorsstore the information about stolen jobs in their outstandingJobs queues: pro
essor 1remembers that job 2 was stolen by pro
essor 3 and job 14 by pro
essor 2. Pro
essor 3remembers that job 4 was stolen by pro
essor 4. Pro
essors also remember where thejobs were stolen from: this information is stored in the invo
ation re
ord of ea
hstolen job. Figure 3.1 (b) shows the situation after the 
rash of pro
essor 3. As soonas pro
essors 1, 2 and 4 dis
over the 
rash of pro
essor 3, they sear
h through theiroutstandingJobs lists. Pro
essor 1 dis
overs that job 2 has been stolen by pro
essor 3and puts this job ba
k in its work queue (�gure 3.2 (a)). Ea
h job reinserted into
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overy pro
edure is marked as `restarted'. Children of`restarted' jobs are also marked as `restarted' when they are spawned.3.3.3 Orphan jobsOrphan jobs are jobs stolen from leaving pro
essors. In �gure 3.2 (a), job 4 and all itssubjobs are orphans. In most existing approa
hes, the pro
essor whi
h has �nishedworking on an orphan job must dis
ard the result of this job: sin
e the pro
essor wherethe job was stolen from has 
rashed, the result 
annot be sent ba
k. Orphan jobs arere
omputed when their restarted parents are re
omputed. For example, in �gure 3.2(a), job 4 and all its subjobs would be re
omputed while re
omputing job 2. This isundesirable, sin
e a 
rash of a small number of pro
essors 
an 
ause re
omputationof large parts of the work, if the 
rashing pro
essor was 
omputing jobs high in thetree.The results of orphan jobs are valid partial results and 
an be used while re
om-puting their parents. The results of orphan jobs would be usable if the pro
essorsre
omputing the parents knew where to retrieve those orphans or the orphan taskknew the new address to return the result. Thus, salvaging orphan jobs requires
reating the link between the orphan and its restarted parent.We restore links between parents and orphans in the following way: for ea
h �n-ished orphan job (jobs 9 and 17 in �gure 3.2 (a)), we forward to the other pro
essors asmall message 
ontaining the jobID of the orphan and the pro
essorID of the pro
essor
omputing this orphan.We abort the un�nished intermediate nodes of orphan subtrees, sin
e they requirelittle 
omputation: in a typi
al divide-and-
onquer appli
ation, the bulk of the 
om-putation is done in the leaf nodes, the intermediate nodes only split work and 
ombinethe results. Aborting simpli�es the algorithm and eliminates the possibility of dead-lo
ks in Satin. In se
tion 3.3.7, we will dis
uss an alternative orphan saving s
hemein whi
h the un�nished orphans are not aborted. We will show that this makes thealgorithm mu
h more 
ompli
ated and does not improve the performan
e.The (jobID, pro
essorID) tuples are stored by ea
h pro
essor in a lo
al orphantable. Figure 3.2 (b) shows the 
omputation tree after the re
overy pro
edure. Pro-
essor 4 aborted jobs 4, 8 and 16 and forwarded the (jobID, pro
essorID) tuples forjobs 9 and 17 to the other pro
essors. Pro
essors 1 and 2 stored those tuples in theirorphan tables. The 
rash re
overy pro
edure is 
ompleted. Note that the 
rash re-
overy does not require inter-pro
ess syn
hronization: ea
h pro
essor pro
esses the
rashes independently of the other pro
essors.Jobs that have been restarted after a 
rash and all their subjobs have a `restarted'�ag set in their invo
ation re
ords. Before starting the exe
ution of su
h jobs, pro-
essors perform lookups in their lo
al orphan tables. If the jobID of the spawned job
orresponds with the jobID of one of the orphans in the table, the pro
essor does notstart 
omputing the job. Instead, it puts the job on its outstandingJobs list and sendsa message to the owner of the orphan requesting the result of the job. Figure 3.3 (a)shows the 
ontinuation of the 
omputation from �gures 3.1 � 3.2. In the meantime,pro
essor 2 stole job 2 from pro
essor 1 and started exe
uting it. Be
ause it is a
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essor 2 performs a lookup in its orphan table for this job and allits subjobs. After spawning job 9, it dis
overs that it has an entry for this job in itsorphan table. Instead of 
omputing this job, it puts it on the outstandingJobs listand asyn
hronously sends a message (result request) to pro
essor 4 requesting theresult of job 9 (�gure 3.3 (a)). Note, that at this moment, the state of the exe
utiontree and the datastru
tures (outstandingJobs lists) is exa
tly as if job 9 was stolenby pro
essor 4 from pro
essor 2. This has important 
onsequen
es. First, the resultreturned by pro
essor 4 
an be handled using the normal routine used for handling theresults of stolen jobs. Pro
essor 2 does not need to wait until the result is returned.Instead, it 
an 
ompute other jobs in the meantime. Se
ond, if pro
essor 4 
rashesbefore it returns the result, this 
rash will be handled by the normal 
rash re
overypro
edure: job 9 will be taken from the outstandingJobs list and put ba
k in the workqueue of pro
essor 2. This guarantees that job 9 will always be 
omputed and thatpro
essor 2 will not hang waiting inde�nitely for the reply of pro
essor 4.Pro
essor 4, after re
eiving the result request sends the result of job 9 to pro
essor 2(�gure 3.4 (a)) The format of the message 
ontaining this result is exa
tly the sameas a format of a message returning the results of a stolen job. The results of job 17will be reused in the same way later in the 
omputation.Note that reusing orphans does not in�uen
e the 
orre
tness of the algorithm. Ifthe result of an orphan is not found (e.g. be
ause the (jobID, pro
essorID) tupledoes not arrive in time), the job 
an always be re
omputed. Reusing orphans is anoptimization that improves the performan
e of the system but does not in�uen
ethe 
orre
tness of the 
rash re
overy pro
edure. This has important 
onsequen
esfor the implementation of the forwarding of the tuples: no reliable and potentiallyhigh-overhead broad
ast proto
ols are needed. Currently, we are using asyn
hronousbroad
asting. An alternative solution would be piggyba
king tuples on other messagessent by the Satin runtime system, for example steal requests and replies. Also, we usemessage 
ombining : instead of sending ea
h tuple in a separate message, we 
ombinemultiple tuples into one message. This redu
es the number of messages sent duringthe re
overy pro
edure to one broad
ast message per pro
essor.3.3.4 Orphan propagationAn orphan subtree might not ne
essarily be lo
ated on a single pro
essor like in theexample above where the whole subtree of job 4 was lo
ated on pro
essor 3 (�gure 3.1(a)). If one of the subjobs of job 4 was stolen, the orphan subtree would be distributedover two pro
essors. For example, in �gure 3.5 (a), pro
essor 5 stole job 8 from pro
es-sor 4. After the 
rash of pro
essor 2, job 8 and all its subtree be
ome orphans be
ausetheir an
estor, job 4, was stolen from a 
rashed pro
essor. However, pro
essor 5 doesnot have enough information to dis
over that. Therefore, we introdu
e orphan prop-agation messages. When a pro
essor dis
overs that a part of the orphan subtree wasstolen by another pro
essor, it sends an orphan propagation message 
ontaining theidenti�er of the stolen job to the other pro
essor. Orphan propagation messages aresent asyn
hronously. Orphan propagation 
ontinues re
ursively, if ne
essary. In ourexample, pro
essor 4 sends an orphan propagation message to pro
essor 5 (�gure 3.6
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essor 5 aborts jobs 8 and 16 and forwards a (jobID, pro
essorID) tuple forjob 17 (�gure 3.6 (a)).3.3.5 Handling 
rashes of the master pro
essorThe pro
essor that spawned the job that is the root of the exe
ution tree is 
alled themaster. In �gure 3.1 (a), job 1 is the root of the exe
ution tree and pro
essor 1 is themaster. A 
rash of the master is a spe
ial 
ase. Sin
e the root job was never stolen,it will not be restarted during the normal re
overy pro
edure in whi
h jobs stolen by
rashed pro
essors are restarted. Therefore, a spe
ial pro
edure for handling a 
rashof the master is needed.When the 
rash of the master is dis
overed, the remaining pro
essors ele
t the newmaster using the Registry1. The new master re-spawns the root job, thereby restartingthe appli
ation. The information needed to restart the appli
ation is repli
ated onall pro
essors. The new run of the appli
ation will reuse the partial results of theorphan jobs from the previous run (when the master 
rashes, all jobs be
ome orphans).Figures 3.7 (a) shows the 
omputation tree from �gure 3.1 (a) after the 
rash of themaster (pro
essor 1). Figure 3.7 (b) shows the situation after the 
rash handlingpro
edure. Pro
essor 3 has been ele
ted as a new master and restarted the root ofthe 
omputation tree (job 1).3.3.6 Job identi�ersThe job identi�ers (jobID) must be both globally unique and reprodu
ible: the iden-ti�er of a job that is re-spawned after a pro
essor 
rash must be the same as it wasbefore the 
rash, otherwise the orphaned 
hildren 
annot be linked 
orre
tly to theirparents. We 
reate job identi�ers in the following way: the root job is assigned ID=1.The 
hild's identi�er is 
omputed by multiplying the identi�er of its parent by themaximal bran
hing fa
tor of the 
omputation tree and adding the number of 
hildrenthe same parent generated before. For example, the se
ond 
hild of a job with ID 4in a tree with bran
hing fa
tor = 2 will have ID = 2 * 4 + 1 = 9. The jobs in thetree in �gures 3.1�3.7 are numbered a

ording to this s
heme.In most divide-and-
onquer appli
ations, the maximal bran
hing fa
tor of theexe
ution tree is known. If it is not known, however, level stamps des
ribed in [126℄
an be used. A level stamp is a string. The root job is identi�ed by an empty string.The level stamp of a 
hild is 
reated by appending a 
hara
ter to the identi�er of theparent. The appended 
hara
ter is the number of 
hildren the parent has spawnedbefore. For example, the �rst 
hild of the root job will be identi�ed with a stamp `0',the se
ond 
hild of job `021' will be identi�ed with `0211'. Figure 3.8 shows an exampleexe
ution tree with level stamps. In our implementation, the appli
ation programmer
an spe
ify the maximal bran
hing fa
tor of the appli
ation. In that 
ase the integerjob identi�ers are used, otherwise the runtime system uses level stamps.1Crashes of the Registry have to handled by a separate me
hanism su
h as 
he
kpointing andrepli
ation
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hemesIn this se
tion, we will dis
uss alternative orphan saving s
hemes and we will explainwhy they were found to be less e�
ient.Global result tableOne alternative s
heme we tried is using a global result table � a 
on
ept similar to atransposition table [50℄ used in game solving environments or the table used in tabledexe
ution of logi
 programs [163℄. It is a table a

essible to all pro
essors in whi
hresults of jobs 
an be stored. Jobs in the table are identi�ed by their parameters. Theglobal result table is used for storing the results of orphan jobs. As in the basi
 s
heme,only �nished orphans are stored in the table. Un�nished orphans are aborted. Whenre
omputing jobs lost in 
rashes, pro
essors perform lookups in the global result table.If a lookup is su

essful the result found in the table is used instead of re
omputingthe job.The global result table is repli
ated on all pro
essors. The repli
as of the table donot have to be strongly 
onsistent. If a pro
essor does not �nd a job, it 
an alwaysre
ompute it. Therefore, updates of the table are propagated to other pro
essorsasyn
hronously.The global result table s
heme has many similarities with the basi
 s
heme. Infa
t, the basi
 s
heme 
an be seen as a distributed implementation of the global resulttable: instead of repli
ating the job results on all pro
essors, the results are storedlo
ally and only pointers to the results ((jobID, pro
essorID) tuples) are forwardedto other pro
essors.The advantage of the global result table s
heme over the basi
 s
heme is that
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ally and the result request messages do notneed to be sent. This simpli�es the algorithm and redu
es the number of messagesthat are sent in the system. However, a severe disadvantage of the global resulttable s
heme is that for appli
ations with large job parameters and large job results,mu
h data is transferred. The problem of large parameters 
an be solved by using jobidenti�ers des
ribed in se
tion 3.3.6 instead of parameters to identify jobs in the globalresult table. However, there still remains the problem of large results. Therefore, theglobal result table s
heme is not suitable for appli
ations with large parameters andresults.Avoiding aborting orphansTo avoid aborting orphans, we extended the basi
 orphan saving s
heme in the fol-lowing way. The (jobID, pro
essorID) are broad
ast for all orphans, in
luding theun�nished ones. No orphan is aborted. This means that a result request may arrivewhile the requested orphan job is still not �nished. In that 
ase, the informationabout the pro
essor requesting this job is stored in this job's invo
ation re
ord: theowner �eld is set to the identi�er of the pro
essor requesting the job. For regular jobs(i.e. not orphans) the owner �eld 
ontains the identi�er of the pro
essor from whi
hthe job was stolen and where the result should be returned. Thus, after the orphanjob is �nished, its result will be returned to the pro
essor that requested this job asif this job was stolen from this pro
essor.Unfortunately, this solution introdu
es a possibility of deadlo
ks in the Satin run-time system. For e�
ien
y Satin is single-threaded and has one sta
k. Thereforeun�nished orphan jobs 
an be blo
ked by their parents whi
h after being restarted
an be higher in the sta
k than their orphaned 
hildren. An example of su
h a situ-ation is shown in �gure 3.9. In this �gure, the sta
ks of three pro
essors are shown.Job 2 was restarted after a 
rash. Jobs 4, 8, 16 and 32 are orphans. The arrowsdenote parent-
hild relationships. Job 2 
annot be 
ompleted before job 4, be
ausejob 4 is its 
hild. Job 4 
annot be 
ompleted before job 16, be
ause job 16 is itsgrand
hild. Job 16 
annot be 
ompleted before job 2 be
ause it is lower in the sta
k.In the basi
 orphan saving s
heme su
h deadlo
ks are impossible � we reuse only the�nished parts of orphan jobs so their exe
ution 
annot be blo
ked by the restartedjobs.Su
h deadlo
k 
an be avoided by delaying the restarting of the jobs lost in a
rash until a safe moment. A job 
an be safely restarted when its parent is on thetop of the sta
k. Therefore, after a 
rash we do not put restarted jobs immediatelyin the work queue, but store them in a separate queue. A job from this queue isput in the work queue only if its parent is on the top of the sta
k and the workqueue is empty. In this way, we make sure that no orphans will be blo
ked by theirparents. Unfortunately, this approa
h in
reases the load balan
ing overhead of theappli
ation. The reason is that putting jobs aside temporarily de
reases the numberof jobs available in the system. Those jobs are typi
ally relatively large jobs, be
auserestarted jobs have been stolen before, and stolen jobs tend to be large. Thus, thede
rease in the number of available jobs 
an be signi�
ant. The performan
e gain of
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knot aborting orphans does not outweigh the extra load balan
ing overhead. Moreover,not aborting orphans makes the algorithm signi�
antly more 
ompli
ated, in
reasingthe probability of bugs and ra
e 
onditions.3.4 Malleability and migration for SatinAn important 
hara
teristi
 of the fault-toleran
e algorithm des
ribed in the previousse
tion is that after a 
rash, the appli
ation 
an 
ontinue running on the diminishednumber of pro
essors. The 
rashed pro
essors do not need to be repla
ed. Therefore,the appli
ations using our fault-toleran
e algorithm are already partly malleable: they
an tolerate pro
essors leaving the on-going 
omputation. In this se
tion, we willdis
uss how we 
an handle pro
essors joining the on-going 
omputation. Furthermore,we will show how the 
rash handling me
hanism 
an be optimized if the appli
ationre
eives a prior noti�
ation before the pro
essors are taken away. With the optimizedme
hanism, we 
an save almost all work done by the leaving pro
essors, redu
ing theoverhead to nearly zero.3.4.1 Adding pro
essorsAdding a pro
essor to an on-going divide-and-
onquer 
omputation is simple. All weneed to do is to let the new pro
essor steal jobs from the other pro
essors and theload will be balan
ed automati
ally. Adding pro
essors has pra
ti
ally no overhead.
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ial 
are needs to be taken when a pro
essor joins the 
omputation after the re-
overy pro
edure was exe
uted by other pro
essors (e.g., if new pro
essors were addedto repla
e leaving pro
essors). In this 
ase, the orphan table of the new pro
essor isempty and it has to download an orphan table from one of the other pro
essors, tobe able to reuse partial results. The problem here is that a joining pro
essor doesnot know: a) whether there was a 
rash re
overy before it joined b) whi
h otherpro
essors have non-empty orphan tables and whi
h do not (be
ause they have alsojust joined). We solve this problem in the following way. Every pro
essor joining the
omputation, even pro
essors joining at the very beginning of the 
omputation, ex
eptfor the master, tries to download an orphan table from another pro
essor. Only themaster assumes that it has an up-to-date version of the orphan table (it is empty atthe beginning of the 
omputation). Ea
h pro
essor piggyba
ks orphan table requestson its steal requests until it re
eives the table.3.4.2 Saving partial results from the leaving pro
essorsWe extended the 
rash handling algorithm in su
h a way that if pro
essors are leavinggra
efully, that is if the appli
ation re
eives a noti�
ation before the pro
essors leave,we 
an save the partial results from the leaving pro
essors.We assume that su
h departure noti�
ations will be sent to the appli
ation bythe grid s
heduler or other grid middleware. Currently, however, none of the grids
hedulers support this fun
tionality. For performan
e evaluation purposes, we imple-mented a simple 
ontrol interfa
e in the Ibis Registry. The user 
an send a 
ommandto the Registry 
ontaining a list of nodes that have to leave the 
omputation. TheRegistry passes this list to all the nodes taking part in the 
omputation.Our algorithm 
an also work with other models of departure noti�
ation, for ex-ample, if noti�
ations are sent only to the leaving pro
essors and if they do not 
ontainthe identi�ers of other leaving pro
essors. However, in su
h 
ases, our algorithm 
anbe less e�
ient, as will be explained below.If a pro
essor re
eives a departure noti�
ation, it 
hooses another pro
essor ran-domly, transfers all the results of its �nished jobs to the other pro
essor and exits.The pro
essor that re
eives those jobs treats them as orphan jobs: it broad
asts a(jobID, pro
essorID) tuple 
ontaining its own pro
essorID for ea
h re
eived result.Next, the normal 
rash re
overy pro
edure is exe
uted by all the pro
essors that didnot leave. The pro
essors that left are treated as 
rashed pro
essors. The partialresults from the 
rashed pro
essors are linked to the restarted parents, as it happensin the 
ase of orphan jobs.An example is shown in �gures 3.10 � 3.11. Pro
essor 3 re
eives a signal that ithas to leave the 
omputation. It 
hooses another pro
essor at random (pro
essor 4)and it sends it all its �nished jobs � jobs 11 and 21. It aborts the un�nished jobs, andexits. Next, the remaining pro
essors exe
ute the normal 
rash handling pro
edure:pro
essor 1 restarts job 2 stolen by pro
essor 3. Pro
essor 4 handles its orphan jobs.Jobs 11 and 21 re
eived from pro
essor 3 are handled in exa
tly the same was asorphan jobs: for ea
h of the a (jobID, pro
essorID) tuple is sent and stored in theorphan tables. Therefore, the jobs 
omputed by pro
essor 3 
an be reused in further
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omputation (�gure 3.11).The 
hoi
e of the pro
essor to whi
h the leaving pro
essor will transfer its partialresults depends on the information the leaving pro
essor has about the system. Cur-rently, the departure noti�
ation re
eived from the Registry 
ontains the identi�ersof all pro
essors that are leaving at the same time. Thus, the leaving pro
essors makesure that they transfer their results to one of the pro
essors that are not leaving.However, if the leaving pro
essors do not have full information, it may happen thatpartial results are transfered to a pro
essor that is leaving as well. If it leaves whilethe results are in transfer, they will be lost. Otherwise the pro
essor will forwardthem together with its own partial results to another pro
essor. Note that this onlyin�uen
es the performan
e of the algorithm and not the 
orre
tness: if the results arelost they 
an always be re
omputed.3.4.3 Using malleability to implement migrationIn se
tion 3.6, we will show that our algorithm allows adding and removing pro
essorspra
ti
ally without loss overhead. Therefore, we 
an use malleability to implemente�
ient appli
ation migration. We 
an migrate an appli
ation from one set of re-sour
es to another, by �rst adding the new set of resour
es and then removing the oldone. Note that order is important � there must be some pro
essors up and runningat all times to preserve work.3.5 Total 
rashesA disadvantage of our fault-toleran
e and malleability me
hanism is that if a pro
essor
rashes suddenly, the work done by it is always lost. If a substantial part of thepro
essors 
rash, a substantial part of work needs to be re
omputed. If all pro
essors
rash, everything needs to be re
omputed. Only if a prior noti�
ation is sent to theappli
ation, 
an the work done on the leaving pro
essors be saved. However, if allpro
essors are leaving, their work 
annot be saved even if a prior noti�
ation is sent.Thus, with the 
urrent fault-toleran
e/malleability me
hanism, it is not possible tostop an appli
ation and restart it later from the point where it was stopped. Theappli
ation 
an only make progress if at every moment there is at least one pro
essorup and running.To over
ome this limitation, we extended our fault-toleran
e me
hanism to (pe-riodi
ally) store partial results on a stable storage. All pro
esses taking part in theappli
ation (periodi
ally) save the results of their �nished subjobs in a user-de�ned�le.This me
hanism 
an be used in two ways:� To minimize the amount of work lost in 
rashes. In this s
enario all pro
essorsperiodi
ally save their partial results on the stable storage. After a 
rash, theresults 
omputed by the 
rashed pro
essor are retrieved and reused.� To stop an appli
ation and restart it later from the point where it was stopped.



62 CHAPTER 3. FAULT TOLERANCE, MALLEABILITY AND MIGRATIONIn this s
enario, the user (or grid middleware) sends a signal to the appli
ation,for example via the Registry. After re
eiving the signal, pro
esses store theirresults in the �le de�ned by the user and exit. The user 
an use the �le later torestart the appli
ation on a possibly di�erent set of resour
es.This me
hanism 
an be seen as an appli
ation-level 
he
kpointing. The di�eren
ewith 
lassi
al appli
ation-level 
he
kpointing s
hemes is that it is done transparently,that is, it does not need to be des
ribed expli
itly by the programmer. This is possible,be
ause we 
on
entrate on a single 
lass of divide-and-
onquer appli
ations. In furthertext we will refer to our me
hanism as 
he
kpointing.3.5.1 The basi
 
he
kpointing algorithmAll pro
essors taking part in the 
omputation periodi
ally save their partial resultsin a user-de�ned 
he
kpoint �le. Along with the job results, the jobID of this job andthe pro
essorID of the pro
essor that has 
omputed this job are stored. The intervalbetween the subsequent 
he
kpoints (
he
kpointing interval) is de�ned by the user.Pro
essors do not a

ess the 
he
kpoint �le dire
tly. Instead, they send the datato the 
oordinator pro
essor whi
h is responsible for writing and reading the 
he
k-point �le. The pro
essors do not syn
hronize before taking their 
he
kpoints � the
he
kpoints 
an be taken independently. The 
oordinator is ele
ted from among thepro
esses taking part in the 
omputation. The ele
tion algorithm will be des
ribedin se
tion 3.5.4. If a pro
essor 
rashes, the 
oordinator sear
hes the 
he
kpoint �lefor the results 
omputed by the 
rashed pro
essor. All those results are retrieved andstored in the memory of the 
oordinator. Next, the basi
 fault toleran
e me
hanismis used to reuse those results � they are treated just like orphan jobs. For ea
h ofthose results, the 
oordinator forwards a (jobID, pro
essorID) tuple with its own pro-
essorID to the other pro
essors. Pro
essors store the (jobID, pro
essorID) tuples intheir orphan tables. The orphan tables are used in exa
tly the same way as in thebasi
 fault toleran
e me
hanism.An example is shown in �gures 3.12 � 3.14. All pro
essors periodi
ally sendresults of their �nished jobs to the 
oordinator � pro
essor 2. The 
oordinator storesthose results together with its own results in the 
he
kpoint �le. After the 
rash ofpro
essor 3, a normal 
rash handling pro
edure is exe
uted: pro
essor 1 puts job 2ba
k in its work queue and pro
essor 4 handles its orphans. Additionally, pro
essor 2sear
hes the 
he
kpoint �le for the results 
omputed by pro
essor 3. It retrievesjobs 11 and 21, stores them in its memory and broad
asts the (jobID, pro
essorID)tuples. The tuples are stored in orphan tables and used to reuse the 
he
kpointedresults.3.5.2 Restoring the 
omputation after an abort or total 
rashThe main advantage of storing partial results on stable storage is the possibility ofstopping the 
omputation and restarting it later without the need of re
omputingfrom s
rat
h. Also, surviving a total 
rash is possible.
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66 CHAPTER 3. FAULT TOLERANCE, MALLEABILITY AND MIGRATIONWhen a 
omputation is started, the 
oordinator 
he
ks if the 
he
kpoint �le spe
-i�ed by the user already exists. If this is the 
ase, the 
oordinator assumes that the
omputation has been restarted after an abort or a total 
rash. All results from the
he
kpoint �le are read into the memory of the 
oordinator, and for ea
h of thoseresults a (jobID, pro
essorID) tuple is sent to other pro
essors. We use message
ombining to avoid sending ea
h tuple separately.Currently, all results read from the 
he
kpoint �le are stored in the memory of the
oordinator. However, the amount of 
he
kpointed data might be simply too large to�t in the memory of the 
oordinator. An alternative solution would be distributingthe results among all the pro
essors (
urrently) taking part in the 
omputation.3.5.3 The 
he
kpoint �leThe 
he
kpoint �le 
ontains the partial results of the 
omputation. The 
he
kpoint�le is a

essed by the 
oordinator, but it need not ne
essarily be lo
ated on the 
o-ordinator's lo
al �lesystem. In fa
t, the user may spe
ify an arbitrary lo
ation forthe 
he
kpoint �le. The a

ess to the 
he
kpoint �le is implemented using the JavaGAT (Grid Appli
ation Toolkit) interfa
e [3℄, a Java implementation of the GAT [23℄.Java GAT provides a high-level API for grid appli
ations. Among others, Java GATprovides an API for �le operations that hides the 
omplexity of the underlying in-frastru
ture from the programmer. With GAT, the programmer only needs to spe
ifythe �le name and lo
ation. The GAT takes 
are of sele
ting the appropriate proto
ol(e.g., FTP, SSH, HTTP, GridFTP et
.) and automati
ally optimizes the adjustableparameters based on available information on the 
urrent environment.For data intensive appli
ations, the 
he
kpoint �le might be
ome huge. If theamount of spa
e on stable storage is limited, it is ne
essary to prevent the 
he
kpoint�le from growing too mu
h. Therefore, we implemented 
he
kpoint �le 
ompression.During the appli
ation run, ea
h 
he
kpointed result eventually be
omes redundant.This happens when the parent of the 
he
kpointed job is also written to the 
he
k-point �le. Therefore, the results of the 
hildren 
an be removed from the 
he
kpoint�le. However, we do not remove the 
hildren from the 
he
kpoint �le as soon astheir parents are 
he
kpointed, sin
e this would 
ause mu
h I/O overhead. Instead,
ompression is performed when the 
he
kpoint �le ex
eeds the size spe
i�ed by theuser. During the 
ompression phase, a new 
he
kpoint �le is 
reated and all the non-redundant results from the old �le are written to the new �le. Then, the old �le isdeleted. Note that the amount of free spa
e on stable storage must be roughly twi
eas big as the maximal 
he
kpoint �le size spe
i�ed by the user. In the rare 
ase thatthe 
ompression does not result in signi�
ant enough redu
tion of the 
he
kpoint �lesize, 
he
kpointing is stopped: no new results will be 
he
kpointed. Che
kpoint �le
ompression is performed by the 
oordinator.3.5.4 The 
oordinatorThe 
oordinator is responsible for a

essing the 
he
kpoint �le. The 
oordinator isele
ted from among the pro
essors taking part in the 
omputation. A simple approa
h



3.6. PERFORMANCE EVALUATION 67would be using the master as a 
he
kpointing 
oordinator. However, to a
hieve theoptimal performan
e, the I/O bandwidth and laten
y between the 
oordinator andthe 
he
kpoint �le needs to be taken into a

ount. Therefore, the pro
essor with thebest I/O performan
e is ele
ted to be the 
oordinator. The ele
tion is performed inthe following way.1. The master is ele
ted using the Registry2. Ea
h pro
essor measures the time it takes to write a small �le to the lo
ationwhere the 
he
kpoint �le will be 
reated.3. The results of those measurements are sent to the master.4. The master waits until it re
eives su
h messages from at least 50% of the pro-
essors.5. The master sele
ts the pro
essor with the shortest �le write time and announ
esit as the new 
oordinator.If the 
oordinator 
rashes, a new 
oordinator has to be ele
ted. The new ele
tionis initiated by the master, whi
h sends a 
oordinator reele
tion message to all pro
es-sors. Then, the normal 
oordinator ele
tion pro
edure is performed. The pro
essorspostpone 
he
kpointing until the ele
tion is 
ompleted.If the 
oordinator has 
rashed while another pro
ess was sending 
he
kpoint datato it, the data will be lost and never written to the 
he
kpoint �le. The loss of
he
kpoint data might a�e
t the performan
e of the fault toleran
e me
hanism butnot its 
orre
tness. Therefore, we do not take any a
tion to avoid su
h situations.The 
oordinator may also 
rash while writing to the 
he
kpoint �le and the 
he
k-point �le may be 
orrupted. Therefore, ea
h time a 
oordinator is initialized, it 
he
ksthe 
he
kpoint �le (if it exist) for possible errors. If errors are found, it 
reates a new
he
kpoint �le and transfers all non-damaged results from the old �le to the new one.The old �le is deleted.To minimize the overhead of 
he
kpointing, we use 
on
urrent 
he
kpointing [124℄.The results are written to the 
he
kpoint �le by a separate thread in the 
oordinatorpro
ess. This thread runs 
on
urrently with the Satin 
omputation.3.6 Performan
e evaluationIn this se
tion, we will evaluate the performan
e of our fault-toleran
e algorithms.First, we evaluate the overhead of our algorithms during 
rash-free exe
ution. Se
ond,we evaluate the performan
e of our algorithms in the presen
e of 
rashes. We evaluateboth the basi
 orphan-saving algorithm and the 
he
kpointing extension with various
he
kpointing intervals. We will show that our algorithms add little overhead to Satin.Next, we will show that our basi
 s
heme outperforms the traditional approa
h,whi
h does not save orphan jobs, and that using 
he
kpointing further improves theperforman
e.



68 CHAPTER 3. FAULT TOLERANCE, MALLEABILITY AND MIGRATION1 min 2 min 5 minRaytra
er 28 MB 20 MB 17 MBTSP 217 KB 128 KB 55 KBTable 3.1: Che
kpoint �le sizesFurther, we will show that our me
hanism 
an be used for e�
ient migration of the
omputation. Finally, we will demonstrate that using the 
he
kpointing extension,the 
omputation 
an be stopped and restarted without losing work.The experiments were 
arried out on the Distributed ASCI Super
omputer 2(DAS-2). DAS-2 
onsists of �ve 
lusters lo
ated on �ve Dut
h universities, in fourDut
h 
ities: Amsterdam, Leiden, Delft and Utre
ht. One of the 
lusters 
onsists of72 nodes, the others 
onsist of 32 nodes, so there are 200 nodes in total. Ea
h node
ontains two 1-GHz Pentium-IIIs and at least 1 GB RAM. All nodes run RedHatLinux. Within a single 
luster, nodes are 
onne
ted by Myrinet [48℄ and 100 Mb/sEthernet. The 
lusters are inter
onne
ted by SurfNet, the Dut
h university Internetba
kbone. The bandwidth between the sites ranges from 300 Mb/s to 1 Gb/s. Thelaten
ies are around 2ms.All experiments des
ribed in this se
tion were 
arried out on 32 nodes in 2 
lusters(16 nodes in ea
h 
luster). For intra-
luster 
ommuni
ation we used Ethernet.In our experiments, we used the following appli
ations:� Raytra
er whi
h renders a pi
ture (bitmap) using an abstra
t des
ription of as
ene. Raytra
er has been parallelized by re
ursively subdividing the bitmapinto smaller parts and rendering the parts in parallel. Raytra
er is a relatively
ommuni
ation-intensive appli
ation.� Traveling Salesman Problem (TSP) whi
h sear
hes for a shortest path 
onne
t-ing a set of 
ities. TSP is a well-known NP-
omplete problem whi
h has manyappli
ations in s
ien
e and engineering (e.g., manufa
turing of 
ir
uit boards,analysis of the stru
ture of 
rystals, 
lustering of data arrays, et
.). TSP wasparallelized by evaluating di�erent paths in parallel. The TSP implementationused in this evaluation is less e�
ient than industrial implementations. The rea-son is that the divide-and-
onquer model does not allow data sharing betweendi�erent sub
omputations and therefore does not allow pruning of the sear
hspa
e2. However, our implementation is su�
ient for the purpose of evaluat-ing the performan
e of the fault-toleran
e algorithms. TSP is a 
omputation-intensive appli
ation and sends little data.2In 
hapter 5, we will present a data-sharing extension of our programming model and des
ribea more e�
ient implementation of TSP
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rash-free exe
utionIn this se
tion, we evaluate the impa
t of our algorithms on appli
ation performan
ewhen no pro
essors are leaving or 
rashing. We run the appli
ations in the followingsettings:� The plain Satin system, that is, without any fault-toleran
e me
hanism enabled.� The Satin system with the basi
 fault-toleran
e me
hanism (i.e., job re
omput-ing and saving orphans) enabled.� The Satin system with periodi
 
he
kpointing and with the following 
he
k-pointing intervals: 1, 2 and 5 minutes.Figures 3.15 and 3.16 show runtimes of the two appli
ations. The runtimes shownare averages over 2�4 runs. The standard deviations are around 2 se
onds for Ray-tra
er and 8 se
onds for TSP.The overhead of the basi
 fault-toleran
e me
hanism is negligible. Also, 
he
k-pointing has s small overhead and the overhead does not seem to be dependent onthe 
he
kpointing interval. This results from the fa
t that we are using 
on
urrent
he
kpointing, whi
h minimizes the impa
t of a

essing the 
he
kpoint �le on theperforman
e of the appli
ation. Table 3.1 lists the maximal sizes of the 
he
kpoint�les for di�erent 
he
kpoint intervals. The 
he
kpoint �les produ
ed by the TSP ap-pli
ation are small, sin
e TSP does not pro
ess mu
h data. Raytra
er is more dataintensive, and therefore produ
es larger 
he
kpoint �les.3.6.2 Performan
e in the presen
e of 
rashesIn this se
tion, we will evaluate the performan
e of our algorithms in the presen
e of
rashes. First, we will 
ompare the performan
e of our basi
 fault-toleran
e algorithm(with orphan saving but no 
he
kpointing) with the traditional (`naive') algorithm inwhi
h work lost in 
rashes is re
omputed, but the orphans are not saved. Instead,orphans are dis
arded after 
omputing them and re
omputed later. Next, we will
ompare the performan
e of the 
he
kpointing extension with the performan
e of thebasi
 algorithm. We will look at di�erent 
he
kpointing intervals. Finally, we willevaluate the performan
e of our algorithm when the nodes are leaving gra
efully, thatis, after a prior noti�
ation.In these experiments, we run the two appli
ations on 32 nodes in 2 
lusters. Weremove one of the 
lusters in the middle of the 
omputation, that is, after half of thetime it would take on 2 
lusters without pro
essors leaving. The 
ase when half ofthe pro
essors leave is the most demanding, as the largest number of orphan jobs is
reated in this 
ase. Typi
ally, the number of orphans does not depend on the momentwhen pro
essors leave, ex
ept for the initial and �nal phase in the 
omputation.To allow a fair 
omparison between various 
he
kpointing intervals, we made surethat the 
rash happens always exa
tly in the middle of a 
he
kpointing interval. Wea
hieved it by adjusting the time the �rst 
he
kpoint during the 
omputation wastaken. To 
ompute the time of the �rst 
he
kpoint, we used the following formula:
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 ft 
kpt 5 min 
kpt 2 min 
kpt 1 min gra
efulRaytra
erjobs spawned 5 mln 5 mln 4.5 mln 4.5 mln 3.8 mlnjobs stolen 405 460 408 506 470jobs in orphan tables 79 342 690 768 392jobs reused 79 275 288 430 384% jobs reused 100% 80% 42% 56% 98%broad
ast messages 11 22 22 29 25TSPjobs spawned 400 000 360 000 330 000 330 000 290 000jobs stolen 625 648 628 647 560jobs in orphan tables 228 862 1503 2373 409jobs reused 216 529 623 793 409% jobs reused 95% 61% 41% 33% 100%broad
ast messages 12 16 20 25 14Table 3.2: Orphan saving statisti
stime of �rst 
he
kpoint = (1/2 runtime on 32 
pus - 1/2 
he
kpointinterval) modulo 
he
kpoint intervalThe 
harts in �gures 3.17 and 3.18 show the runtimes of both appli
ations. Theruntimes shown are averages taken over 4�6 runs. In 50% of the runs, the 
rashing(or leaving gra
efully) 
luster 
ontained the master.On average, our basi
 fault-toleran
e algorithm outperforms the traditional, `naive'approa
h by 15% to 25%. Che
kpointing improves the performan
e of the system byfurther 10% to 15%. The performan
e improvement is largest with small 
he
kpoint-ing intervals. If nodes are leaving gra
efully, the orphan saving algorithm provides upto 40% performan
e improvement over the `naive' algorithm.Table 3.2 lists average numbers of jobs stored in orphan tables and average numberof jobs reused. While with the basi
 fault-toleran
e algorithms almost all jobs arereused, when 
he
kpointing is used, only 30% to 80% of jobs are reused. This is
aused by the fa
t that many jobs in the 
he
kpoint �le are redundant, that is, theirparent or other an
estor was 
he
kpointed. In su
h 
ases, only the an
estor is used.Che
kpoint 
ompression 
an redu
e the number of redundant jobs.Table 3.2 also lists the number of broad
ast messages sent in order to keep orphantables up to date. Be
ause message 
ombining is used, this number is small andindependent of the number of jobs in the orphan tables.The variation in the runtimes for the traditional, `naive' algorithm is large. This is
aused by the fa
t that the performan
e of the traditional algorithm depends heavilyon the number of orphan jobs 
reated by the leaving pro
essors, as all of those jobshave to be 
omputed twi
e. Be
ause work is distributed randomly, the variation inthe number of 
reated orphans is large whi
h 
auses a large variation in runtimes forthe traditional algorithm. Our algorithms are mu
h less sensitive to the number of



3.6. PERFORMANCE EVALUATION 73mean standard deviation mean standard deviationTSP TSP Raytra
er Raytra
ergra
eful 1695 s 1 s 514 s 27 s
kpt 1 min 1806 s 119 s 565 s 25 s
kpt 2 min 1865 s 175 s 582 s 37 s
kpt 5 min 1953 s 139 s 661 s 36 s
kpt 10 min 1971 s 108 s 687 s 73 sbasi
 ft 2246 s 258 s 668 s 25 snaive ft 2654 s 649 s 886 s 205 sTable 3.3: Crash performan
e statisti
sorphans, as only small overhead is in
urred by reusing orphans. Table 3.6.2 lists thestandard deviations and means for all algorithms. These statisti
s were 
omputedover 4�6 runs.The di�eren
e between the `naive' algorithm and our algorithm is biggest whenthe 
luster 
ontaining master 
rashes. In that 
ase, all the jobs be
ome orphans andwith the traditional approa
h, the 
omputation must be started from the beginning.Our algorithm 
an reuse all the orphans and therefore the performan
e of the systemstays the same regardless of whether the master 
rashes or not.3.6.3 Performan
e of migrationIn this se
tion, we will evaluate the overhead of malleability based migration. In thisexperiment, we started an appli
ation on 32 nodes in 2 
lusters. In the middle of the
omputation, we gra
efully removed one of the 
lusters and repla
ed it with another
luster with the same number of pro
essors (16). We 
ompared the resulting runtimewith a runtime without migration. These runtimes are shown in �gures 3.19 and 3.20.The di�eren
e in the runtimes shows the overhead of migration. With our approa
h,the overhead is smaller than 5%. There are two sour
es of this overhead. First, theresults from the leaving pro
essors need to be sent over the network. Depending onthe appli
ation, the amount of data to be sent 
an be signi�
ant. Se
ond, part ofthe jobs need to be re
omputed after migration, as only jobs that are �nished at themoment the migration is requested are saved and transferred to other pro
essor.The overhead stays small, however, whi
h shows that our me
hanism 
an be usedfor e�
ient migration of the 
omputation.3.6.4 Performan
e of the abort/restore me
hanismIn this se
tion, we will evaluate the performan
e of the abort/restore me
hanism. Inthis experiment, we ran an appli
ation on 32 nodes in 2 
lusters. In the middle ofthe 
omputation, we stopped the appli
ation by sending it an `abort' signal. The ap-pli
ation 
he
kpointed its results and exited. Next, we have restarted the appli
ationon the same pro
essor set and using the 
he
kpoint �le 
reated in the aborted run.
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ation �le sizeRaytra
er 12 MBTSP 19 KBTable 3.4: Che
kpoint �le size while aborting and restoring appli
ationsWe 
ompared the resulting runtime with a runtime without abort/restore. Thoseruntimes are shown in �gures 3.21 and 3.22. The overhead of aborting and restoringan appli
ation is 10% for a data intensive appli
ation (Raytra
er) and only 1% fora 
omputation intensive appli
ation (TSP). This overhead is 
aused by the need towrite and read the 
he
kpoint �le. Pra
ti
ally no work is lost while aborting andrestoring an appli
ation. The sizes of the 
he
kpoint �les are listed in table 3.4.3.7 Comparison with related workSeveral fault toleran
e me
hanisms designed spe
i�
ally for divide-and-
onquer appli-
ations have been proposed in the literature. An interesting approa
h was presentedby Finkel and Manber in [83℄. Their system, DIB, works in a way similar to Satin: itruns divide-and-
onquer appli
ations in parallel by exe
uting subproblems on di�erentpro
essors. Load balan
ing is done by work stealing. The fault-toleran
e me
hanismis based on redoing of work. Pro
essors in DIB redo work of other pro
essors evenif no 
rash has been dete
ted. Redoing o

urs while a pro
essor waits for its stealrequest to be granted. Instead of staying idle, the pro
essor starts redoing work thatwas stolen from it earlier but whose result it has not yet re
eived. This approa
his robust sin
e 
rashes 
an be handled even without being dete
ted. However, thisstrategy 
an lead to a large amount of redundant 
omputation. The authors reportthe an
estral-
hain problem in their paper: assume that pro
ess P1 gave some workto P2 whi
h in turn gave some of it to P3, whi
h failed before reporting the resultba
k to P2. In that 
ase both P1 and P2 will redo the work they gave away andthe work given to P3 will be redone twi
e. Another problem, not dis
ussed in thepaper, are orphan jobs. Orphan jobs are not aborted after a 
rash was dis
overed,but exe
uted until the end. When the result of an orphan is returned to its parent, itwill be dis
arded, sin
e the parent has 
rashed. The same job will be 
omputed againwhile redoing the work given to the 
rashed pro
essor. Therefore, like in the 
ase ofan
estral 
hains, part of the work will be done twi
e.Another approa
h was proposed by Lin and Keller [126℄. Similarly to the DIBapproa
h, they base their fault toleran
e me
hanism on redoing the work. When a
rash of a pro
essor is dete
ted, the jobs stolen by the 
rashed pro
essor are redoneby the owners of those jobs, i.e., the pro
essors from whom the jobs were stolen. Theauthors try to handle the problem of orphan jobs. They a
hieve it by storing withea
h job not only the identi�er of its parent pro
essor (the pro
essor from whi
h thejob was stolen), but also the identi�er of its grandparent pro
essor (the pro
essorfrom whi
h the parent pro
essor stole the an
estor of our job). When the parent
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essor 
rashes, the orphaned job is passed after 
ompletion to the grandparentpro
essor whi
h in turn passes it to the pro
essor whi
h is redoing the work lostin the 
rash. The result of an orphaned job 
an thus be reused. However, if bothparent and grandparent pro
essor 
rash, the orphaned job 
annot be reused anymore.The 
on
ept 
an be extended by storing great-grandparent and higher level pro
essoridenti�ers to be able to handle more 
rashes, but the number of 
rashes a spe
i�
implementation of this s
heme 
an handle will always be limited by the number ofpointers the implementation stores. Moreover, the amount of data that needs to bestored depends linearly on the number of 
rashes the implementation 
an handle.Another problem with this me
hanism is that the result of an orphan job is passedto the grandparent pro
essor only after the exe
ution of this job is 
ompleted, whi
hmay o

ur a long time after the 
rash. By that time, some other pro
essor may havealready started or even 
ompleted redoing the same job. Our experiments show thatsu
h situations o

ur often. Therefore, although this me
hanism tries to reuse orphanjobs, the amount of redundant work is still high.Atlas [32℄ is another divide-and-
onquer system. It was designed with heterogene-ity and fault toleran
e in mind and aims only at reasonable performan
e. Its faulttoleran
e me
hanism is also based on redoing the work. The problem of orphan jobsis not addressed in Atlas. Atlas and its fault toleran
e me
hanism was based on Cil-kNOW [44℄ � an extension of Cilk [46℄, a C-based divide-and-
onquer system. Cilkwas designed to run on shared-memory ma
hines while CilkNOW supports networksof workstations.3.8 Con
lusionIn this 
hapter, we presented a me
hanism that enables fault toleran
e, malleabilityand migration for divide-and-
onquer appli
ations. We proposed a novel approa
h toreusing partial results by restru
turing the 
omputation tree. Using this approa
h weminimized the amount of redundant 
omputation, whi
h is a problem of many otherfault-toleran
e me
hanisms for divide-and-
onquer systems. Our approa
h also allowsto save almost all the work done by the leaving pro
essors, when they leave gra
e-fully. Divide-and-
onquer appli
ations using our me
hanism 
an adapt to dynami
ally
hanging numbers of pro
essors and migrate the 
omputation between di�erent ma-
hines without loss of work.Further, we extended our basi
 fault-toleran
e me
hanism with a simple 
he
k-pointing fa
ility. This extension allows the appli
ation to survive a total 
rash andimproves the performan
e of 
rash re
overy when a signi�
ant part of the pro
essorhas 
rashed. Finally, the 
he
kpointing fa
ility allows to abort an appli
ation andrestart it without loss of work.We implemented our algorithms in Satin and evaluated them on a wide-area DAS-2 system. In those experiments, we showed that the overhead of our algorithms during
rash-free exe
ution is very small. We also showed that when pro
essors 
rash, ourbasi
 fault-toleran
e algorithm outperforms the traditional approa
h (whi
h does notreuse orphans) by 15 to 25%. Che
kpointing 
an improve the performan
e by a
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efully the performan
e improvement ofthe orphan-saving approa
h over the traditional approa
h 
an rea
h 40%. We havealso demonstrated the orphan-saving algorithm 
an be used for very e�
ient migration(with an overhead of smaller than 5%) and that the 
he
kpointing fa
ility 
an be usedfor aborting and restarting an appli
ation without loss of work.



Chapter 4Self-adaptation4.1 Introdu
tionOne important problem in grid 
omputing is resour
e sele
tion � sele
ting a set of
ompute nodes su
h that the appli
ation a
hieves good performan
e. Even in tradi-tional, homogeneous parallel environments, �nding the optimal number of nodes is ahard problem and is often solved in a trial-and-error fashion. In a grid environmentthis problem is an order of magnitude harder be
ause of the heterogeneity of resour
es:the 
ompute nodes have various speeds and the quality of network 
onne
tions be-tween them varies from low-laten
y and high-bandwidth lo
al-area networks (LANs)to high-laten
y and possibly low-bandwidth wide-area networks (WANs). Anotherimportant problem is that the performan
e and availability of grid resour
es variesover time: the network links or 
ompute nodes may be
ome overloaded, the 
omputenodes may be
ome unavailable be
ause of 
rashes or be
ause they have been 
laimedby a higher priority appli
ation. Also, new, better resour
es may be
ome available.To maintain a reasonable performan
e level, the appli
ation therefore needs to adaptto the 
hanging 
onditions.In this 
hapter, we will �rst dis
uss existing solutions to the resour
e sele
tionand adaptation problems. Current approa
hes to the resour
e sele
tion problem [172,37℄ typi
ally assume the existen
e of a performan
e model for an appli
ation � amathemati
al formula that allows to predi
t the appli
ation runtime on a given set ofresour
es. The performan
e model is used to evaluate a number of possible resour
essets and 
hoose the most appropriate one.The adaptation problem 
an be redu
ed to the resour
e sele
tion problem: the re-sour
e sele
tion phase 
an be repeated during appli
ation exe
ution, either at regularintervals, or when a performan
e problem is dete
ted, or when new resour
es be
omeavailable. A pre
ondition here is that the appli
ation is malleable or migratable, thatis, it 
an be moved to a di�erent set of resour
es at runtime.Constru
ting performan
e models for parallel appli
ations is an inherently di�
ulttask. Creating su
h a model requires not only appli
ation domain knowledge but alsofamiliarity with 
omplex parallel and distributed programming issues. In this 
hapter,



80 CHAPTER 4. SELF-ADAPTATIONwe will des
ribe an approa
h to resour
e sele
tion and adaptation whi
h does not useperforman
e models.The rest of this 
hapter is stru
tured as follows. In se
tion 4.2, we will presentba
kground information on resour
e sele
tion and adaptation. In se
tion 4.3, we willdes
ribe our approa
h to resour
e sele
tion and adaptation. In se
tion 4.4, we willevaluate our approa
h, and in se
tion 4.5, we will 
ompare it with related work. We
on
lude in se
tion 4.6.4.2 Ba
kgroundIn this se
tion, we will dis
uss some ba
kground on resour
e sele
tion and appli
ationadaptation. We will des
ribe the existing approa
hes to those problems.4.2.1 Resour
e sele
tionThe resour
e sele
tion problem involves 
hoosing a subset of the set of all availableresour
es (
ompute nodes) on whi
h the appli
ation will a
hieve a 
ertain level ofperforman
e. Typi
ally, a resour
e set that yields the shortest exe
ution time issear
hed for. Alternatively, a resour
e set whi
h allows the appli
ation to �nishbefore a 
ertain deadline is sele
ted. Note that both of those approa
hes need a wayof predi
ting the runtime of the appli
ation on a given set of resour
es.In e
onomy based grid 
omputing [52℄ an extra sear
h parameter is added: resour
e
ost. The total 
ost of the sele
ted resour
e set must fall within a user-de�ned budgetand the appli
ation exe
ution time should be minimized or the appli
ation must �nishbefore a given deadline.Finding the resour
e set that gives an optimal performan
e requires, in the mostgeneral 
ase, an exhaustive sear
h through all resour
e subsets. In the 
ase of se-quential appli
ations, the 
omplexity of the problem is O(n) where n is the number ofavailable resour
es, but in the 
ase of parallel appli
ations the problem is NP-
omplete(the number of possible subsets is 2n). Sin
e the number of available resour
es maybe very large and the resour
e sele
tor must deliver an answer within reasonable time,heuristi
s for pruning the sear
h spa
e are ne
essary. For example, in [65℄ resour
esare grouped into 
lusters (sets of pro
essors su
h that network laten
ies within a setare lower than network laten
ies between the sets) and ea
h possible set of su
h 
lus-ters is evaluated. For ea
h set of 
lusters, ma
hines are sorted a

ording to a 
ertainmetri
 (three metri
s are tried out for ea
h 
luster set: available memory, CPU speedand the 
ombination of the two). Next, the �rst N ma
hines from the sorted list aretaken, for N ranging from 1 to the total number of ma
hines in the 
luster set, andthe resulting resour
e set is evaluated. If it yields an exe
ution time shorter that the
urrent best set, it be
omes the 
urrent best set. In [144℄, a greedy strategy is used:the 
olle
tion of ma
hines is extended in ea
h step with a ma
hine with the highestaverage bandwidth from all available ma
hines. The pro
edure is repeated as long asthe predi
ted exe
ution time be
omes shorter.To sele
t an appropriate set, a method of ranking the possible resour
e sets is



4.2. BACKGROUND 81needed. One method is using a performan
e model whi
h allows predi
ting the ap-pli
ation running time on a given set of resour
es. Creating performan
e models isa 
hallenging task. It requires knowledge not only of the appli
ation domain butalso of the parallel 
omputing issues. The literature des
ribes su
h models only forrelatively simple, regular appli
ations, su
h as parameter sweeps [37℄, master-workerappli
ations with homogeneous tasks [155℄ or regular iterative appli
ations [128℄. Theperforman
e model approa
h has been used in su
h proje
ts as AppLeS [37℄ andGrADS [173℄.Instead of using a detailed performan
e model of an appli
ation, some heuristi
approa
h 
an be used. If only a single node needs to be sele
ted (sequential appli
a-tions), node ranking 
an be based on the node CPU speed (�ops) [102℄. Even thoughnode speed does not always dire
tly 
orrespond to the appli
ation performan
e [142℄,node speed 
an be used as a heuristi
 repla
ing the use of a detailed performan
emodel. This approa
h 
an be extended to parallel, single-site appli
ations, i.e., par-allel appli
ations that 
an only run on a single 
luster or super
omputer. Ea
h site isranked a

ording to its number of nodes, node speed and average node load. The sitewith the biggest 
ompute power is sele
ted. This approa
h was used in the Ca
tus-Code proje
t [21℄. Heuristi
 approa
hes have not been used for appli
ations runninga
ross multiple sites.4.2.2 AdaptationGrid environments are inherently dynami
. The availability and performan
e of gridresour
es is 
onstantly 
hanging. Even if an appli
ation is started on the optimalresour
e set, it may soon be
ome suboptimal and the appli
ation performan
e maysu�er. Therefore, to a
hieve optimal or even reasonable performan
e the appli
ationmust 
onstantly adapt to 
hanging 
onditions. Appli
ation adaptation has two as-pe
ts: when to adapt, i.e., what 
ir
umstan
es should trigger the adaptation, andhow to adapt, i.e. what a
tions should be taken to perform the adaptation.Adaptation 
an be triggered by events su
h as:� Appli
ation performan
e degradation.� Availability of new resour
es that were not available at the moment the appli-
ation was started.� A 
hange in appli
ation requirements.To observe and measure the appli
ation performan
e degradation a 
on
ept of aperforman
e 
ontra
t was introdu
ed. A performan
e 
ontra
t spe
i�es that givena set of resour
es with 
ertain 
hara
teristi
s (e.g., bandwidth, pro
essor speeds) anappli
ation will a
hieve a spe
i�ed performan
e [150℄. Appli
ation performan
e 
anbe measured in a variety of ways. For example, a spe
i�ed number of iterations perse
ond needs to be a
hieved as in the Ca
tusWorm experiment [21℄. In [173℄, the realexe
ution time of 
ertain 
omputation phases needs to be 
lose to the exe
ution timepredi
ted by the performan
e model.The appli
ation 
an rea
t to 
hanges in the environment in two ways:
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ation 
an 
hange its behavior to use the 
urrent resour
es in a di�erentway.� The appli
ation 
an be res
heduled on a di�erent set of resour
es (the new andthe old resour
e sets 
an have a 
ommon subset).Changing the appli
ation behavior 
an involve 
hanging the mapping of the ap-pli
ation tasks to the available resour
es. For example, an overloaded pro
essor 
anget a lighter task. In [70℄, this strategy has been used to make a Su

essive Over-Relaxation (SOR) appli
ation adaptive: the allo
ation of matrix rows is periodi
ally
hanged to adapt to a 
hanging load of pro
essors. Dynami
 load balan
ing strate-gies, su
h as the CRS used by Satin, or heuristi
s used for s
heduling parameter-sweepappli
ations in the AppLeS proje
t [57℄ make the appli
ation automati
ally adapt to
hanging pro
essor loads.An alternative way of 
hanging the appli
ation behavior is 
hanging the algorithm.For example, if its resour
es be
ome overloaded, an appli
ation 
an start performingthe 
al
ulation with lower a

ura
y, or if a network bandwidth diminishes, an appli-
ation might start transferring pi
tures in a lower resolution.The strategy of 
hanging the appli
ation behavior 
annot be applied to all types ofappli
ations. Espe
ially, the algorithm 
hange strategy is only suitable for a limited
lass of appli
ations. Moreover, the algorithm 
hange strategy is very di�
ult toapply automati
ally by the 
ompiler or the runtime system. Usually, su
h a strategyhas to be expli
itly programmed by the appli
ation programmer.Also, 
hanging the appli
ation behaviour might not be su�
ient to adapt to 
ertain
hanges in the environment, for example extremely overloaded pro
essors or networksor 
rashing pro
essors. In that 
ase, the appli
ation needs to be res
heduled on anew set of pro
essors. Typi
ally, when an appli
ation needs to be res
heduled, a newresour
e sele
tion phase takes pla
e. Possible resour
e sets are re-evaluated and theappli
ation is migrated to the 
urrent best set. This strategy is more generi
: it 
an beapplied to any type of appli
ation, provided that the appli
ation is migratable and/ormalleable. However, a performan
e model for the appli
ation must be available.4.3 Avoiding performan
e modelsMost of the existing approa
hes to resour
e sele
tion and adaptation assume that aperforman
e model of an appli
ation is available. However, 
onstru
ting performan
emodels for parallel appli
ations is an inherently di�
ult task. Su
h models existfor simple, regular appli
ations. However, the divide-and-
onquer appli
ations we aredealing with exhibit mu
h more 
omplex behavior and we believe that 
reating perfor-man
e models for su
h appli
ations would be an extremely di�
ult task. In general,
reating performan
e models requires expertise whi
h a typi
al appli
ation program-mer may not have. Creating su
h a model requires not only appli
ation domainknowledge but also familiarity with 
omplex parallel and distributed programmingissues.
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hapter, we des
ribe an alternative approa
h to appli
ation adaptation andresour
e sele
tion. We start an appli
ation on any set of resour
es. Simple heuristi
s
an be used to sele
t this initial set of resour
es (e.g., sele
t fast pro
essors ratherthan slow ones) but no performan
e model is needed. During the appli
ation run, we
olle
t statisti
s about the run and use them to estimate the resour
e requirementsof the appli
ation. Our approa
h does not use any appli
ation-spe
i�
 statisti
s, butlook at metri
s that 
an be applied to any parallel appli
ation: parallel e�
ien
y,
ommuni
ation overhead, et
. Looking at those parameters we 
an 
on
lude, for ex-ample, that there is not enough bandwidth in the system, or that there are more nodesthan the appli
ation degree of parallelism would justify. Next, we re�ne the resour
eset the appli
ation is running on by adding and/or removing 
ompute nodes. Werepeat this pro
edure periodi
ally, whi
h allows us to adapt to 
hanging 
onditions.A major advantage of our approa
h is that it improves appli
ation performan
ein many di�erent situations that are typi
al for grid 
omputing. It handles all of thefollowing 
ases:� Automati
ally adapting the number of pro
essors to the degree of parallelismin the appli
ation, even when this degree 
hanges during the 
omputation.� Migrating (part of) a 
omputation away from overloaded resour
es.� Removing resour
es with poor 
ommuni
ation links that slow down the 
ompu-tation.� Adding new resour
es to repla
e resour
es that have 
rashed.4.3.1 Appli
ation requirementsWe studied the adaptation problem in the 
ontext of divide-and-
onquer appli
ations.However, we believe that our methodology 
an be used for other types of appli
ationsas well. In this se
tion we summarize the assumptions about appli
ations that areimportant to our approa
h. We also dis
uss how our approa
h 
an be extended todi�erent types of appli
ations.The �rst assumption we make is that the appli
ation is malleable, i.e., it is ableto handle pro
essors joining and leaving the on-going 
omputation. In 
hapter 3, weshowed how divide-and-
onquer appli
ations 
an be made fault tolerant and malleable.Pro
essors 
an be added or removed at any point in the 
omputation with littleoverhead.The se
ond assumption is that the appli
ation 
an e�
iently run on pro
es-sors with di�erent speeds. This 
an be a
hieved by using a dynami
 load balan
-ing strategy, su
h as work stealing used by divide-and-
onquer appli
ations [176℄.Also, master-worker appli
ations typi
ally use dynami
 load-balan
ing strategies (e.g.,MW [95℄ des
ribed in se
tion 2.2.2). We �nd it a reasonable assumption for a gridappli
ation, sin
e appli
ations for whi
h the slowest pro
essor be
omes a bottlene
kwill not be able to e�
iently utilize grid resour
es.
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ation is insensitive to wide-area laten
ies. Our strategies 
ouldbe extended to handle laten
y-sensitive appli
ations. However, su
h appli
ations 
an-not run e�
iently on wide-area grids.4.3.2 Resour
e modelWe assume the following resour
e model. The appli
ations are running on multiplesites at the same time, where ea
h site is a 
luster or super
omputer. We also assumethat the pro
essors of the sites are a

essible using a grid s
heduling system, su
h asKoala [136℄, Zorilla [72℄ or GRMS [23℄. Pro
essors belonging to one site are lo
atedon the same LAN. The 
ommuni
ation between the pro
essors on the same site is
hara
terized by low laten
y and high bandwidth. Sites are 
onne
ted by a WAN.Communi
ation between sites su�ers from high laten
ies. We assume that the links
onne
ting the sites with the Internet ba
kbone might be
ome bottlene
ks 
ausingthe inter-site 
ommuni
ation to su�er from low bandwidths.4.3.3 Weighted average e�
ien
yIn traditional parallel 
omputing, a standard metri
 des
ribing the performan
e of aparallel appli
ation is parallel e�
ien
y. E�
ien
y is de�ned as the average utilizationof the pro
essors, that is, the fra
tion of time the pro
essors spend doing useful workrather than being idle or 
ommuni
ating with other pro
essors [74℄.eÆ
ien
y = 1n � nXi=0(1� overheadi )where n is the number of pro
essors and overheadi is the fra
tion of time the ithpro
essor spends being idle or 
ommuni
ating. E�
ien
y allows 
al
ulating the appli-
ation speedup whi
h indi
ates the bene�t of using multiple pro
essors in 
omparisonto using a single pro
essor. The relationship between the e�
ien
y and the speedupis expressed by the following formula:eÆ
ien
y = speedupnTypi
ally, the e�
ien
y drops as new pro
essors are added to the 
omputation. There-fore, a
hieving a high speedup (and thus a low exe
ution time) and a
hieving a highsystem utilization are 
on�i
ting goals [74℄. The optimal number of pro
essors isthe number for whi
h the ratio of e�
ien
y to exe
ution time is maximized. Addingpro
essors beyond this number yields little bene�t. This number is typi
ally hard to�nd, but in [74℄ it was theoreti
ally proven that if the optimal number of pro
essorsis used, the e�
ien
y is at least 50%. Therefore, adding pro
essors when e�
ien
y issmaller or equal to 50% will only de
rease the system utilization without signi�
antperforman
e gains.For heterogeneous environments, that is, environments with pro
essors with dif-ferent speeds, we extended the notion of e�
ien
y and introdu
ed weighted averagee�
ien
y.
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ien
y = 1n � nXi=0 speedi � (1� overheadi )In the above formula, the useful work done by a pro
essor (1�overheadi) is weightedaverage by multiplying it by the speed of this pro
essor relative to the fastest pro
es-sor. The fastest pro
essor has speed = 1, for others holds: 0 < speed � 1. Therefore,slower pro
essors are modeled as fast ones that spend a large fra
tion of time beingidle. Weighted average e�
ien
y re�e
ts the fa
t that adding slow pro
essors yieldsless bene�t than adding fast pro
essors.In the heterogeneous world, it is hardly bene�
ial to add pro
essors if the e�
ien
yis lower than 50% unless the added pro
essor is faster than some of the 
urrently usedpro
essors. Adding faster pro
essors might be bene�
ial regardless of the e�
ien
y.4.3.4 Adaptation 
oordinatorIn order to monitor the appli
ation performan
e and guide the adaptation, we addedan extra pro
ess to the 
omputation whi
h we 
all adaptation 
oordinator. The adap-tation 
oordinator periodi
ally 
olle
ts performan
e statisti
s from the appli
ationpro
essors and 
omputes the weighted average e�
ien
y. If the weighted average ef-�
ien
y falls above or below 
ertain thresholds, the 
oordinator de
ides on adding orremoving pro
essors. A heuristi
 formula is used to de
ide whi
h pro
essors have tobe removed. During this pro
ess the 
oordinator learns the appli
ation requirementsby remembering the 
hara
teristi
s of the removed pro
essors. Those requirementsare then used to guide the adding of new pro
essors.4.3.5 Colle
ting performan
e statisti
sEa
h pro
essor measures the time it spends 
ommuni
ating or being idle. The 
ompu-tation is divided into monitoring periods. After ea
h monitoring period the pro
essors
ompute their overhead over this period as the per
entage of the time they spent beingidle or 
ommuni
ating in this period. Apart from the total overhead, ea
h pro
essoralso 
omputes the overhead of inter-
luster and intra-
luster 
ommuni
ation.In order to be able to 
al
ulate weighted average e�
ien
y, we need to know therelative speeds of the pro
essors. The speeds of the pro
essors depend on the appli
a-tion and the problem size used. Sin
e it is impra
ti
al to run the whole appli
ation onea
h pro
essor separately, we use appli
ation-spe
i�
 ben
hmarks. Currently we usethe same appli
ation with a small problem size as a ben
hmark and we require the ap-pli
ation programmer to spe
ify this problem size. The disadvantage of this approa
his that it requires extra e�ort from the programmer to �nd the right problem size andpossibly produ
e input �les 
orresponding to this problem size, whi
h might be hard.An alternative solution would be generating ben
hmarks automati
ally by 
hoosing arandom subset of the task graph of the original appli
ation. For example in �gure 4.1,two bran
hes (darker nodes) of the exe
ution tree are used as a ben
hmark.Ben
hmarks have to be re-run periodi
ally be
ause the speed of a pro
essor might
hange if it be
omes overloaded by another appli
ation (for time-shared ma
hines).
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urs an overhead. There is 
learly a trade-o� be-tween the a

ura
y of speed measurements and the overhead it in
urs. The longer theben
hmark, the greater the a

ura
y of the measurement. The more often it is run,the faster 
hanges in pro
essor speed are dete
ted. In our 
urrent implementation,the appli
ation programmer spe
i�es the length of the ben
hmark (by spe
ifying itsproblem size) and the maximal overhead it is allowed to 
ause. Pro
essors run theben
hmark at su
h frequen
y so as not to ex
eed the spe
i�ed overhead. An improve-ment to this approa
h would be 
ombining ben
hmarking with monitoring the loadof the pro
essor whi
h would allow us to avoid running the ben
hmark if no 
hange inpro
essor load is dete
ted. This optimization would further redu
e the ben
hmarkingoverhead.Note that the ben
hmarking overhead 
ould be avoided 
ompletely for more reg-ular appli
ations, for example, for master-worker appli
ations with tasks of equalor similar size. The pro
essor speed 
ould then be measured by 
ounting the taskspro
essed by this pro
essor within one monitoring period. Unfortunately, divide-and-
onquer appli
ations typi
ally exhibit a very irregular stru
ture. The sizes of tasks
an vary by many orders of magnitude.At the end of ea
h monitoring period, the pro
essors send the overhead statisti
sand pro
essor speeds in this period to the 
oordinator. The adaptation 
oordina-tor stores the statisti
s re
eived from the pro
essors. Periodi
ally, it 
omputes theweighted average e�
ien
y and other statisti
s, su
h as average inter-
luster overheador overheads in ea
h 
luster. The 
lo
ks of the pro
essors are not syn
hronized withea
h other or with the 
lo
k of the 
oordinator. Ea
h pro
essor de
ides separatelywhen it is time to send data. Therefore, it happens o

asionally that at the end of themonitoring period, the 
oordinator misses data from a few pro
essors. In that 
ase,the 
oordinator uses data from the previous monitoring period for those pro
essors.This 
auses small ina

ura
ies in the 
al
ulations of the 
oordinator. In our experi-ments, we did not observe any in�uen
e of those ina

ura
ies on the performan
e ofadaptation.4.3.6 Adaptation strategyThe adaptation 
oordinator tries to keep the appli
ation weighted average e�
ien
ybetween two thresholds: Emin and Emax. When the weighted average e�
ien
yex
eeds Emax, the adaptation 
oordinator requests new pro
essors from the s
heduler.The number of requested pro
essors depends on the 
urrent e�
ien
y: the higherthe e�
ien
y, the more pro
essors are requested. The adaptation 
oordinator startsremoving pro
essors when the weighted average e�
ien
y drops below Emin. Thenumber of nodes that are removed depends on the weighted average e�
ien
y. Thelower the e�
ien
y, the more nodes are removed. The thresholds we use are Emax =50%, be
ause we know that adding pro
essors when e�
ien
y is lower does not makesense, and Emin = 30%. E�
ien
y of 30% or lower might indi
ate performan
eproblems su
h as low bandwidth or overloaded pro
essors. In that 
ase, removingbad pro
essors will be bene�
ial for the appli
ation. Su
h low e�
ien
y might alsoindi
ate that we simply have too many pro
essors. In that 
ase, removing some
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essors may not be bene�
ial but it will not harm the appli
ation. The adaptation
oordinator always tries to remove the `worst' pro
essors. The `badness' of a pro
essoris determined by the following formula:pro
_badnessi = � � 1speedi + � � i
_overheadi + 
 � inWorstCluster(i)The pro
essor is 
onsidered bad if it has low speed ( 1speed is big) and high inter-
lusteroverhead (i
_overhead). High inter-
luster overhead indi
ates that the bandwidth tothis pro
essor's 
luster is insu�
ient. Removing pro
essors lo
ated in a single 
lusteris desirable sin
e it de
reases the amount of wide-area 
ommuni
ation. Therefore, pro-
essors belonging to the `worst' 
luster are preferred. The fun
tion inWorstCluster(i)returns 1 for pro
essors belonging to the `worst' 
luster and 0 otherwise. The `badness'of 
lusters is 
omputed similarly to the `badness' of pro
essors:
luster_badnessi = � � 1speedi + � � i
_overheadiThe speed of a 
luster is the sum of pro
essor speeds normalized to the speed of thefastest 
luster. The i
_overhead of a 
luster is an average of pro
essor inter-
lusteroverheads. The �, � and 
 
oe�
ients determine the relative importan
e of the terms.Those 
oe�
ients are established empiri
ally. Currently we are using the followingvalues: � = 1, � = 100 and 
 = 10, based on the observation that i
_overhead > 0:2indi
ates bandwidth problems and pro
essors with speed < 0:05 do not 
ontribute tothe 
omputation.Additionally, when one of the 
lusters has an ex
eptionally high inter-
luster over-head (larger than 0.25), we 
on
lude that the bandwidth on the link between this
luster and the Internet ba
kbone is insu�
ient for the appli
ation. In that 
ase, wesimply remove the whole 
luster instead of 
omputing node badness and removingthe worst nodes. After de
iding whi
h nodes are removed, the adaptation 
oordina-tor sends a message to those nodes, and the nodes leave the 
omputation. Figure 4.2shows a s
hemati
 view of the adaptation strategy. Dashed lines indi
ate a part thatis not supported yet, as will be explained below.This simple adaptation strategy allows us to improve appli
ation performan
e inseveral situations typi
al for the Grid:� If an appli
ation is started on a smaller number of pro
essors than its degreeof parallelism allows, it will automati
ally expand to more pro
essors (as soonas there are extra resour
es available). Conversely, if an appli
ation is startedon more pro
essors than it 
an e�
iently use, a part of the pro
essors will bereleased.� If an appli
ation is running on an appropriate set of resour
es but after a whilesome of the resour
es (pro
essors and/or network links) be
ome overloaded andslow down the 
omputation, the overloaded resour
es will be removed. Afterremoving the overloaded resour
es, the weighted average e�
ien
y will in
rease
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Figure 4.2: Adaptation strategy



90 CHAPTER 4. SELF-ADAPTATIONto above the Emax threshold and the adaptation 
oordinator will try to addnew resour
es. Therefore, the appli
ation will be migrated from overloadedresour
es.� If some of the original resour
es 
hosen by the user are inappropriate for theappli
ation, for example the bandwidth to one of the 
lusters is too small, theinappropriate resour
es will be removed. If ne
essary, the adaptation 
omponentwill try to add other resour
es.� If during the 
omputation a substantial part of the pro
essors 
rash, the adapta-tion 
omponent will try to add new resour
es to repla
e the 
rashed pro
essors.� If the appli
ation degree of parallelism is 
hanging during the 
omputation, thenumber of nodes the appli
ation is running on will be automati
ally adjusted.4.3.7 Further improvements of the adaptation strategyFurther improvements of our adaptation me
hanism are possible, but require extrafun
tionality from the grid s
heduler and/or integration with monitoring servi
essu
h as NWS [181℄. For example, adding nodes to a 
omputation 
an be improved.Currently, we add any nodes the s
heduler gives us. However, it would be moree�
ient to ask for the fastest pro
essors among the available ones. This 
ould be done,for example, by passing a ben
hmark to the grid s
heduler, so that it 
an measurepro
essor speeds in an appli
ation spe
i�
 way. Typi
ally, it would be enough tomeasure the speed of one pro
essor per site, sin
e 
lusters and super
omputers areusually homogeneous. An alternative approa
h would be ranking the pro
essors basedon parameters su
h as 
lo
k speed and 
a
he size. This approa
h is sometimes usedfor resour
e sele
tion for sequential appli
ations [102℄. However, it is less a

uratethan using an appli
ation spe
i�
 ben
hmark.Also, during appli
ation exe
ution, we 
an learn some appli
ation requirementsand pass them to the s
heduler. One example is the minimal bandwidth required bythe appli
ation. The lower bound on minimal required bandwidth is tightened ea
htime a 
luster with high inter-
luster overhead is removed. The bandwidth betweenea
h pair of 
lusters is estimated during the 
omputation by measuring data transfertimes, and the bandwidth to the removed 
luster is set as a minimum. Alternatively,information from a grid monitoring system 
an be used. Su
h bounds 
an be passed tothe s
heduler to avoid adding inappropriate resour
es. It is espe
ially important whenmigrating from resour
es that 
ause performan
e problems: we have to be 
areful notto add the resour
es we have just removed. Currently we use bla
klisting - we simplydo not allow adding resour
es we removed before. This means, however, that we
annot use those resour
es even if the 
ause of the performan
e problem disappears,e.g. the bandwidth of a link might improve if the ba
kground tra�
 diminishes.We are 
urrently not able to perform opportunisti
 migration - migrating to betterresour
es when they are dis
overed. If an appli
ation runs with e�
ien
y betweenEmin and Emax, the adaptation 
omponent will not undertake any a
tion, even ifbetter resour
es be
ome available. Enabling opportunisti
 migration requires, again,
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ify to the s
heduler what `better' resour
es are (faster, with a
ertain minimal bandwidth) and re
eiving noti�
ations when su
h resour
es be
omeavailable. If that was possible, we 
ould add those better resour
es even when we arerunning at good e�
ien
y, and trigger removing (part of) the slower resour
es we arerunning on.Existing grid s
hedulers su
h as GRAM from the Globus Toolkit [86℄ do not sup-port su
h fun
tionality. The developers of the KOALA metas
heduler [136℄ havere
ently started a proje
t whose goal is providing support for adaptive appli
ationsin KOALA. In the future, KOALA will provide the fun
tionalities required by us tosupport opportunisti
 migration and to improve the initial resour
e sele
tion.4.3.8 ImplementationWe instrumented the Satin runtime system to 
olle
t runtime statisti
s and send themto the adaptation 
oordinator. The 
oordinator is implemented as a separate pro
ess.For requesting new nodes, the Zorilla [72℄ system, des
ribed in se
tion 2.2.1 is used.It allows straightforward allo
ation of pro
essors in multiple 
lusters and/or super-
omputers. Zorilla provides lo
ality-aware s
heduling. It tries to allo
ate pro
essorsthat are lo
ated 
lose to ea
h other in terms of 
ommuni
ation laten
y. In the future,Zorilla will also support bandwidth-aware s
heduling, that is, a s
heduling strategythat tries to maximize the total bandwidth in the system. Repla
ing Zorilla with an-other grid s
heduler is straightforward. For example, Zorilla 
ould be repla
ed withGAT [23℄ or KOALA [136℄.4.4 Performan
e evaluationIn this se
tion, we will evaluate our approa
h. We will demonstrate the performan
eof our me
hanism in a few s
enarios typi
al for grid environments. The �rst s
enariois an `ideal' situation: the appli
ation runs on a reasonable set of nodes (i.e., su
hthat the e�
ien
y is around 50%) and no problems su
h as overloaded network andpro
essors, 
rashing pro
essors, et
., o

ur. This s
enario allows us to measure theoverhead of the adaptation support. The remaining s
enarios are typi
al for gridenvironments and allow us to demonstrate that with our adaptation support theappli
ation 
an avoid serious performan
e bottlene
ks su
h as overloaded pro
essorsor network links.For ea
h s
enario, we 
ompare the performan
e of an appli
ation with adaptationsupport to a non-adaptive version. In the non-adaptive version, the 
oordinator doesnot 
olle
t statisti
s and or perform ben
hmarking (for measuring pro
essor speeds).In the `ideal' s
enario, we additionally measure the performan
e of an appli
ation with
olle
ting statisti
s and ben
hmarking turned on but without allowing it to 
hangethe number of nodes. This allows us to measure the overhead of ben
hmarking and
olle
ting statisti
s. In all experiments we used a monitoring period of 3 minutes (180se
onds) for the adaptive versions of the appli
ations.All the experiments were 
arried out on multiple 
lusters of the DAS-2 wide-
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Figure 4.3: The runtimes of the Barnes-Hut appli
ation, s
enarios 0-5area system (DAS-2 was des
ribed in se
tion 3.6). We used the Barnes-Hut N-bodysimulation. This appli
ation simulates the evolution of an N-body system under thein�uen
e of for
es, for example gravitational or ele
trostati
 for
es. The simulationis 
arried out in dis
rete time steps (iterations). In ea
h iteration the velo
ities of allbodies are 
omputed and the positions of the bodies are adjusted1.We 
hose the Barnes-Hut simulation be
ause it is an iterative appli
ation. Ob-serving the variability in the iteration duration 
an give us more insight into theperforman
e of the appli
ation under varying grid 
onditions and the e�e
tiveness ofadaptation.4.4.1 S
enario 0: adaptivity overheadIn this s
enario, the appli
ation is started on 36 nodes. The nodes are equally dividedover 3 
lusters (12 nodes in ea
h 
luster). On this number of nodes, the appli
a-tion runs with 50% e�
ien
y, so we 
onsider it a reasonable number of nodes. Asmentioned above, in this s
enario we measure three runtimes: the runtime of theappli
ation without adaptation support (runtime 1), the runtime with adaptationsupport (runtime 2) and the runtime with monitoring (i.e., 
olle
tion of statisti
sand ben
hmarking) turned on but without allowing it to 
hange the number of nodes(runtime 3). These runtimes are shown in �gure 4.3, the �rst group of bars. The
omparison between runtime 3 and 1 shows the overhead of adaptation support. Inthis experiment it is around 15%. Almost all overhead 
omes from ben
hmarking.The ben
hmark is run 1-2 times per monitoring period. This overhead 
an be made1A more detailed des
ription of the Barnes-Hut appli
ation 
an be found in se
tion 5.6.3.
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Figure 4.4: Barnes-Hut iteration durations with/without adaptation, too few CPUs(S
enario 1)
smaller by in
reasing the length of the monitoring period and de
reasing the ben
h-marking frequen
y. The monitoring period we used (3 minutes) is relatively short,be
ause the runtime of the appli
ation was also relatively short (approx. 30 minutes).Using longer running appli
ations would not allow us to �nish the experimentation ina reasonable time. However, real-world grid appli
ations typi
ally need hours, daysor even weeks to 
omplete. For su
h appli
ations, a mu
h longer monitoring period
an be used and the adaptation overhead 
an be kept mu
h lower. For example, withthe Barnes-Hut appli
ation, if the monitoring period is extended to 10 minutes, theoverhead drops to 6%. Note that 
ombining ben
hmarking with monitoring pro
essorload (as des
ribed in se
tion 4.3.5) would redu
e the ben
hmarking overhead in thiss
enario to almost zero: sin
e the pro
essor load is not 
hanging, the ben
hmarkswould only need to be run at the beginning of the 
omputation.Note that runtime 2 (with adaptation) is slightly shorter than runtime 3 (withoutadaptation). The reason is that during the run with adaptation turned on, a few nodeswere added to 
omputation when at some point the measured normalized e�
ien
ydropped slightly below 50%.
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enario 1: expanding to more nodesIn this s
enario, the appli
ation is started on a number of nodes that is smaller thanthe appli
ation 
an e�
iently use. This may happen be
ause the user does not knowthe right number of nodes or be
ause a bigger number of nodes was not availableat the moment the appli
ation was started. We tried 3 initial numbers of nodes: 8(S
enario 1a), 16 (S
enario 1b) and 24 (S
enario 1
). The nodes were lo
ated on 1or 2 
lusters. In ea
h of the three sub-s
enarios, the appli
ation gradually expandedto 36-40 nodes lo
ated in 4 
lusters. This allowed to redu
e the appli
ation runtimesby 50% (S
enario 1a), 35% (S
enario 1b) and 12% (S
enario 1
) with respe
t to thenon-adaptive version. These runtimes are shown in �gure 4.3. Sin
e Barnes-Hut isan iterative appli
ation, we also measured the time of ea
h iteration. These times areshown in �gure 4.4. Adaptation redu
es the iteration time by a fa
tor of 3 (S
enario1a), 1.7 (S
enario 1b) and 1.2 (S
enario 1
) whi
h allows us to 
on
lude that the gainsin the total runtime would be even bigger if the appli
ation were run for more than15 iterations.4.4.3 S
enario 2: overloaded pro
essorsIn this s
enario, we started the appli
ation on 36 nodes in 3 
lusters. After 200 se
-onds, we introdu
ed a heavy, arti�
ial load on the pro
essors in one of the 
lusters.Su
h a situation might happen when an appli
ation with a higher priority is startedon some of our resour
es. Figure 4.5 shows the iteration durations of both the adap-tive and non-adaptive versions. After introdu
ing the load, the iteration durationin
reased by a fa
tor of 2 to 3. This happened in iteration 2 for the adaptive versionand iteration 3 for the non-adaptive version (sin
e the iterations in the non-adaptiveversion are slightly shorter). Also, the iteration times be
ame very variable. Theadaptive version observed a very low weighted average e�
ien
y (20%) and rea
tedby removing the overloaded nodes (iteration 3). After removing these nodes, theweighted average e�
ien
y rose to around 65% whi
h triggered adding new nodes (it-eration 5) and the appli
ation expanded ba
k to 38 nodes. So, the overloaded nodeswere repla
ed by better nodes, whi
h brought the iteration duration ba
k to the initialvalue. This redu
ed the total runtime by 14%. The runtimes are shown in �gure 4.3.4.4.4 S
enario 3: overloaded network linkIn this s
enario, we ran the appli
ation on 36 nodes in 3 
lusters. We simulated thatthe uplink to one of the 
lusters was overloaded and the bandwidth on this uplinkwas approximately 100 KB/s.To simulate low bandwidth we use the tra�
-shaping te
hniques des
ribed in [63℄2.To a
hieve the spe
i�ed sending rate, the sender sleeps an appropriate time betweensending pa
kets. The sleeping time is 
al
ulated as a di�eren
e between the time thetransmission should have taken if the link had the spe
i�ed bandwidth and the timethe transmission really took. This is done both on the sending and on the re
eiving2We used a tra�
 shaper implemented by Mathijs den Burger [68℄
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Figure 4.5: Barnes-Hut iteration durations with/without adaptation, overloadedCPUs (S
enario 2)side. Care needs to be taken to deal with the 
oarse granularity of the sleep fun
tion.More details 
an be found in [63℄.The iteration durations in this experiment are shown in �gure 4.6. The iterationdurations of the non-adaptive version exhibit enormous variation: from 170 to 890se
onds. The adaptive version observed a weighted average e�
ien
y of 25% and ahighWAN 
ommuni
ation overhead in one of the 
lusters (40%). Therefore it removedthe badly 
onne
ted 
luster after the �rst monitoring period. As a result, the weightedaverage e�
ien
y rose to around 65% and new nodes were gradually added until theirnumber rea
hed 38. This brought the iteration times down to around 100 se
onds.The total runtime was redu
ed by 60% (�gure 4.3).4.4.5 S
enario 4: overloaded pro
essors and an overloadednetwork linkIn this s
enario, we ran the appli
ation on 36 nodes in 3 
lusters. Again, we simulatedan overloaded uplink to one of the 
lusters. Additionally, we simulated pro
essors withheterogeneous speeds by inserting a relatively light arti�
ial load on the pro
essors inone of the remaining 
lusters. The iteration durations are shown in �gure 4.7. Again,
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Figure 4.6: Barnes-Hut iteration durations with/without adaptation, overloaded net-work link (S
enario 3)the non-adaptive version exhibits a great variation in iteration durations: from 200to 1150 se
onds. The adaptive version removes the badly 
onne
ted 
luster after the�rst monitoring period, whi
h brings the iteration duration down to 210 se
onds onaverage. After removing one of the 
lusters, sin
e some of the pro
essors are slower(approximately 5 times), the weighted average e�
ien
y rises only to around 35-40%and os
ilates around those values. At some point it drops slightly below 30% whi
htriggers removing 2 of the slower nodes. This example illustrates what the advantagesof opportunisti
 migration would be. There were faster nodes available in the system.If those nodes were added to the appli
ation (whi
h 
ould trigger removing more ofthe slower nodes) the iteration duration 
ould be redu
ed even further. Still, theadaptation redu
ed the total runtime by 30% (�gure 4.3).4.4.6 S
enario 5: 
rashing nodesIn the last s
enario, we also ran the appli
ation on 36 nodes in 3 
lusters. After 500se
onds, 2 out of 3 
lusters 
rash. The iteration durations are shown in �gure 4.8.After the 
rash, the iteration duration rose from a 100 to 200 se
ond. The weightedaverage e�
ien
y rose to around 70%, whi
h triggered adding new nodes in the adap-tive version. The number of nodes gradually went ba
k to 36, whi
h brought the
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Figure 4.7: Barnes-Hut iteration durations with/without adaptation, overloadedCPUs and an overloaded network link (S
enario 4)iteration duration ba
k to around 100 se
onds. The total runtime was redu
ed by13% (�gure 4.3).4.5 Comparison with related workA number of Grid proje
ts address the question of resour
e sele
tion and adaptation.In most of these proje
ts, resour
e sele
tion and adaptation depend on performan
emodels that allow predi
ting appli
ation runtime on a given resour
e set. The GridAppli
ation Development System (GrADS) [172℄ uses performan
e models to sele
tthe set of resour
es with the minimal predi
ted runtime. During the 
omputation,the appli
ation performan
e is monitored using the Autopilot infrastru
ture [151℄.If the ratio between the predi
ted and the a
tual appli
ation performan
e ex
eedsa 
ertain threshold, migration is requested. Upon a migration request, the resour
esele
tion phase is repeated - possible resour
e sets are re-evaluated and if a better setof resour
es is found, migration is 
onsidered. A distinguishing feature of the GrADSenvironment is that it takes into a

ount the remaining exe
ution time of the appli-
ation when 
onsidering migration. Migration is performed only when the predi
tedremaining exe
ution time on the new set of resour
es plus the worst 
ase migration
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Figure 4.8: Barnes-Hut iteration durations with/without adaptation, 
rashing CPUs(S
enario 5)time is smaller than the predi
ted remaining exe
ution time on the 
urrent set ofresour
es. This approa
h allows to avoid 
ostly migrations when the appli
ation is
lose to 
ompletion. GrADS also supports opportunisti
 migration. If some otherappli
ation has re
ently 
ompleted, the GrADS res
heduler determines whether per-forman
e bene�ts 
an be obtained for a 
urrently exe
uting appli
ation by migratingit to use the resour
es freed by the 
ompleted appli
ation.The main di�eren
e between the GrADS environment and our approa
h is the useof performan
e models. The main advantage is that on
e the performan
e model isknown, the system is able to take more a

urate migration de
isions than with ourapproa
h. However, even if the performan
e model is known, the problem of �ndingan optimal resour
e set (i.e. the resour
e set with the minimal exe
ution time) is NP-
omplete. Currently, GrADS examine only a subset of all possible resour
e sets andtherefore there is no guarantee that the resulting resour
e set will be optimal. As thenumber of available grid resour
es in
reases, the a

ura
y of this approa
h diminishes,as the subset of possible resour
e sets that 
an be examined in a reasonable timebe
omes smaller.Unlike GrADS we are not able to predi
t the remaining exe
ution time and takeit into a

ount when de
iding on adaptation. For divide-and-
onquer this is of lit-
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e, however, sin
e adding and removing resour
es to divide-and-
onquer
omputations has small overhead. GrADS supports opportunisti
 migration while ourimplementation 
urrently does not. However, we plan to add support for opportunis-ti
 migration in the future. Finally, GrADS is suitable for iterative MPI appli
ationswhile we are targeting at divide-and-
onquer appli
ations.Ca
tus is a Grid-enabled 
omputational framework for the 
onstru
tion of parallelsolvers for partial di�erential equations. Ca
tus is suitable only for single-site (super-
omputer or 
luster) appli
ations. No performan
e model is used. The available sitesare ranked and the site with the highest rank is sele
ted for exe
ution. The rank ofa site is its number of pro
essors multiplied by the pro
essor speed. The appli
ation
an be migrated if a higher-ranked site is dis
overed or a performan
e degradationis observed. The appli
ation performan
e is expressed as the number of appli
ationiterations per se
ond. The main di�eren
e between the Ca
tus methodology and ourapproa
h is that Ca
tus is suitable for single-site appli
ations. For su
h appli
ations,the 
omplexity of the resour
e sele
tion and adaptation problems is many orders ofmagnitude smaller than for multi-site appli
ations: the set of possible resour
e setsis mu
h smaller, the bandwidth between the sites does not have to be taken into a
-
ount et
. Moreover, resour
e sele
tion based on 
lo
k speed is not always a

urate.Finally, performan
e degradation dete
tion is suitable only for iterative appli
ationsand 
annot be used for irregular 
omputations su
h as sear
h and optimization prob-lems. We use performan
e degradation dete
tion based on weighted average e�
ien
ywhi
h 
an be applied to any parallel appli
ation.The GridWay framework [102℄ has many similarities with the Ca
tus approa
h.It is targeted at sequential appli
ations. In the resour
e sele
tion phase, not only thespeed of a 
andidate host but also its proximity to the appli
ation �les, 
he
kpoint�les and the 
urrent host (in 
ase of migration) is taken into a

ount. Migrationis performed when a better host is dis
overed or when performan
e degradation isdete
ted. The appli
ation performan
e 
an be measured, for example, by 
ounting thenumber of appli
ation iterations per se
ond. The main di�eren
es with our approa
hare that we target multi-
luster, parallel appli
ations while GridWay supports onlysequential ones. Also, GridWay's performan
e degradation method is suitable onlyfor iterative appli
ations.The resour
e sele
tion problem was also studied by the AppLeS proje
t [37℄. Inthe 
ontext of this proje
t, a number of appli
ations were studied and performan
emodels for those appli
ations were 
reated. Based on su
h a model a s
heduling agentis built that uses the performan
e model to sele
t the best resour
e set and the bestappli
ation s
hedule on this set. AppLeS s
heduling agents are written on 
ase-by-
ase basis and 
annot be reused for another appli
ation. Two reusable templates werealso developed for spe
i�
 
lasses of appli
ations, namely master-worker (AMWATtemplate) and parameter sweep (APST template) appli
ations. Migration is notsupported by the AppLeS software.In [100℄, the problem of s
heduling iterative master-worker appli
ations is stud-ied. The authors assume homogeneous pro
essors (i.e., with the same speed) anddo not take 
ommuni
ation 
osts into a

ount. Therefore, the problem is redu
ed to�nding the right number of workers. The approa
h here is similar to ours in that
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e model is used. Instead, the system tries to dedu
e the appli
ationrequirements at runtime and adjusts the number of workers to approa
h the idealnumber. The adjustment is done on a per-iteration basis: the observations from theprevious iteration are used to adjust the number of workers for the following itera-tion. Our approa
h supports a mu
h wider variety of s
enarios, i.e., heterogeneousnode and network speeds. Also, our approa
h does not assume that the appli
ationis iterative.Aldinu

i et al. [19℄ present an abstra
t model of a
tivities that need to be per-formed in order to handle adaptivity in distributed appli
ations. They apply thismodel to the ASSIST framework for 
reating high-level, 
omponent-based appli
a-tions. An ASSIST appli
ation 
onsists of multiple modules whi
h 
an themselves beparallel programs. It is possible to spe
ify a Quality of Servi
e 
ontra
t for ea
h mod-ule or for the whole appli
ation (similar to performan
e 
ontra
ts in GrADS). If su
ha QoS 
ontra
t is violated, adaptation is performed. The adaptation strategy for a
omponent is based on the performan
e model of this 
omponent. ASSIST 
an auto-mati
ally provide performan
e models for 
omponents that have a master-worker ora data-parallel stru
ture. For other types of 
omponents, a performan
e model mustbe provided by the user.4.6 Con
lusionIn this 
hapter, we investigated the problem of resour
e sele
tion and adaptation ingrid environments. Existing approa
hes to those problems typi
ally assume the exis-ten
e of a performan
e model that allows predi
ting appli
ation runtimes on varioussets of resour
es. However, 
reating performan
e models is inherently di�
ult andrequires knowledge about the appli
ation.We proposed an approa
h that does not require in-depth knowledge about theappli
ation. We start the appli
ation on an arbitrary set of resour
es and monitorits performan
e. The performan
e monitoring allows us to learn 
ertain appli
ationrequirements su
h as the number of pro
essors needed by the appli
ation or the ap-pli
ation's bandwidth requirements. We use this knowledge to gradually re�ne theresour
e set by removing inadequate nodes or adding new nodes if ne
essary. Thisapproa
h does not result in the optimal resour
e set, but in a reasonable resour
e set,i.e. a set free from various performan
e bottlene
ks su
h as slow network 
onne
tionsor overloaded pro
essors. Our approa
h also allows the appli
ation to adapt to the
hanging grid 
onditions.We implemented this approa
h in the Satin framework. We added an extra pro
ess
alled the adaptation 
oordinator, whi
h 
olle
ts the runtime statisti
s (i.e. the idletime, the lo
al and wide-area 
ommuni
ation time) and de
ides on adding or removingnodes. The de
isions are based on the weighted average e�
ien
y � an extension of the
on
ept of parallel e�
ien
y de�ned for traditional, homogeneous parallel ma
hines. Ifthe weighted average e�
ien
y drops below a 
ertain level, the adaptation 
oordinatorstarts removing `worst' nodes. The `badness' of the nodes is de�ned by a heuristi
formula. If the weighted average e�
ien
y raises above a 
ertain level, new nodes are



4.6. CONCLUSION 101added.This simple strategy allows us to handle multiple s
enarios typi
al for grid envi-ronments: expand to a bigger number of nodes or shrink to a smaller number of nodesif the appli
ation was started on an inappropriate number of pro
essors, remove in-adequate nodes and repla
e them with better ones, repla
e 
rashed pro
essors, avoidslow networks, et
. The appli
ation adapts fully automati
ally to 
hanging 
onditions.We tested our approa
h on the DAS-2 distributed super
omputer and demonstratethat our approa
h 
an yield signi�
ant performan
e improvements (up to 60% in ourexperiments).Future work will involve extending our adaptation strategy to support oppor-tunisti
 migration. This, however, requires grid s
hedulers with more sophisti
atedfun
tionality than the fun
tionality of the existing s
hedulers. Further resear
h is alsoneeded to de
rease the ben
hmarking overhead. For example, the information aboutCPU load 
ould be used to de
rease the ben
hmarking frequen
y. Another line ofresear
h that may be investigated is using feedba
k 
ontrol to re�ne the adaptationstrategy during the appli
ation run. For example, the node `badness' formula 
ouldbe re�ned at runtime based on the e�e
tiveness of the previous adaptation de
isions.Finally, the 
entralized implementation of the adaptation 
oordinator might be
omea bottlene
k for appli
ations whi
h are running on very large numbers of nodes (hun-dreds or thousands). This problem 
an be solved by implementing a hierar
hy of
oordinators: one sub-
oordinator per 
luster whi
h 
olle
ts and pro
esses statisti
sfrom its 
luster and one main 
oordinator whi
h 
olle
ts the information from thesub-
oordinators.
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Chapter 5Data sharing in dynami
environments5.1 Introdu
tionAn important disadvantage of the divide-and-
onquer paradigm is its limited ap-pli
ability due to the la
k of global state. The only way of sharing data betweendivide-and-
onquer tasks is by expli
it parameter passing. This model is insu�
ientfor many appli
ations [107℄. One 
lass of su
h appli
ations 
onsists of programs thatpass large data stru
tures as parameters. With pure divide-and-
onquer, those largeparameters need to be 
opied ea
h time a task is exe
uted remotely, while 
opying theparameters on
e and reusing them later would be more e�
ient. Another 
lass of ap-pli
ations 
onsists of programs whi
h need to share data between independent tasks.In pure divide-and-
onquer, this form of data sharing is not possible. Bran
h-and-bound appli
ations belong to this 
lass. Sharing the best known solution between allthe pro
essors taking part in the 
omputation allows pruning large parts of the sear
htrees. Another example is game-tree sear
h where a transposition table is shared toavoid evaluating the same position twi
e.In this 
hapter, we will extend the divide-and-
onquer model with a shared dataabstra
tion � shared obje
ts. We will 
all the extended model divide-and-share. Im-plementing a shared data abstra
tion in a distributed system is a 
hallenging problem.Providing a strong form of 
onsisten
y (e.g., sequential 
onsisten
y [119℄) while main-taining high performan
e is infeasible even on tightly 
onne
ted systems like 
lustersof workstations. In grid environments this problem is even harder. One problem isthe high wide-area laten
ies. Another problem is that grids are inherently dynami
.The set of pro
essors on whi
h the appli
ation is running 
onstantly 
hanges. Most
onsisten
y proto
ols have been designed with a �xed set of pro
essors in mind. Dy-nami
 pro
essor sets make 
onsisten
y more 
ompli
ated and expensive and thereforeimpra
ti
al for grid environments.Many relaxed 
onsisten
y models have been proposed (e.g., 
ausal 
onsisten
y [104℄,
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onsisten
y [45℄), but none of them are suitable for grid-enabled divide-and-
onquer grid appli
ations, as they are either too expensive to implement in grid en-vironments, or do not �t the needs of our appli
ations.Therefore, we designed a new, relaxed 
onsisten
y model, whi
h we 
all guard
onsisten
y. A programmer 
an de�ne the 
onsisten
y requirements of an appli
ationby means of guard fun
tions. A guard fun
tion is asso
iated with a divide-and-
onquertask and de�nes whether the shared obje
ts a

essed by this task are in a 
onsistentstate. The runtime system allows the repli
as to be
ome in
onsistent as long as theguards are satis�ed. If a guard is not satis�ed, the runtime system brings the lo
alrepli
as into a 
orre
t state.The rest of this 
hapter is stru
tured as follows. In se
tion 5.2, we present ba
k-ground information on data sharing. In se
tion 5.3, we des
ribe the shared obje
tsmodel. In se
tion 5.4, we des
ribe the shared obje
ts API and illustrate it with a num-ber of 
ode examples. In se
tion 5.5, we des
ribe the implementation of the sharedobje
ts model. In se
tion 5.6, we dis
uss our experien
es with programming appli
a-tions with the new model. In se
tion 5.7, we evaluate the performan
e of our model,and in se
tion 5.8, we 
ompare it with related work. We 
on
lude in se
tion 5.9.5.2 Ba
kgroundShared data is an attra
tive model for expressing 
ommuni
ation and syn
hronizationin distributed appli
ations. It is at a higher level of abstra
tion than expli
it messagepassing and therefore signi�
antly simpli�es programming and debugging distributedappli
ations. In this se
tion, we will present ba
kground information on data sharingin distributed systems. We will dis
uss di�erent programming models using the shareddata abstra
tion: Shared Virtual Memory, shared obje
t models and distributed tuplespa
e models. Next, we will dis
uss the algorithms used to implement shared dataabstra
tions. Finally, we will dis
uss the problem of shared data 
onsisten
y andreview a number of 
onsisten
y models.5.2.1 Shared data paradigmsData sharing paradigms 
an be roughly divided into two 
ategories: unstru
tured andstru
tured paradigms [122℄. Unstru
tured paradigms present the programmer with a�at address spa
e similar to how the a
tual physi
al memory is seen by appli
ations.With stru
tured paradigms, the shared data is organized into user-de�ned abstra
tdata stru
tures. In this se
tion we will des
ribe both the unstru
tured (the SharedVirtual Memory) and stru
tured approa
hes (shared obje
ts and tuple spa
es). The
lassi�
ation of shared data paradigms is shown in �gure 5.1.Shared Virtual MemoryShared Virtual Memory (SVM) [123℄ simulates a real physi
al shared memory: thepro
esses have an illusion of seeing a single shared address spa
e. Pro
esses 
an a

essthe shared memory using simple read, write and lo
k operations.
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Figure 5.1: Data sharing paradigmsThe address spa
e of a SVM is partitioned into pages (blo
ks, segments). Whena pro
essor tries to a

ess a page whi
h is not present in its physi
al memory, theoperating system or runtime system fet
hes the page from a remote pro
essor andstores a 
opy of the page in the lo
al memory.The granularity of data sharing, that is the size of the page, varies in di�erentsystems. In some systems the unit of sharing is a multiple of the hardware page size(Ivy [123℄), in others the unit of sharing is mu
h smaller, for example 32 bytes (Mem-net [67℄). The 
hoi
e of the granularity 
an have a large impa
t on the performan
eof the system. If the granularity is too small, many page transfers might o

ur withina short period. However, if the granularity is large, the probability of false sharingin
reases. False sharing o

urs when two variables used by two di�erent pro
esses areallo
ated on one page. In this 
ase, the page will be 
onstantly moved between thetwo pro
esses even though the variables are not shared. This problem results fromthe fa
t that the stru
ture of the shared memory does not re�e
t the stru
ture of theappli
ation. Therefore, Shared Virtual Memory is 
alled an unstru
tured DistributedShared Memory (DSM) [122℄.Ivy [123℄ was the �rst implementation of Shared Virtual Memory. Later, manyother systems were implemented, for example Memnet [67℄, Mirage [84℄, Plus [42℄,Shiva [125℄, TreadMarks [113℄, Mether [135℄, Mermera [98℄, Munin [36℄ et
. (see [140℄for a detailed overview of a part of those systems). Shared Virtual Memory systemswere targeted at tightly-
oupled systems, su
h as multi
omputers or small networksof workstations (typi
ally 8 nodes, in some 
ases up to 64).To avoid the mismat
h between the stru
ture of the appli
ation and of the shareddata, stru
tured shared data models were introdu
ed [122℄. In stru
tured data models,the shared data appears to the appli
ation as a set of user-de�ned data stru
tures.In the following se
tions, we will des
ribe two stru
tured approa
hes to data sharing:shared obje
ts and tuple spa
es.
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tsStru
tured approa
hes to data sharing allow tailoring the granularity of data sharingto the appli
ation needs. Many su
h systems use the 
on
ept of a shared data-obje
tor a shared obje
t. Shared obje
ts en
apsulate shared data. They are user-de�nedabstra
t data stru
tures that 
an be a

essed by user-de�ned operations.En
apsulating shared data into obje
ts has many advantages. Sharing granularitydepends on the appli
ation stru
ture, as the unit of data sharing is a shared ob-je
t instead of a page. This ex
ludes the possibility of false sharing. Shared datais a

essed using high-level, 
omposite operations rather than low-level read/writeoperations, whi
h redu
es the 
ommuni
ation overhead. Finally, shared obje
ts allowsyn
hronizing a

esses to the shared data. The runtime system 
an take 
are that thehigh-level operations are exe
uted indivisibly. This simpli�es the programming taskas the programmer does not need to use semaphores or lo
ks [31℄.Many Distributed Shared Memory systems based on the shared obje
t model havebeen implemented. Some examples in
lude: Or
a [31℄, CRL [116℄, DiSOM [58℄, Am-ber [59℄, SAM [153℄, Agora [41℄, Clouds [148℄, GARF [147℄, Emerald [109℄, RepMI [130℄and many others.Tuple spa
eAnother stru
tured approa
h to data sharing is the 
on
ept of a tuple spa
e. This
on
ept was �rst introdu
ed in the parallel language Linda [18℄. Tuple spa
e is adistributed datastru
ture, that is a datastru
ture that 
an be modi�ed by multiplepro
esses. A tuple spa
e 
onsists of tuples � ordered sequen
es of values. There arethree operations that 
an be performed on tuples: out, in and read. Out adds atuple to the tuple spa
e. In reads a tuple and removes it from the tuple spa
e. Readreads a tuple without removing it from the tuple spa
e. Tuple spa
e is an asso
iativememory, meaning that the tuples do not have addresses but they are denoted by thevalues they 
ontain.Tuples residing in the tuple spa
e are immutable. The only way of modifying atuple is by taking it out of the tuple spa
e, modifying it in the lo
al memory of apro
essor and putting it ba
k into the tuple spa
e. This provides a natural way ofserializing operations on the tuple spa
e: if two or more pro
esses want to modify thesame tuple, only one pro
ess will su

eed in taking the tuple out of the tuple spa
e.The remaining pro
esses will blo
k until the �rst pro
ess �nishes its modi�
ationsand puts the tuple ba
k in the tuple spa
e. However, this model might be ine�
ientif tuples 
ontain large amounts of data, as in that 
ase the whole tuple needs to besent ba
k and forth.Many implementations of tuple spa
es have been developed. Besides the im-plementation in the Linda programming language, implementations for Java (Java-Spa
es [87℄ and TSpa
es [121℄), Smalltalk [132℄ and SML [156℄ exist.



5.2. BACKGROUND 107

Orca, RepMI

shipping

function
shipping

static
owner

migrating
ownership

single−writer
(primary−copy)

multiple−reader
(replication)

single−reader

multiple−writer

Munin Munin

Ivy, Linda,
CRL

Ivy TreadMarksdata

Figure 5.2: Algorithms implementing data sharing5.2.2 Algorithms implementing data sharingIn this se
tion, we will dis
uss a number of algorithms implementing shared data ab-stra
tions. Su
h algorithms 
an be divided in three 
ategories: single-reader/single-writer, multiple-readers/single-writer and multiple-readers/multiple-writers 1 [146℄ (asimilar 
lassi�
ation 
an be found in [161℄). In the single-reader/single-writer proto-
ols, only one 
opy of ea
h data item exists in the system. In the multiple-reader/*proto
ols, the data items are repli
ated, i.e. they exist in multiple 
opies. An overviewof the algorithms dis
ussed in this se
tion and example systems using those algorithmsare shown in �gure 5.2.In the single-reader/single-writer type algorithms, only one pro
essor at a time hasa 
opy of the data. We 
all su
h a pro
ess the owner of the data. It 
an be a stati
manager pro
ess (i.e., the owner of the data does not 
hange during the 
omputation)or the data might be migrated between the pro
esses.With the stati
 manager approa
h, all operations on the shared data are for-warded to the manager whi
h applies the operations on the data and sends ba
k theresults. This approa
h has two major drawba
ks. First, ea
h operation on the dataperformed by a pro
ess other than the manager requires 
ommuni
ation over the net-work. Therefore, this approa
h is suitable only for tightly-
oupled systems with lownetwork laten
ies or for appli
ations whi
h a

ess shared data infrequently. Another1The */single-writer algorithms are also known as primary-
opy algorithms
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k of the 
entral manager approa
h is the fa
t the manager will be
ome abottlene
k if a

ess to data is performed frequently. This problem 
an be alleviatedby partitioning the data and assigning a di�erent manager to ea
h partition.With data-migration, data is migrated to the pro
essor that needs to a

ess thisdata. The advantage of this approa
h over the previous one is that when the memorya

esses exhibit good lo
ality, only the �rst in a series of a

esses requires network
ommuni
ation. Subsequent memory a

esses 
an be performed lo
ally. However,this algorithm is sus
eptible to thrashing : if two pro
esses a

ess the same data itemor data items on the same memory page, the data will be transferred ba
k and forthbetween the two pro
essors. Finding the previous owner of a 
ertain data item torequest migration is also an issue. This 
an be done by broad
asting a migrationrequest to all pro
essors. An alternative solution is maintaining a manager pro
esswhi
h keeps tra
k of the data lo
ations.An important problem in all single-reader/single-writer algorithms is the inherentla
k of fault toleran
e. Sin
e only one version of ea
h data item exists in the system,if the pro
essor owning this data item 
rashes, the data is lost. Another problem isthat these algorithms 
an severely limit parallelism as only a single pro
ess at a time
an a

ess shared data.When multiple pro
essors need to a

ess the same data at the same time, repli-
ation 
an improve the system performan
e. When data is repli
ated on multiplehosts, read operations 
an be performed lo
ally and are therefore very e�
ient. How-ever, write operations be
ome more expensive. Therefore, repli
ation is a good design
hoi
e if the read/write ratio in the appli
ation is relatively large.When one of the repli
as is modi�ed, other repli
as 
an be either invalidated (i.e.removed) or updated. Updating 
an be done either by data-shipping, that is sendingthe new value of the data item (page, obje
t, depending on the sharing granularity)to all repli
as, or by fun
tion shipping, that is forwarding the operation that modi�esthe data to all repli
as and applying this operation on ea
h repli
a.The data might be either fully or partially repli
ated. In the �rst 
ase, ea
hpro
essor taking part in the 
omputation has a 
opy of the data, regardless of whetherit ever a

esses it or not. In the se
ond 
ase, only part of the pro
essors have a 
opy ofthe data. One option is to 
reate a repli
a on a 
ertain pro
essor when it �rst a

essesa 
ertain shared data item. Another option is to 
reate repli
as on pro
essors thatfrequently read 
ertain data items [31℄. Partial repli
ation saves resour
es � memoryneeded to store repli
as and network bandwidth needed to update/invalidate thoserepli
as. However, it often requires 
omplex administration proto
ols that keep tra
kof whi
h data is repli
ated on whi
h pro
essors. This problem be
omes parti
ularlydi�
ult in dynami
 systems, where pro
essors 
an join or leave the 
omputation atany time.The repli
ation proto
ols 
ome in two basi
 variants: multiple-readers/single-writer and multiple-readers/multiple-writers. With the single-writer variant, onlyone pro
ess at a time has a write-a

ess to the data. Again, we 
all this pro
ess theowner of the data. All write requests must be forwarded to the owner. The ownerupdates its lo
al 
opy and invalidates or updates other repli
as. This operation mustbe performed indivisibly. The owner 
an be either the same pro
ess throughout the
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omputation, or the ownership 
an migrate to a pro
ess that wants to performa write operation. In variants of this proto
ol, di�erent data items (pages, obje
ts)might have di�erent owners.The multiple-readers/single-writer repli
ation algorithms have a higher degree offault toleran
e than the single-reader/single-writer approa
hes. If one repli
a of thedata 
rashes, the data might still be available at other repli
as. However, if the ownerof 
ertain data 
rashes, a spe
ial re
overy phase is needed before any of the remainingpro
essors 
an perform write operations on this data.With the multiple-writers variant, ea
h pro
ess might perform write operationson its repli
a of the data. After updating the lo
al repli
a, the updates are forwardedto other repli
as. This, however, introdu
es the in
onsisten
y problem: di�erentpro
essors might see di�erent versions of the same shared data. The system musttake 
are that the updates are applied in the proper order. This order depends on the
onsisten
y model supported by the given Distributed Shared Memory system. Anoverview of 
onsisten
y models will be given in the following se
tion.The multiple-writer repli
ation algorithm also has a higher degree of fault toler-an
e than the 
entral and migrating manager approa
hes. However, the possibility of
rashes and the dynami
 
hara
teristi
s of the underlying platform introdu
e a di�-
ult problem: if a pro
essor 
rashes while performing an update, the update mightbe forwarded to only a part of the remaining pro
essors whi
h results in in
onsistentdata. If a pro
essor joins the 
omputation while another pro
essor is updating thedata, it may miss the updates performed by this pro
essor. This problem is knownas the atomi
 multi
ast problem. Atomi
 multi
ast is non-trivial to implement [165℄.5.2.3 Consisten
y modelsA 
onsisten
y model spe
i�es the behavior of the memory subsystem. Ideally, dis-tributed shared memory on a parallel ma
hine should exhibit behavior identi
al tothat of memory on a sequential ma
hine. The 
onsisten
y model observed by sequen-tial ma
hines is known as stri
t 
onsisten
y and states that:Any read on a data item x returns a value 
orresponding to the resultof the most re
ent write on x [165℄.Implementing stri
t 
onsisten
y in distributed systems, however, is impossibledue to the la
k of absolute global time on whi
h the de�nition of `most re
ent' de-pends [165℄. Therefore, more relaxed 
onsisten
y models have been designed whi
hprovide shared data semanti
s very 
lose to those of a sequential ma
hine, but arestill possible to implement: sequential 
onsisten
y [119℄ and linearizability [99℄. Eventhough possible to implement, those models were still hard to implement e�
iently,espe
ially in wide-area systems. Therefore, weaker 
onsisten
y models allowing moree�
ient implementations have been proposed. In this se
tion, we des
ribe sequential
onsisten
y, linearizability and a number of weaker models.Traditionally, 
onsisten
y models have been de�ned in terms of pro
essors op-erating on memory. In this se
tion, we dis
uss a di�erent way of spe
ifying mem-ory 
onsisten
y models: 
omputation-
entri
 
onsisten
y models. We also dis
uss
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onsisten
y � a 
omputation-
entri
 model designed spe
i�
ally for divide-and-
onquer appli
ations.None of the many existing 
onsisten
y models 
an meet the needs of all appli
a-tions � 
onsisten
y requirements are di�erent for di�erent appli
ations or even di�er-ent data items within one appli
ation. The idea of tailoring 
onsisten
y to the appli-
ation needs in order to improve performan
e was �rst proposed by David Cheritonin 1986 [62℄. Sin
e then, many systems with multiple 
onsisten
y models have beenimplemented. We provide an overview of su
h systems in this se
tion.Finally, we dis
uss 
ontinuous 
onsisten
y models, whi
h allow the programmerto quantify the amount of in
onsisten
y the appli
ation 
an tolerate. These modelsprovide another way of 
ustomizing 
onsisten
y to the appli
ation requirements.Traditional 
onsisten
y modelsThe most popular 
onsisten
y model is sequential 
onsisten
y de�ned by Lamportin [119℄. Sequential 
onsisten
y states that all pro
essors see the operations on datain the same sequential order and the operations by ea
h pro
ess appear in this se-quen
e in the order spe
i�ed by this pro
ess' program. Sequential 
onsisten
y 
loselyresembles the semanti
s of a sequential data store and is therefore easy to use. Ithas been implemented in early Distributed Shared Memory systems [123℄. However,sequential 
onsisten
y has a problem of poor performan
e, espe
ially in wide-areasystems.Linearizability [99℄ (also known as atomi
 
onsisten
y) is stronger than sequential
onsisten
y. It assumes that all operations on data re
eive a timestamp using aglobal 
lo
k with a �nite pre
ision (thus not an absolute 
lo
k as in stri
t 
onsisten
y;a Lamport 
lo
k [118℄ 
an be used for this purpose). Linearizability extends the
onditions of sequential 
onsisten
y with the requirement that if the timestamp of anoperation is smaller than the timestamp of another operation, the former operationshould pre
ede the latter operation in the operation sequen
e seen by the pro
esses.Linearizability is even more expensive to implement than sequential 
onsisten
y [28℄.Causal 
onsisten
y [104℄ is based on the notion of potential 
ausality introdu
ed byLamport in [118℄. Under 
ausal 
onsisten
y, all pro
essors must agree on the order ofoperations that are 
ausally related. Causally unrelated (
on
urrent) operations 
anbe seen in di�erent orders by di�erent pro
esses. Causal 
onsisten
y is relatively hardto implement. It requires keeping tra
k of whi
h pro
esses has seen whi
h operations.This 
an be done using ve
tor timestamps [82, 133℄. However, ve
tor-timestamp basedproto
ols require large datastru
tures when large numbers of pro
essors are used.Additionally, support for pro
essors dynami
ally joining and leaving the 
omputationmakes su
h proto
ols very 
omplex [105℄.Under PRAM 
onsisten
y [127℄, operations performed by a single pro
ess must beseen by all pro
essors in the order they were performed, while operations performedby di�erent pro
esses 
an be seen in arbitrary order. PRAM 
onsisten
y 
an beimplemented e�
iently in multipro
essor systems be
ause operations 
an be pipelined(hen
e the name: PRAM � Pipelined Random A

ess Memory). However, in dynami
systems the implementation be
omes more 
omplex, sin
e spe
ial 
are needs to be
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ated when pro
essors are joining or leavingthe 
omputation.Ca
he 
onsisten
y [94℄ (or 
oheren
e [91℄) is a relaxation of sequential 
onsisten
y.Under 
a
he 
onsisten
y, operations on ea
h memory lo
ation have to be sequentially
onsistent, as opposed to all operations. Pro
essor 
onsisten
y [94, 17℄ is a 
ombi-nation of PRAM and 
a
he 
onsisten
y: pro
essors might disagree on the order ofoperations if and only if the operations were performed by di�erent pro
essors andoperate on di�erent memory lo
ations. Operations issued by a single pro
essor mustbe seen in the order imposed by this pro
essor's program. Slow memory [127℄ is aweaker version of PRAM 
onsisten
y. It requires that operations on a single memorylo
ation performed by a single pro
essor are seen by all pro
essors in the same order.All 
onsisten
y models des
ribed so far enfor
e a spe
i�
 order of individual op-erations on the shared data. However, su
h models might be too restri
tive and tooine�
ient for many appli
ations. Weak 
onsisten
y [73℄, release 
onsisten
y [91℄ andentry 
onsisten
y [38℄ allow the programmer to group the operations on the shareddata and enfor
e ordering between the groups of operations rather than between indi-vidual operations [165℄. This is done by introdu
ing syn
hronization variables. Weak
onsisten
y introdu
es one type of operation on syn
hronization variables: syn
hro-nize(var). On invoking this operation, the shared data is syn
hronized: that is, alllo
al operations performed by the invoking pro
ess are propagated to other pro
essesand all operations performed by other pro
esses are applied to the lo
al 
opy of the in-voking pro
ess. A

esses to syn
hronization variables are sequentially 
onsistent. Re-lease 
onsisten
y distinguishes two types of syn
hronization operations: a
quire(var)and release(var). On a
quire, all operations performed by lo
al pro
esses are appliedto the lo
al 
opy. On release, lo
al operations are forwarded to other pro
esses. Entry
onsisten
y di�ers from release 
onsisten
y in that it requires that ea
h shared dataitem is asso
iated with a syn
hronization variable. On a
quire or release, only dataitems asso
iated with the syn
hronization variable are syn
hronized.Computation-
entri
 
onsisten
y modelsWhile traditional 
onsisten
y models are pro
essor-
entri
, that is, are expressed interms of pro
essors operating on a memory, 
omputation-
entri
 memory models areexpressed in terms of tasks (threads) operating on a memory [89℄. Computation-
entri
 spe
i�
ation abstra
ts away the way tasks are mapped to physi
al pro
essorsand is therefore espe
ially suitable for 
omputations is whi
h tasks are dynami
allymapped onto available pro
essors. Computation is modeled as a dire
ted a
y
li
graph (DAG) in whi
h verti
es represent tasks and edges represent data-dependen
iesbetween tasks.The 
omputation 
entri
 approa
h makes it possible to express a number of in-teresting 
onsisten
y models. One su
h model is DAG-
onsisten
y [45℄ � a 
onsis-ten
y model designed espe
ially for divide-and-
onquer appli
ations. Under DAG-
onsisten
y, tasks may see operations on shared data in di�erent orders but ea
h ofthose orders must be 
onsistent with the dependen
ies enfor
ed by the 
omputationDAG. Informally, in divide-and-
onquer terms DAG-
onsisten
y 
an be de�ned re-
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ursively in the following way: a task must see all writes its parent must have seen,plus the writes issued by the parent. A task may, but does not have to, see the writesissued by its siblings. A formal de�nition of DAG-
onsisten
y 
an be found in [45℄.DAG-
onsisten
y has been implemented in the Cilk divide-and-
onquer frame-work [46℄ using the Ba
ker algorithm [45℄ whi
h performs well on a tightly 
oupledma
hine like the CM-5, but is not suitable for wide-area systems. Moreover, Cilk'sshared memory was developed for pure divide-and-
onquer appli
ations whi
h uselarge data stru
tures, and not for appli
ations that need to share data between sib-ling tasks (su
h as bran
h-and-bound 
omputations). With the Ba
ker algorithm,updates of shared data are passed only along the edges of the exe
ution tree, but notto sibling tasks. Only sibling tasks that exe
ute on the same ma
hine 
an see ea
hother's updates. Therefore Cilk's shared memory is unsuitable for appli
ations su
has bran
h-and-bound algorithms or game-tree sear
h.Mixed 
onsisten
y modelsOne way of tailoring the 
onsisten
y 
riteria to the appli
ation needs is proposingmultiple 
onsisten
y models to 
hoose from and/or 
ombine. In su
h systems, the pro-grammer 
an 
hoose the 
onsisten
y level on per-appli
ation, per-obje
t, per-repli
aor per-a

ess basis.Hybrid 
onsisten
y [88℄, mixed 
onsisten
y [16℄ and Mether [135℄ allow the pro-grammer to 
ombine two 
onsisten
y models. Hybrid 
onsisten
y allows for strongand weak operations. Di�erent levels of 
onsisten
y 
an be mixed within one appli-
ation, but a

esses to the same data item must be of the same 
onsisten
y level.Strong operations appear to be exe
uted in some sequential order. Operations in-voked by the same pro
ess of whi
h one is strong appear to be exe
uted in the orderthey were invoked. Agrawal et al. [16℄ des
ribe mixed 
onsisten
y in whi
h 
ausal andPRAM memories are 
ombined. In this model, reads are labeled as 
ausal or PRAM.In Mether [135℄, memory 
an be a

essed in two modes: read-write mode (strongly
onsistent) and read-only mode (weakly 
onsistent). This is spe
i�ed when a pro
essmaps a shared memory segment into its address spa
e. The programmer 
an 
hooseto enfor
e 
onsisten
y at any point in the program.The designers of Mermera [98℄ argue that more levels of 
onsisten
y are neededin order to better tune the system to the needs of appli
ations. Mermera allows theprogrammer to 
hoose from four types of memory semanti
s: sequentially 
onsistent,PRAM, slow and lo
al. Lo
al 
onsisten
y is a very weak 
onsisten
y 
riterion wherewrites only have to be visible to the pro
ess that performed those writes. The 
on-sisten
y level is spe
i�ed on per a

ess basis: memory writes are labeled with their
onsisten
y level. Reads are not labeled, and the semanti
s of ea
h read is the same:the lo
al 
opy of an obje
t is returned. Di�erent 
onsisten
y levels 
an be mixedwithin one appli
ation and a

esses to one obje
t 
an have di�erent 
onsisten
y lev-els. The semanti
s of su
h mixed a

esses is as follows: sequential writes are totallyordered and this order is 
onsistent with ea
h pro
ess' program and with the infor-mation �ow through weaker writes. PRAM writes and sequential writes satisfy thePRAM order, that is the order 
onsistent with ea
h pro
ess' program. Slow, PRAM
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onsisten
y. Lo
al, slow, PRAM and sequentialwrites satisfy lo
al 
onsisten
y. Maya [15℄ also supports four 
onsisten
y models: se-quentially 
onsistent, 
ausal, PRAM and entry 
onsisten
y [38℄. Contrary to othersystems, however, Maya does not allow mixing 
onsisten
y models. The programmermust 
hoose one 
onsisten
y 
riterion for the whole appli
ation.GARF [147℄ is an obje
t-oriented framework whi
h supports �ve 
onsisten
y mod-els: slow, PRAM, 
ausal, sequential and linearizability. With GARF, the programmer�rst des
ribes appli
ation fun
tionalities using passive data obje
ts. This is done in a
entralized and sequential environment. The next step is adapting the appli
ation tothe distributed environment. Data obje
ts are dynami
ally bound to en
apsulator ob-je
ts whi
h 
ontrol how data obje
ts send and re
eive invo
ations, and mailer obje
tswhi
h 
ontrol the 
ommuni
ation between en
apsulators. GARF provides a libraryof en
apsulator and mailer obje
ts. En
apsulator obje
ts for handling asyn
hrony(asyn
hronous invo
ations), 
on
urren
y 
ontrol and repli
ation (a
tive and passive)are provided. Among mailer 
lasses provided by GARF, some represent 
onsisten
y
riteria � those are the 
lasses extending the M
ast (multi
ast) 
lass. GARF sup-ports the following types of multi
ast: slow, PRAM, 
ausal, atomi
, sequential andCAtomi
 (whi
h 
orresponds to linearizability).Continuous 
onsisten
y modelsIn some systems, 
onsisten
y requirements are expressed as the maximal allowed dis-tan
e between the result observed (read) by the appli
ation and the ideal result � theresult that would be observed with strong 
onsisten
y (e.g. sequential 
onsisten
y).This approa
h is 
alled 
ontinuous 
onsisten
y [186℄, be
ause it explores the 
ontin-uum between strong 
onsisten
y, where the di�eren
e between the observed and idealresult is zero, and optimisti
 
onsisten
y, where this di�eren
e is unbounded.With N-ignorant transa
tions [117℄, the number of updates missed by a repli
a isbounded � N is a user-de�ned parameter and an N-ignorant transa
tion is a transa
-tion that may be ignorant of the results of at most N prior transa
tions.With quasi-
opies [24℄ the appli
ation programmer 
an de�ne how mu
h a se
-ondary 
opy, 
alled a quasi-
opy in this 
ontext, 
an diverge from the primary 
opy.The programmer 
an 
hoose from three types of 
onsisten
y 
onditions: delay 
ondi-tion spe
i�es how mu
h time the quasi-
opy 
an lag behind the primary 
opy. Version
ondition de�nes how many updates the quasi-
opy 
an miss. This 
riterion is similarto the N parameter in N-ignorant transa
tions. Arithmeti
 
ondition spe
i�es howmu
h the numeri
al values of the quasi-
opy and the primary-
opy 
an di�er (forobje
ts with numeri
al values).Beehive [158℄ introdu
es delta 
onsisten
y � a 
onsisten
y 
riterion similar to thedelay 
ondition of quasi 
opies. With delta 
onsisten
y a read returns a value thatwas produ
ed at most delta time units pre
eding the read. Delta is an appli
ation-spe
i�ed parameter.Timed 
onsisten
y [170℄ requires that if the time of a write is t, the value written bythis operation must be visible to all sites in the distributed system by time t+delta,where delta is an appli
ation spe
i�
 parameter. This 
riterion is similar to delay
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ondition of quasi-
opies and to delta 
onsisten
y.InterWeave [60℄ supports the notion of a re
ent enough 
opy. Re
ent enough 
omesin six �avours: full 
oheren
e � always obtain the most re
ent version of the obje
tand ex
lude any 
on
urrent writers, null 
oheren
e � always a

ept the 
urrently
a
hed version, delta 
oheren
e guarantees that the obje
t is no more than x versionsout of date (similar to N-ignorant transa
tions and version 
ondition in quasi-
opies),temporal 
oheren
e guarantees that the obje
t is no more than x time units out of date(similar to delay 
ondition of quasi-
opies, delta 
onsisten
y and timed 
onsisten
y),�nally di�-based 
oheren
e guarantees that no more than x% of the obje
t is out ofdate.The most general approa
h was proposed by Yu and Vadhat in [186℄, and wedes
ribe this approa
h in more detail here. In their 
onit-based 
ontinuous 
onsisten
ymodel, appli
ations 
an de�ne their 
onsisten
y requirements as 
onits (
onsisten
yunits). Formally, a 
onit is a fun
tion that maps the shared data state to a realnumber. Ea
h read depends on a number of 
onits and ea
h write a�e
ts a numberof 
onits. Ea
h 
onit has a 
onsisten
y level, quanti�ed along a three-dimensionalve
tor: Consisten
y = (numeri
al error, order error, staleness)Numeri
al error is the di�eren
e between the observed value of a 
onit and its idealvalue if strong 
onsisten
y was enfor
ed. Order error is the weighted out-of-orderwrites (i.e., writes that might be rolled ba
k and applied in a di�erent order). Stal-eness is the age of the oldest write a�e
ting the 
onit that has not been seen bythe lo
al repli
a. For ea
h read, the appli
ation 
an spe
ify the required 
onsisten
ylevel of ea
h 
onit the read depends on. For ea
h write, the appli
ation spe
i�es howit a�e
ts ea
h 
onit, that is, how it 
hanges the value of ea
h 
onit, and what isits order weight with respe
t to ea
h 
onit. The 
onit-based 
onsisten
y model wasimplemented in TACT. TACT exports a simple API for de�ning 
onsisten
y require-ments: the DependonConit() fun
tion to de
lare the required 
onsisten
y level andthe A�e
tConit() fun
tion to tell the system how a write a�e
ts ea
h 
onit.Note that, although 
onits were de�ned as fun
tions mapping the shared datastate to real numbers, the programmer does not need to de�ne su
h fun
tions. It isenough to spe
ify how ea
h write a�e
ts ea
h 
onit and how ea
h read depends on
onits.The 
onit-based model elegantly uni�es all the models des
ribed in this se
tion.Timed 
onsisten
y 
an be expressed using the staleness metri
. Version and di�-based
onsisten
y 
an be expressed using the numeri
al error metri
. Also, traditional 
on-sisten
y models (e.g., sequential 
onsisten
y, 
ausal 
onsisten
y et
.) 
an be expressedin 
onit theory. However, it requires 
onits to be dynami
ally de�ned (one 
onit pera

ess) and the number of 
onits 
an be quite large, making the implementation im-pra
ti
al. Moreover, 
onit-based 
onsisten
y was not designed with high-performan
eappli
ations in mind, but appli
ations su
h as message boards or airline reservationsystems. The proto
ols used in TACT are heavy-weight and less suitable for highperforman
e appli
ations.
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rease the appli
ability of the Satin framework, we extended the divide-and-
onquer model with a shared-data abstra
tion. We 
hose a shared obje
ts modelsin
e it �ts naturally into obje
t-oriented Java and it is possible to implement ite�
iently in distributed systems [31℄. In the rest of this thesis, we will refer tothe divide-and-
onquer model extended with shared obje
ts as the divide-and-sharemodel.Shared obje
ts are passed by referen
e to all or part of the divide-and-
onquertasks. Updates performed on a shared obje
t are visible to all tasks holding a referen
eto this obje
t. Shared obje
ts are automati
ally repli
ated on pro
essors that exe
utetasks a

essing those obje
ts. We use repli
ation on demand: a repli
a is 
reated onthe �rst a

ess to the obje
t.Repli
ation is implemented using an update proto
ol with fun
tion shipping:methods that modify the state of the obje
ts are forwarded to other pro
essors, whi
happly them on their lo
al repli
as, other methods are exe
uted only lo
ally. However,distinguishing between the two types of methods is the responsibility of the program-mer. The programmer marks part of the methods in the shared obje
t as sharedmethods, and those methods are propagated to other repli
as. If a method is notmarked as shared, it will not be propagated even if it 
hanges the obje
t state. Auto-mati
ally distinguishing between lo
al and shared methods is very 
omplex and in
urs
onsiderable runtime overhead. Due to Java's support for inheritan
e, the read-writeanalysis of methods would have to be performed at runtime (as explained in [130℄)whi
h 
auses performan
e overhead. Also, many restri
tions have to be imposed onthe use of shared obje
ts to prevent the programmer from 
hanging the obje
t statein an un
ontrolled way. For example, shared obje
t �elds 
annot be a

essed dire
tly(only through methods), shared obje
t methods 
annot return an obje
t referen
e,stati
 �elds in shared obje
ts are disallowed, et
. [130℄.Be
ause distinguishing between shared and lo
al methods is the responsibilityof the programmer, the runtime system 
annot guarantee that repli
as will remain
onsistent. However, implementing strong 
onsisten
y models, su
h as sequential 
on-sisten
y is not e�
ient in grid environments anyway. Moreover, many appli
ations donot need strong 
onsisten
y guarantees. For example, bran
h-and-bound appli
ationstypi
ally do not need any 
onsisten
y guarantees, as the shared data is used to opti-mize the sear
h pro
ess. Other appli
ations need only very weak guarantees. For su
happli
ations, proto
ols implementing strong 
onsisten
y would impose an unne
essaryperforman
e penalty. Finally, having expli
itly in
onsistent repli
as 
an be useful forsome appli
ations. One example is a repli
ated transposition table: repli
as may 
on-tain di�erent numbers of entries depending on the amount of memory available on apro
essor.Therefore, Satin's shared obje
ts provide a user-
ontrolled, relaxed 
onsisten
ymodel 
alled guard 
onsisten
y. Under guard 
onsisten
y, the user 
an de�ne theappli
ation 
onsisten
y requirements using guard fun
tions. Guard fun
tions are as-so
iated with divide-and-
onquer tasks. Con
eptually, a guard fun
tion is exe
utedbefore ea
h divide-and-
onquer task. A guard 
he
ks the state of the shared obje
ts
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essed by the task and returns true if those obje
ts are in a 
orre
t state, or falseotherwise. Using guards, the programmer 
an enfor
e only as mu
h 
onsisten
y asthe appli
ation really needs.Not every 
onsisten
y 
riterion 
an be implemented using guards. The 
riteria 
an-not be stronger than DAG-
onsisten
y. As mentioned above, under DAG-
onsisten
y,a 
hild task must see updates that its parent has seen, as well as updates made by theparent. It may but need not see updates made by its siblings. A guard has exa
tlythe same parameter list as the fun
tion implementing the divide-and-
onquer task.Therefore, the guard has a

ess to the shared obje
ts used by this task and to thetask parameters whi
h depend on the state of the parent that has spawned that task.Therefore the guard 
an ensure that the state seen by a task is 
onsistent with thestate seen by its parent.The runtime system allows repli
as to be
ome in
onsistent as long as guards aresatis�ed: the updates are propagated to remote repli
as on a best-e�ort basis. Theruntime system does not guarantee that the updates will not be lost or dupli
ated.Updates may be applied in a di�erent order on di�erent repli
as. This makes usings
alable but unreliable broad
asting te
hniques su
h as gossiping possible. Also, nodesdynami
ally joining or leaving the 
omputation are supported. When a guard is notsatis�ed, the runtime system invalidates the lo
al repli
as of shared obje
ts used bythe task and fet
hes a 
onsistent repli
a from another pro
essor. This will be explainedin more detail in se
tion 5.5.Operations on shared obje
ts are exe
uted atomi
ally. The runtime system guar-antees that shared obje
t operations do not run 
on
urrently with ea
h other or withdivide-and-
onquer tasks. An operation performed by a task be
omes visible to othertasks only when the system rea
hes a so-
alled safe point : when a task is 
reating(spawning) subtasks, when a task is waiting for its subtasks to �nish, or when atask 
ompletes. Tasks 
an also expli
itly poll for shared obje
t updates. This makesthe model 
lean and easy to use, as the programmer does not need to use lo
ks andsemaphores to syn
hronize a

ess to shared data.5.4 Programming interfa
e and examplesIn this se
tion, we des
ribe the shared obje
ts programming interfa
e and use simpleexamples to demonstrate how to write parallel appli
ations with the divide-and-sharemodel.To de�ne a shared obje
t in Satin, the programmer has to write a 
lass thatextends the spe
ial 
lass satin.so.SharedObje
t. The programmer also needs to usethe spe
ial interfa
e satin.so.SharedMethodsInterfa
e to mark shared methods. Thisme
hanism is similar to the use of the satin.Spawnable interfa
e: shared methods mustbe de
lared in an interfa
e that extends the empty satin.so.SharedMethodsInterfa
e.Figures 5.3 and 5.4 show an example appli
ation that uses shared obje
ts: theTraveling Salesman Problem (TSP). TSP sear
hes for the shortest path through a setof 
ities. Figure 5.3 shows how the shared obje
ts are de
lared. TSP uses two sharedobje
ts: the Min (line 7) obje
t holds the length of the shortest path found so far and
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e MinInte r fa
e extends s a t i n . so . SharedMethodsInter fa
e {2 :3 : publi
 void s e t ( int va l ) ;4 :5 : }6 :7 : f inal 
lass Min extends s a t i n . so . SharedObje
t8 : implements MinInte r fa
e {9 :1 0 : int va l = In t e g e r .MAX_VALUE;11 :1 2 : publi
 void s e t ( int new_val ) {1 3 : i f ( new_val < va l ) va l = new_val ;1 4 : }15 :1 6 : publi
 int get ( ) {1 7 : return va l ;1 8 : }19 :2 0 : }21 :2 2 : f inal 
lass DistTable extends s a t i n . so . SharedObje
t {2 3 : / � . . . � /24 : } Figure 5.3: De
laring shared obje
ts in the TSP appli
ationthe DistTable (line 22) obje
t 
ontains a table with distan
es between ea
h pair ofthe 
ities. The Min obje
t has two methods: get() and set(). Set() is de
lared in theMinInterfa
e (line 1), whi
h extends the spe
ial satin.so.SharedMethodsInterfa
e andis therefore a shared method. Get() is not de
lared in this interfa
e and is thereforea lo
al method. The DistTable is a 
onstant obje
t � it does not 
hange during theexe
ution. Therefore, all its methods are lo
al (not shown).Figure 5.4 shows how the shared obje
ts are used in the appli
ation. The tsp()method (lines 3,10) is a spawnable method, sin
e it is de
lared in the TspInterfa
e(line 1) whi
h extends the satin.Spawnable interfa
e. All shared obje
ts a

essed bya divide-and-
onquer task must be passed to this task as parameters. Therefore tsp()has the Min and DistTable obje
ts in its parameter list. In line 22, the tsp() fun
tionupdates the Min obje
t by 
alling its set() method. Sin
e set() is a shared method,this invo
ation will be forwarded to other repli
as of the obje
t.Shared obje
ts are always passed by-referen
e, unlike `normal' parameters in Satinwhi
h 
an be passed by-referen
e or by-value depending on whether the task is exe-
uted lo
ally or remotely. When a task is exe
uted remotely, only the shared obje
treferen
e is transferred to the remote ma
hine, instead of a 
opy of the obje
t. Thetask will then a

ess the repli
a of the obje
t present at the remote ma
hine. Ifne
essary, a new repli
a will be 
reated.For ea
h spawnable fun
tion, the programmer may de�ne a guard fun
tion, in thesame 
lass. The name of the guard fun
tion is `guard_<spawnable_fun
tion>'. Itmust have exa
tly the same parameter list as the spawnable fun
tion and return a
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 interfa
e TspInte r fa
e extends s a t i n . Spawnable {2 :3 : publi
 int tsp ( int hops , byte [ ℄ path ,4 : int l en , Min min , DistTable d i s t ) ;5 :6 : }7 :8 : publi
 
lass Tsp extends s a t i n . Sat inObje
t implements TspInte r fa
e {9 :1 0 : publi
 int tsp ( int hops , byte [ ℄ path ,1 1 : int l en , Min min , DistTable d i s t ) {12 :1 3 : int [ ℄ mins = new int [NRTOWNS℄ ;14 :1 5 : /� use the shared ob j e 
 t to genera te a 
 u t o f f �/1 6 : i f ( l en >= min . get ( ) ) {1 7 : return l en ;1 8 : }19 :2 0 : /�update minimum�/2 1 : i f ( hops == NrTowns ) {2 2 : min . s e t ( l en ) ;2 3 : return l en ;2 4 : }25 :2 6 : for ( int 
 i t y : getCitiesNotOn ( path ) ) {2 7 : /� spawn a new task f o r ea
h 
 i t y not on i n i t i a l path �/2 8 : mins [ i ++℄ = tsp ( hops+1, extendPath ( path , 
 i t y ) ,2 9 : l en + d i s t . ge tDi s t ( path [ path . l ength �1℄ , 
 i t y ) ,3 0 : min , d i s t ) ;3 1 : }3 2 : syn
 ( ) ;33 :3 4 : /� r e turn the s h o r t e s t route �/3 5 : return getMinimum(mins ) ;3 6 : }37 :3 8 : publi
 stat i
 void main ( St r ing args [ ℄ ) {39 :4 0 : Min min = new Min ( ) ;4 1 : DistTable d i s t = new DistTable ( ) ;4 2 : Tsp tsp = new Tsp ( ) ;4 3 : int r e s u l t = tsp . tsp ( 0 , new byte [ 0 ℄ , 0 , min , d i s t ) ;4 4 : tsp . syn
 ( ) ;4 5 : System . out . p r i n t l n ( ` ` Shor t e s t path : ' ' + r e s u l t ) ;46 :4 7 : }48 : } Figure 5.4: Using shared obje
ts in the TSP appli
ation
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e TSP does not need any 
onsisten
y guarantees, we use a di�erent appli
ationas an example: the Barnes-Hut N-body simulation. This appli
ation simulates thebehavior of N bodies under in�uen
e of for
es (e.g., gravitational or ele
trostati
).The pseudo-
ode for this appli
ation is shown in �gures 5.5 and 5.6. The positions ofall bodies are stored in a shared obje
t Bodies. Figure 5.5 shows the de
laration of thisobje
t. This obje
t 
ontains the positions and masses of all bodies (bodyArray, line11) and an o
tagonal tree whi
h represents the spa
e the bodies are in (bodyTreeRoot,line12).Figure 5.6 shows how the shared obje
t is used. The appli
ation performs a numberof iterations. At the end of ea
h iteration, the root task updates the positions of thebodies and the body tree (�gure 5.6, line 52). Before a pro
essor starts exe
uting atask belonging to a 
ertain iteration, it has to make sure that it re
eived the updatesbelonging to the previous iteration, that is, it 
he
ks if its shared obje
t repli
a is
onsistent with the repli
a a

essed by the root task. This is done by means of a guardfun
tion. The guard fun
tion (guard_
omputeFor
es()) is shown in �gure 5.6, line 35.Its signature is identi
al to the signature of the spawnable fun
tion (
omputeFor
es(),lines 3,12) ex
ept for the return type.Be
ause shared obje
t invo
ations are serialized and sent over the network toremote pro
essors, all the parameters of shared methods must be either of basi
 typesor must be serializable. Also shared obje
ts themselves must be serializable, be
ausethey are sent to remote pro
essors while 
reating new repli
as. This is, however,ensured by inheriting from the satin.so.SharedObje
t 
lass whi
h is serializable (inJava, all sub
lasses of a serializable 
lass are serializable as well). The programmer isallowed to use standard Java serialization me
hanisms, for example he 
an provide hisown serialization and deserialization methods: readObje
t() and writeObje
t(). Also,the keyword transient 
an be used to de
lare that 
ertain �elds should not be sentover the network. This me
hanism 
an be used to de
rease the amount of data sent.For example, in Barnes-Hut, the shared obje
t Bodies 
ontains not only the positionsof the bodies, but also the body tree. Sending the entire body tree is very expensive,while it 
an be reprodu
ed using the body positions. Therefore, the programmer 
ande
lare the body tree as transient and write a readObje
t() method whi
h 
reates thebody tree after reading the positions of the bodies (�gure 5.5, line 26).5.5 ImplementationWe have extended the Satin byte
ode rewriter and the Satin runtime system to sup-port shared obje
ts. The byte
ode rewriter sear
hes for interfa
es extending thespe
ial satin.so.SharedMethodsInterfa
e. It generates the ne
essary 
ommuni
ation
ode for all methods found in su
h interfa
es (shared methods).Unlike the implementation of Java RMI or RepMI [130℄, we do not use stubs :spe
ial proxy obje
ts through whi
h all a

esses to shared obje
ts must go. Instead,the Satin byte
ode rewriter rewrites the shared methods in su
h a way that before
alling the method lo
ally, it is �rst marshaled (i.e., its identi�er and parameters)
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1 : publi
 interfa
e Bod i e s I n t e r f a 
 e2 : extends s a t i n . so . SharedMethodsInter fa
e {3 :4 : publi
 void update ( L inkedLi s t r e s u l t s , int i t e r a t i o n ) ;5 :6 : }7 :8 : publi
 
lass Bodies extends s a t i n . so . SharedObje
t9 : implements Bod i e s I n t e r f a 
 e {10 :1 1 : Body [ ℄ bodyArray ;1 2 : transient BodyTreeNode bodyTreeRoot ;1 3 : publi
 int i t e r a t i o n ;14 :1 5 : / � . . . � /16 :1 7 : publi
 void update ( L inkedLi s t r e s u l t s , int i t e r a t i o n ) {18 :1 9 : this . i t e r a t i o n = i t e r a t i o n ;20 :2 1 : /�update the body array and the body t r e e �/22 :2 3 : }24 :2 5 : /� r e d e f i n e standard d e s e r i a l i z a t i o n method�/2 6 : private void readObje
t ( java . i o . Obje
tInputStream in )2 7 : throws java . i o . IOEx
eption , ClassNotFoundEx
eption {28 :2 9 : /� s e t a l l non�t r a n s i e n t f i e l d s �/3 0 : in . defaultReadObje
t ( ) ;31 :3 2 : /� r ebu i l d the body t r e e us ing the bodyArray �/3 3 : bodyTreeRoot = buldBodyTree ( bodyArray ) ;3 4 : }35 : } Figure 5.5: De
laring a shared obje
t in the Barnes-Hut appli
ation
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 interfa
e BarnesHutInte r fa
e extends s a t i n . Spawnable {2 :3 : publi
 LinkedLi s t 
omputeFor
es (byte [ ℄ nodeId ,4 : int i t e r a t i o n , Bodies bod i e s ) ;5 :6 : }7 :8 : publi
 
lass BarnesHut extends s a t i n . Sat inObje
t9 : implements BarnesHutInte r fa
e {10 :1 1 : /� spawnable f un
 t i on �/1 2 : publi
 LinkedLi s t 
omputeFor
es (byte [ ℄ nodeId ,1 3 : int i t e r a t i o n , Bodies bod i e s ) {14 :1 5 : L inkedLi s t r e s [ ℄ = new LinkedLi s t [ 8 ℄ ;1 6 : BodyTreeNode treeNode = bod ie s . f indTreeNode ( nodeId ) ;17 :1 8 : i f ( treeNode . 
h i l d r en = null ) {1 9 : /� l e a f node , do s equen t i a l 
omputation �/2 0 : return treeNode . 
omputeFor
esSeq ( bod i e s ) ;2 1 : } else {2 2 : for ( int i = 0 ; i < 8 ; i ++) {2 3 : i f ( treeNode . 
h i l d r en [ i ℄ ! = null ) {2 4 : /�spawn 
h i l d tasks �/2 5 : byte [ ℄ newNodeId = 
reateNewNodeId ( nodeId , i ) ;2 6 : r e s [ i ℄ = 
omputeFor
es ( newNodeId , i t e r a t i o n , bod i e s ) ;2 7 : }2 8 : }2 9 : syn
 ( ) ;3 0 : return 
ombineResults ( r e s ) ;3 1 : }3 2 : }33 :3 4 : /� guard fun
 t i on �/3 5 : publi
 boolean guard_
omputeFor
es(byte [ ℄ nodeId ,3 6 : int i t e r a t i o n , Bodies bod i e s ) {37 :3 8 : return ( bod i e s . i t e r a t i o n+1 == i t e r a t i o n ) ;39 :4 0 : }41 :4 2 : /�main fun
 t i on , in whi
h the body p o s i t i o n s are updated �/4 3 : publi
 stat i
 void main ( St r ing [ ℄ a rg s ) {4 4 : BarnesHut barnesHut = new BarnesHut ( ) ;4 5 : Bodies bod i e s = new Bodies (NUMBODIES) ;4 6 : for ( int i t e r a t i o n = 0 ; i t e r a t i o n < ITERATIONS ; i t e r a t i o n ++) {4 7 : /� spawn�/4 8 : L inkedLi s t r e s u l t s = barnesHut . 
omputeFor
es ( rootNodeId ,4 9 : i t e r a t i o n , bod i e s ) ;5 0 : }5 1 : syn
 ( ) ;5 2 : bod i e s . update ( r e s u l t s , i t e r a t i o n ) ;5 3 : }54 : }Figure 5.6: Using a guard fun
tion to enfor
e shared obje
t 
onsisten
y in Barnes-Hut
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as. The advantage of this solution is that the programmer
an a

ess the �elds of a shared obje
t dire
tly whi
h makes the programming modelmore �exible and easy to use. With stubs, the shared obje
ts 
ould only be a

essedthrough methods. A disadvantage is that shared obje
t referen
es must be handled ina spe
ial way. With RMI and RepMI stubs serve as obje
t referen
es. Stubs 
ontainspe
ial serialization and deserialization routines whi
h take 
are that after being sentto a remote ma
hine, the stub points to the right (repli
a of the) obje
t. Sin
e we donot use stubs, the Satin runtime system must sear
h for shared obje
t referen
es in thedata stru
tures sent to remote ma
hines, and ensure that ea
h su
h referen
e pointsto the right repli
a on the remote ma
hine. This 
ompli
ates the implementationof the runtime system. Currently, we restri
t the way shared obje
t referen
es 
anbe used: shared obje
ts 
annot be passed as parameters of shared methods of othershared obje
ts. Shared obje
ts 
annot have �elds of the SharedObje
t type. Creatingdata stru
tures (su
h as arrays, graphs) with shared obje
t referen
es and passingthem as parameters to spawnable methods is also forbidden. Shared obje
ts must bein
luded expli
itly in the parameter list of a spawnable method. In the future, wewant to extend the Satin byte
ode rewriter and runtime system to handle also moreadvan
ed usages of shared obje
t referen
es.Repli
as of shared obje
ts are 
reated in the following way. If a pro
essor re
eivesa task with a shared obje
t as a parameter, it 
he
ks if it has a repli
a of this obje
t.If it does not have the repli
a, it 
opies the obje
t from the ma
hine it re
eived thetask from. This way of 
reating repli
as �ts the open world model well: a pro
essor
an join the 
omputation at any moment and re
eives up-to-date repli
as of all sharedobje
ts it needs.Updates to shared obje
ts are forwarded to remote repli
as asyn
hronously. Wedo not try to prevent updates from getting lost or being dupli
ated. We do usereliable 
ommuni
ation, but sin
e pro
essors 
an join or leave the 
omputation at anymoment, also while a broad
ast takes pla
e, a pro
essor 
an miss an update or re
eiveit twi
e. The updates may also arrive in a di�erent order at di�erent ma
hines.Guard 
onsisten
y is implemented in the following way. Con
eptually, a guardfun
tion is evaluated for ea
h task (if a guard fun
tion is de�ned). The implementa-tion, however, 
an make an important optimization. The Satin runtime system onlyneeds to evaluate guards for remote tasks whi
h were obtained from other ma
hines.This approa
h 
an be used be
ause the strongest 
onsisten
y model a divide-and-
onquer appli
ation may need is DAG-
onsisten
y. When a parent and 
hild tasksare exe
uted on the same ma
hine, if a shared obje
t was in a 
onsistent state whenthe parent was exe
uted, it will also be 
onsistent when the 
hild is exe
uted. Thus,it is su�
ient to 
he
k the 
onsisten
y of shared obje
ts for remote tasks.If a guard evaluates to false, the following a
tions are taken. First the systemwaits a 
ertain amount of time for late updates to arrive. If after this time the guardstill evaluates to false, the runtime system 
onta
ts the pro
essor from whi
h the taskwas re
eived and requests the repli
as of the shared obje
ts used by this task. Thema
hine from whi
h a task was re
eived is the ma
hine on whi
h the parent of thistask was exe
uted. So, this ma
hine 
ertainly 
ontains repli
as of shared obje
ts thatare 
onsistent for this task.
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ationsIn this se
tion, we will des
ribe our experien
es with programming grid appli
ationsusing the divide-and-share model. For ea
h of the appli
ations, we also dis
uss if itis possible to program it in a pure divide-and-
onquer style (i.e., without the shareddata abstra
tion). For the appli
ations that 
an be implemented without a shareddata abstra
tion, we dis
uss the bene�ts of using shared obje
ts. Performan
e resultswill be given in se
tion 5.7.5.6.1 Traveling Salesman ProblemThe Traveling Salesman Problem (TSP) appli
ation 
omputes the shortest path througha set of 
ities. Ea
h 
ity should be visited exa
tly on
e. We use a bran
h-and-boundalgorithm whi
h re
ursively sear
hes all possible paths and prunes large parts of thesear
h spa
e by maintaining a global variable 
ontaining the length of the shortestpath found so far. If the length of a partial path is bigger than the 
urrent minimallength, this path is not expanded further and a part of the sear
h spa
e is pruned.The implementation of TSP in Satin is straightforward (see �gures 5.3 and 5.4).A new task is spawned for ea
h partial path. The global minimum is implementedas a shared obje
t. Also the stati
 datastru
ture 
ontaining the distan
es betweenall 
ities is implemented as a shared obje
t to redu
e 
ommuni
ation overhead. Theshared obje
t does not need to be 
onsistent to ensure the 
orre
tness of the algorithm.However, delays in update propagation may lead to sear
h overhead.Implementing TSP in a pure divide-and-
onquer style, that is, without a shareddata extension, is possible but ine�
ient, be
ause the possibility of pruning parts ofthe sear
h spa
e is very limited. Below a 
ertain depth in the sear
h tree, subtreesare evaluated sequentially and within those subtrees sharing of the minimum valueand pruning is possible. However, solutions 
annot be propagated between thosesubtrees. This leads to enormous sear
h overhead and slows down the exe
ution ofthe program by a fa
tor of 100 or even 1000, depending on the problem size and thenumber of pro
essors used. Using the Younger Brothers Wait Con
ept (YBWC) [81℄
an improve the performan
e. With YBWC, the se
ond and subsequent subproblemsare not spawned until the �rst subproblem is �nished. The result returned by the �rstsubproblem is passed to the subsequent subproblems and is likely to 
ause pruningin those subproblems. This te
hnique redu
es the sear
h overhead but also de
reasesthe amount of parallelism and 
auses load imbalan
e. Therefore, a pure divide-and-
onquer version of TSP with YBWC optimization is still around 40% slower than thedivide-and-share version.5.6.2 Lo
usRouteLo
usRoute is a VLSI standard 
ell router. It routes wires between endpoints so asto minimize the total area of the layout. To minimize the area, the algorithm tries toroute wires through regions (routing 
ells) that have few other wires running throughthem. It 
al
ulates a 
ost fun
tion for ea
h route: the number of wires in the routing
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ells the route passes, and uses the route with the lowest 
ost. The total 
ost of the
ir
uit is the sum of the number of wires running through ea
h routing 
ell. Be
ausethe order of pla
ement of the wires a�e
ts the total 
ost, the program performs anumber of iterations. On every iteration ex
ept the �rst one, ea
h wire is `ripped out'and re-routed. The Lo
usRoute appli
ation is a part of the SPLASH suite [157, 182℄.Lo
usRoute was implemented in Satin by re
ursively splitting the set of wires intotwo subsets. The subsets are routed in parallel. A shared obje
t is used for storingthe 
ost array - a data stru
ture that keeps tra
k of the number of wires runningthrough ea
h routing 
ell in the 
ir
uit. The data need not be 
onsistent. However,a delay in update propagation may diminish the quality of the resulting 
ir
uit.Implementing Lo
usRoute in a pure divide-and-
onquer style is not possible.Without a shared data abstra
tion it is not possible to implement the 
ost arraydata stru
ture on whi
h the pla
ement of wires depends.5.6.3 Barnes-Hut N-body simulationBarnes-Hut simulates the evolution of a large set of bodies under the in�uen
e offor
es, for example gravitational or ele
trostati
 for
es. The evolution of N bodiesis simulated in iterations of dis
rete time steps. If all pairwise intera
tions betweenbodies were 
omputed, the 
omplexity of the algorithm would be O(N3). The Barnes-Hut algorithm redu
es this 
omplexity by approximating far away groups of bodiesby a single body at the 
enter of the mass of the group of bodies. The pre
ision fa
tortheta indi
ates if a group of bodies is far enough to use this optimization. With asmall theta the algorithm is faster while with a big theta it is more a

urate. For thepurpose of this optimization, the simulated bodies are organized in a tree stru
turethat represents the spa
e the bodies are in. The root node represents the whole spa
e,its 
hildren the subspa
es of this spa
e, et
. For ea
h body, the algorithm traversesthe body tree. If a body tree node is far away from the given body, all bodies in thisnode are approximated with a large body in the 
enter of the node and the for
e is
omputed. After 
omputing for
es for all bodies, the positions of the bodies and thebody tree are updated.In the Satin implementation of the algorithm, a new task is spawned for ea
h nodein the body tree. The task 
al
ulates for
es for all bodies 
ontained in this node. Thepositions of the bodies and the tree node are stored in a shared obje
t, so that thisenormous data stru
ture does not have to be sent over the network ea
h time a taskis exe
uted remotely. The shared obje
t is updated at the end of ea
h iteration. Theappli
ation does have 
onsisten
y 
onstraints: the updates must be propagated to apro
essor before it 
an start working on the next iteration. The 
onsisten
y of thedata is ensured by means of guards, as des
ribed above (see �gure 5.6).The Barnes-Hut appli
ation 
an be also implemented in a pure divide-and-
onquerstyle. In that 
ase, the positions of the bodies and the body tree have to be passedas task parameters. This means, however, that the body tree has to be sent over thenetwork ea
h time a task is stolen, whi
h typi
ally is thousands to tens of thousandstimes during the appli
ation run. This would 
ause signi�
ant overhead, as the bodytree is a large data stru
ture. The amount of data sent over the network 
an be
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reased by passing only a ne
essary tree instead of the full body tree as a parameter.A ne
essary tree 
ontains only those parts of the body tree that are needed for thebodies in the task's part of the tree. However, even with this optimization, the amountof 
ommuni
ation in the pure divide-and-
onquer version is still larger than in thedivide-and-share version.5.6.4 SAT solverThe satis�ability problem (SAT), that is the problem of de
iding whether a givenboolean formula is satis�able, is an important NP-
omplete problem. The solution ofa SAT problem is either a boolean variable assignment that makes the given formulatrue, or the result `unsatis�able' meaning that no su
h assignment exists. Solvinga SAT problem requires a systemati
 sear
h over a potentially huge solution spa
e.Various te
hniques have been developed to make this sear
h more e�
ient for pra
ti
alproblems, but it is inherently di�
ult. Satis�ability solvers are 
ommonly used inindustry to verify the 
orre
tness of 
omplex digital 
ir
uits, su
h as out-of-orderexe
ution units in modern pro
essors.The SAT solver used for this thesis is based on SAT4J [6℄, a reimplementationin Java of MiniSAT [75℄. Both MiniSAT and SAT4J are `industry strength' solvers,that are 
ompetitive with other state-of-the-art implementations. The solver uses aba
ktra
king sear
h that spe
ulatively assigns boolean values to variables until theproblem is satis�ed or a 
on�i
t is en
ountered. Upon a 
on�i
t the solver ba
ktra
ks.Parallelizing SAT4J with Satin was relatively easy. For ea
h spe
ulative assignmenta task is spawned so that alternative assignments are evaluated in parallel.A 
hallenging issue in parallelizing SAT solvers arises from the fa
t that it is hard topredi
t how mu
h exe
ution time is needed to solve a spawned subproblem. For somesubproblems, the 
osts of spawning may even ex
eed the exe
ution time. Therefore, inour implementation we use the approa
h taken in the GridSAT solver [64℄: ea
h task�rst performs a 
ertain amount of sequential sear
h before splitting up the remainingsear
h problem. This guarantees that only `hard' tasks will be split.SAT solvers often implement an iterative strategy to go down the sear
h tree.The purpose of this is to avoid spending too mu
h time in very deep subtrees thatmight have been 
ut o� more easily if an alternative bran
h was 
hosen earlier. Insequential SAT solvers, this 
an easily be implemented by 
hoosing a 
ertain bound onthe total number of assignment 
on�i
ts found, and in
reasing that bound graduallyby a 
ertain fa
tor. However, implementing a similar 
on�i
t bound with a parallelversion is harder, sin
e without 
ommuni
ation, a parti
ular bran
h does not knowhow many 
on�i
ts are generated in other bran
hes, and how the 
on�i
ts add upglobally. It is possible to make some assumption about the number of 
on�i
ts stillallowed in a parti
ular subbran
h, but this 
an easily be over- or underestimated,leading either to more iterative restarts, or more sear
hing in fruitless subtrees thanthe sequential version does. With shared obje
ts, up-to-date knowledge about theglobal number of 
on�i
ts remaining 
an be obtained almost trivially.Other aspe
ts that are 
urrently implemented using shared obje
ts are the prun-ing of subproblems in 
ase a truth assignment is found by one of the sear
hes, and
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Figure 5.7: Speedups on 32 DAS-2 pro
essorsan implementation of global learning [64℄. In global learning, information about 
on-�i
ting assignments learned lo
ally in one bran
h of the sear
h tree is made availableto other bran
hes in order to potentially 
ut o� related subtrees. As reported else-where [43, 64℄, sharing these learned 
lauses 
an indeed potentially help, but alsointrodu
es some overhead that has to be earned ba
k. A simple way to de
reasethe overhead is by restri
ting the use of global learning to 
lauses up to a 
ertainlength (in general, the shorter the learned 
lause, the higher its potential impa
t). Itappears that a good maximal length for learned 
lauses is rather SAT problem de-pendent; 
urrently we limit it to 
lauses of up to ten literals. Sin
e knowledge gainedby global learning is basi
ally an additional sour
e of information, it does not have tobe implemented with strong 
onsisten
y.It is possible to implement the SAT solver in a pure divide-and-
onquer style.Su
h an implementation, however, is less e�
ient. The main reason for this ine�-
ien
y is that independent bran
hes 
annot share the global number of 
on�i
ts found,as des
ribed above. Also, global learning is not used in the pure divide-and-
onquerversion. However, global learning appears to have less in�uen
e on the performan
eof the solver on the SAT problem used by us in this thesis. Finally, instead of usinga shared obje
t to notify other bran
hes that a solution has been found and the 
om-putation should terminate, the spe
ial abort me
hanism would have to be used [175℄.5.7 Performan
e evaluationIn this se
tion we will evaluate the performan
e of the shared obje
ts extension. The�rst part of the evaluation was 
arried out on the DAS-2 
luster 
omputer (for a de-s
ription of DAS-2 see se
tion 3.6). To demonstrate that our model is also suitable for
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Figure 5.8: Speedups of Barnes-Hut on DAS-2grid environments, the se
ond part of our experiments is performed on the Grid'5000testbed [8℄. Grid'5000 is a wide-area and heterogeneous system whi
h 
urrently 
on-sists of 7 
lusters lo
ated a
ross Fran
e.In the �rst part of our experiments, we tested the performan
e of the appli
a-tions on a single DAS-2 
luster. For those appli
ations whi
h 
an be programmedin pure divide-and-
onquer style, that is, without shared obje
ts, we 
ompared theperforman
e of the divide-and-
onquer version with the performan
e of the divide-and-share version. We always 
hose the most e�
ient divide-and-
onquer version,that is, for TSP we 
hose the Young Brothers Wait version and for Barnes-Hut we
hose the Ne
essary Tree version. We used 32 pro
essors in a single 
luster. Fig-ure 5.7 shows the speedups the appli
ations a
hieved on the DAS-2 
luster. Thedivide-and-share versions of TSP, SAT solver and Barnes-Hut perform mu
h betterthan their divide-and-
onquer versions. Lo
usRoute 
annot be programmed withoutshared obje
ts.For TSP and SAT solver, this performan
e improvement results from the fa
tthat sharing data allows to diminish the amount of 
omputation. For Barnes-Hut,the performan
e improvements results from optimizing the 
ommuni
ation, whi
hmakes the divide-and-share appli
ation s
ale better than the pure divide-and-
onquerversion. To further study the s
alability of both version, we performed an extraexperiment with Barnes-Hut. We measured the speedups of both versions on 2 to 128pro
essors. We tried both a single 
luster setting (up 96 pro
essors, be
ause we 
ouldnot allo
ate 128 pro
essors on a single 
luster) and a wide-area, multi-
luster setting.The results are shown in �gure 5.8.
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ation pro
essor 
a
he sizeSophia AMD Opteron 246 2 GHz 1024 KBRennes1 Intel Xeon 2.4 GHz 512 KBRennes2 AMD Opteron 250 2.4 GHz 1024 KBBordeaux AMD Opteron 248 2.2 GHz 1024 KBOrsay AMD Opteron 246 2 GHz 1024 KBLille Intel Xeon 3.0 GHz 1024 KBTable 5.1: Pro
essor 
on�gurations in the Grid'5000 testbed
lusters and total normalizednr CPUs used nr CPUs nr CPUsSophia 50Rennes1 40TSP Bordeaux 30 120 115Sophia 50Rennes1 40Lo
usRoute Bordeaux 30 120 94Orsay 40Rennes1 32SAT solver Bordeaux 40 112 98Sophia 50Barnes-Hut Rennes2 50theta 5.0 Lille 20 120 136Sophia 50Barnes-Hut Rennes2 50theta 7.0 Lille 20 120 126Table 5.2: Nodes used in the Grid'5000 experimentThe divide-and-share version s
ales mu
h better that the pure divide-and-
onquerversion in both single 
luster and wide-area, multi-
luster setting.The se
ond part of the experiments we 
arried out on the Grid'5000 system. Thisexperiment shows that our model works well in a real grid environment. The laten
ybetween the 
lusters used by us ranges from 4 to 10 millise
onds and bandwidthfrom 200 to 1000 Mbit/s. Grid'5000 is also heterogeneous: it 
ontains ma
hines withdi�erent ar
hite
tures and di�erent speeds. Table 5.1 lists the 
on�guration of theGrid'5000 pro
essors we used.For ea
h experiment, we use 3 
lusters. Table 5.2, lists the 
lusters and numbersof nodes we used for ea
h experiment.We 
ompared the performan
e of our appli
ations in the wide-area, heterogeneoussetting with the performan
e of the same appli
ation on a single 
luster. To makethis 
omparison meaningful, we need to use the same amount of 
omputational power
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luster experiments. This is not trivial to a
hieve due tothe heterogeneous pro
essor speeds in the grid environment. We used the followingmethodology. We 
omputed the relative speeds of the pro
essors in ea
h 
luster byrunning a smaller ben
hmark problem on a single pro
essor in ea
h 
luster. Wenormalized the runtimes of the ben
hmark problems relative to the runtime on asingle pro
essor of the Sophia (for TSP, Lo
usRoute and Barnes-Hut) or Orsay (forSAT solver) 
luster. Next, we 
omputed the normalized number of CPUs. Thosenumbers are listed in table 5.2. Then, in the single 
luster run, we used the samenumber of pro
essors as the normalized number in the grid runs.The runtimes and speedups of the appli
ations are listed in table 5.3. TSP andLo
usRoute a
hieve high speedups on the Grid'5000 testbed. The SAT solver performsslightly worse than Lo
usRoute and TSP. The reason for that is a highly unbalan
edsear
h tree whi
h makes it harder to balan
e the load in the appli
ation. Also, the
ost of spawning in SAT solver is higher than in the other appli
ations be
ause thewhole data stru
ture 
ontaining the des
ription of the SAT problem is 
loned for ea
hspawned job.For Barnes-Hut, we experimented with two values of the theta 
onstant: 5.0(whi
h we also used in the DAS-2 experiment) and 7.0. For theta=5.0 the speedup ismedio
re: 25 whi
h is mu
h smaller than the speedup on a similar number of nodes onDAS-2. This is be
ause the pro
essors in the Grid'5000 testbed are signi�
antly fasterthan the DAS-2 pro
essors, while the 
ommuni
ation speed is similar. Therefore, itis more di�
ult to a
hieve high speedups on the Grid'5000 testbed. When theta=7.0the appli
ation 
omputes the for
es with more a

ura
y and therefore has a higher
omputation-to-
ommuni
ation ratio. Thus, the speedup of this version is higher: 89.For all four appli
ations, the speedups in the wide-area setting were very 
lose tothe speedups on a single 
luster. This indi
ates that our algorithms 
an be run e�-
iently on wide-area systems even though the appli
ations share signi�
ant amountsof data. The amount of data sent by ea
h appli
ation is shown in tables 5.4 and 5.5.Column 5 of table 5.4 lists both lo
al-area and wide-area point-to-point tra�
. Thelast 
olumn of table 5.5 lists the amount of broad
ast tra�
.5.8 Comparison with related workFew other divide-and-
onquer frameworks provide shared data abstra
tions. Cilk [46℄provides a shared memory abstra
tion for divide-and-
onquer 
omputations on theConne
tion Ma
hine CM-5. Cilk's shared memory implements DAG-
onsisten
y usingthe Ba
ker algorithm [45℄ whi
h performs well on a tightly 
oupled ma
hine like theCM-5, but is not suitable for wide-area systems. Moreover, Cilk's shared memory wasdeveloped for pure divide-and-
onquer appli
ations whi
h use large data stru
tures(su
h as Barnes-Hut) and not for appli
ations that need to share data between siblingtasks (su
h as TSP). Updates of shared data are passed only along the edges of theexe
ution tree, but not to sibling tasks. Only sibling tasks that exe
ute on the samema
hine 
an see ea
h other's updates. Therefore Cilk's shared memory is unsuitablefor appli
ations su
h as TSP and SAT solver with learned 
lause sharing.
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lusterGrid single CPU speedup speedupTSP 200s 5.4h 97 99Lo
usRoute 951s 21.5h 81 89SAT solver 113s 1.7h 54 59Barnes-Hut (� 5.0) 226s 1.6h 25 31Barnes-Hut (� 7.0) 390s 9.6h 89 89Table 5.3: Test results the Grid'5000 testbed
amount of data sentnr tasks nr steal nr tasks for work stealingexe
uted requests stolen lo
al-area/wide-areaTSP 2 000 000 800 000 8 000 33MB/4MBLo
usRoute 160 000 40 000 000 3 000 1.4GB/22MBSAT solver 160 000 2 000 000 4 000 1.8GB/1GBBarnes-Hut (� 5.0) 335 000 5 600 000 18 000 800MB/300MBBarnes-Hut (� 7.0) 335 000 6 500 000 20 000 800MB/400MBTable 5.4: Statisti
s for Grid'5000 runs

amount of datanr shared obje
t broad
astinvo
ations for obje
t updatesTSP 50 5KBLo
usRoute 120 000 23MBSAT solver 130 000 17MBBarnes-Hut (� 5.0) 4 200MBBarnes-Hut (� 7.0) 4 200MBTable 5.5: Statisti
s for Grid'5000 runs - 
ont.



5.9. CONCLUSIONS 131Peng et al. [143℄ noti
ed this short
oming of Cilk and implemented SilkRoad � anextension to Cilk that provides global user lo
ks and shared memory with lazy release
onsisten
y [114℄. SilkRoad was designed to run in a single 
luster environment andis not suitable for wide-area grid environments.Javelin [139℄ is a framework for writing bran
h-and-bound appli
ations. Bran
h-and-bound is similar to divide-and-share but more restri
tive. Javelin provides a verylimited possibility of sharing data between tasks for bound propagation. All tasksare sharing the 
urrent bound, usually an integer or real number, but Javelin allowsit to be of any obje
t type. When a task �nds a new bound, it broad
asts it to allpro
essors. This is, in fa
t, repli
ation with data shipping whi
h has been shown tobe less e�
ient than fun
tion shipping for obje
t-based shared data models. Javelindoes not provide any means of enfor
ing 
onsisten
y.The fun
tion shipping approa
h to obje
t repli
ation in Satin was inspired byOr
a [31℄. Or
a provides sequential 
onsisten
y whi
h is implemented using totallyordered broad
ast. Or
a appli
ations a
hieve good performan
e on a single 
luster,but be
ause of the restri
tive 
onsisten
y model, Or
a is less suitable for wide-areasystems.RepMI [130℄ o�ers obje
t repli
ation in Java with sequential 
onsisten
y. TheAPI of RepMI is similar to our API: the programmer uses inheritan
e and markerinterfa
es to de�ne repli
ated obje
ts. The lo
al and shared methods (read and writemethods in RepMI's terminology), however, are distinguished automati
ally by the
ompiler and runtime system. To prevent the programmer from un
ontrolled a

essto repli
ated obje
ts, RepMI imposes many restri
tions on the programming model,for example, it does not allow dire
t a

ess to the �elds of a shared obje
t. RepMIa
hieves good performan
e on a 
luster of ma
hines 
onne
ted with Myrinet [48℄.Similar to Or
a, however, its restri
tive 
onsisten
y model makes it unsuitable forwide-area 
omputing. Also, read/write analysis, thread s
heduling, and indire
tionin a

essing repli
ated obje
ts adds overhead whi
h is not justi�ed for appli
ationsthat do not need strong 
onsisten
y.5.9 Con
lusionsWe presented a divide-and-share programming model whi
h 
ombines the divide-and-
onquer paradigm with a shared data abstra
tion � shared obje
ts. The newdivide-and-share model has a broader appli
ability than the pure divide-and-
onquermodel.Shared obje
ts implement a new 
onsisten
y model, guard 
onsisten
y, designedespe
ially for grid-enabled divide-and-
onquer appli
ations. Under guard 
onsisten
y,the programmer 
an de�ne the 
onsisten
y requirements of the appli
ation using guardfun
tions asso
iated with divide-and-
onquer tasks. A guard fun
tion spe
i�es whatthe status of an obje
t should be for a task to exe
ute 
orre
tly. The runtime systemallows repli
as of shared obje
ts to be
ome in
onsistent as long as their guards aresatis�ed. When a guard is unsatis�ed, the system brings the lo
al repli
a into a
onsistent state. The guard 
onsisten
y model is easy to use and allows for e�
ient



132 CHAPTER 5. DATA SHARING IN DYNAMIC ENVIRONMENTSimplementation in grid environments. In parti
ular, nodes dynami
ally joining orleaving the ongoing 
omputation 
an be tolerated.We implemented a number of divide-and-share appli
ations using the Satin frame-work: Lo
us Route (VLSI routing), SAT solver, Barnes-Hut (N-body simulation) andTraveling Salesman Problem. We evaluated the performan
e of our appli
ations onthe DAS-2 super
omputer and showed that they a
hieve good speedups on a single
luster. To demonstrate that our model is suitable for real Grid environments, wetested it on the wide-area, heterogeneous Grid'5000 testbed and showed that appli-
ations using shared data 
an a
hieve high speedups in a real grid environment.



Chapter 6Summary and 
on
lusionsThe goal of the resear
h presented in this thesis was simplifying the pro
ess of 
reatinggrid enabled appli
ations. We proposed that this goal 
an be a
hieved by 
reatinga grid programming framework � a set of tools that forms a layer of abstra
tionbetween the appli
ation and the Grid. A framework provides a high-level and easy touse programming model and transparently resolves many grid programming issues.We started with a prototype divide-and-
onquer framework (Satin) designed andimplemented by Rob van Nieuwpoort. Thanks to an e�
ient, grid-aware load-balan
ingalgorithm, the original system 
ould run e�
iently over wide-area, heterogeneous sys-tems. However, many issues still needed to be addressed before Satin would be
omea mature grid programming framework. Those issues we address in this thesis.In 
hapter 3, we investigated the problem of fault toleran
e, malleability and mi-gration. Grid environments are inherently dynami
, nodes 
an be
ome available orunavailable at any moment and the appli
ation must be able to 
ope with it. Wedesigned a simple and e�
ient fault-toleran
e algorithm based on re
omputing worklost in 
rashes and restru
turing the exe
ution tree to minimize the amount of re
om-putation. We extended this algorithm to be able to reuse work done by the leavingpro
essors, if they leave gra
efully. We also added a simple 
he
kpointing fa
ilitythat stores intermediate results on a stable storage. This set of algorithms allowsdivide-and-
onquer appli
ations to handle a number of grid s
enarios. Appli
ations
an tolerate pro
essor 
rashes and pro
essors dynami
ally joining and leaving an on-going 
omputation. Appli
ations 
an be e�
iently migrated or stopped and restartedlater on the same or a di�erent set of resour
es.In 
hapter 4, we have investigated the problems of resour
e sele
tion and adaptiveexe
ution. Existing solutions to those problems require that a performan
e model foran appli
ation is known. However, 
onstru
ting performan
e models is an inherentlydi�
ult task. Therefore, we investigated if it is possible to provide a solution that doesnot require a performan
e model. We propose an approa
h in whi
h an appli
ationis started on an arbitrary set of resour
es. Some simple heuristi
s 
an be used tosele
t this initial set (e.g., the fastest available pro
essors), but no advan
ed modelsare needed. During the run, we monitor the appli
ation performan
e by 
olle
ting



134 CHAPTER 6. SUMMARY AND CONCLUSIONSstatisti
s about how mu
h time pro
essors spend 
ommuni
ating or being idle. Weuse those statisti
s to dedu
e the appli
ation requirements and adjust the resour
eset to better �t the appli
ation needs. This adjustment is performed by adding orremoving nodes to/from the running appli
ation. To implement this approa
h, weadded an extra pro
ess � an adaptation 
oordinator, whi
h 
olle
ts the appli
ationstatisti
s and 
ontrols adding and removing nodes. We evaluated our approa
h in anumber of s
enarios typi
al for grid environments and we have shown that we 
ana
hieve signi�
ant performan
e improvements (10�60% in our experiments).In 
hapter 5, we have extended the programming model of our framework. Theoriginal Satin framework provided the divide-and-
onquer model. A limitation of thismodel is the la
k of a data-sharing abstra
tion. Therefore, we have extended thedivide-and-
onquer model with a shared-obje
t abstra
tion. The API of the shared-obje
t extension is similar to the original Satin API: the programmer uses standardJava me
hanisms su
h as inheritan
e and marker interfa
es to de�ne shared obje
tsand operations on them. The 
ompiler generates the ne
essary 
ommuni
ation 
ode.Therefore, the shared-obje
t model is extremely easy to use.Implementing a shared-data abstra
tion in grids is a 
hallenging task due to thedistributed and dynami
 nature of su
h environments. Traditional 
onsisten
y mod-els su
h as sequential 
onsisten
y are not suitable for wide-area, dynami
 systems.We have designed a novel 
onsisten
y model, guard 
onsisten
y, whi
h is suitable fordivide-and-
onquer appli
ations and allows for e�
ient implementation in grid envi-ronments. Under guard 
onsisten
y, the programmer de�nes the appli
ation 
onsis-ten
y requirements using boolean guard fun
tions asso
iated with divide-and-
onquertasks. The runtime system propagates updates to remote repli
as optimisti
ally, thatis, without guaranteeing that updates will be applied in a 
ertain order, will not belost or dupli
ated. The repli
as are allowed to be
ome in
onsistent as long as guardsare satis�ed. When a guard be
omes not satis�ed, the runtime system brings thelo
al repli
a into a 
onsistent state.We implemented a number of appli
ations using shared obje
t abstra
tion andhave shown that it simpli�es the programming task, improves appli
ation performan
eand extends the appli
ability of the Satin framework. We have tested our model bothin a single 
luster environment and in a wide-area, heterogeneous grid environmentand have shown that shared-data appli
ations 
an a
hieve high e�
ien
ies in su
henvironments.The Satin framework that is the result of the work des
ribed in this thesis 
anhandle a vast number of s
enarios typi
al for grid environments. Below, we list anumber of su
h s
enarios.� A Satin appli
ation 
an tolerate 
rashing nodes with minimal loss of work. If thenumber of 
rashed nodes is substantial, the adaptation 
omponent will attemptto repla
e the 
rashed nodes.� The user 
an add or remove nodes to a running appli
ation. The user 
an alsomigrate a running appli
ation to a di�erent set of resour
es.� The user 
an stop a Satin appli
ation and restart it at a later time on a possibly



135di�erent set of resour
es.� A Satin appli
ation 
an run in a 
y
le-stealing environment, that is, expandto new pro
essors if they are idle and release them if another higher-priorityappli
ation arrives.� If the user starts a Satin appli
ation on an inappropriate set of resour
es, theresour
e set will be adjusted. For example, if the initial number of pro
essorsis smaller than the appli
ation degree of parallelism would allow, the appli
a-tion will automati
ally expand to more pro
essors. If one of the sites is badly
onne
ted, the appli
ation will be automati
ally migrated away from this site.� If during the appli
ation run part of the resour
es be
ome overloaded (e.g.,pro
essors or network links) to an extent that the appli
ation performan
e suf-fers, the appli
ation will be automati
ally migrated away from the overloadedresour
es. New resour
es may be added to repla
e the removed resour
es.� If the appli
ation degree of parallelism is 
hanging during the run, the numberof pro
essors the appli
ation is running on will be automati
ally adjusted.The resulting Satin system has also improved appli
ability. Below, we list appli-
ation 
lasses that 
an be programmed using the Satin framework.� Sear
h and optimization problems, for example the satis�ability problem, theTraveling Salesman Problem, the Knapsa
k problem, N Queens, et
.� Astrophysi
al simulations, for example the Barnes-Hut N-body algorithm [34℄.� Grammar based learning [12℄.� Parallel rendering (raytra
ing).� Bioinformati
s 
omputations, for example sequen
e alignment.� VLSI routing.� Game tree sear
hing, for example Othello or Awari.� Numeri
al appli
ations, for example matrix multipli
ation or Fast Fourier Trans-form.To summarize, in this thesis we have demonstrated that it is indeed possible tosimplify the task of 
reating grid appli
ations by providing a high-level grid pro-gramming framework. The Satin framework that is the result of the work presentedin this thesis allows rapid development of grid enabled appli
ations. The program-mer expresses the problem at hand in a divide-and-
onquer fashion and annotates thesequential 
ode with divide-and-
onquer and data-sharing primitives. The Satin byte-
ode rewriter generates the 
ommuni
ation, load-balan
ing and fault-toleran
e 
ode.All grid-related issues are resolved by the framework transparently to the appli
ation



136 CHAPTER 6. SUMMARY AND CONCLUSIONSprogrammer. Therefore, the appli
ation programmer needs to fo
us his attention onlyon the problem domain of the appli
ation and not on the 
omplexity of the platformthe appli
ation will be running. We believe that our approa
h will lead to makingthe tremendous power of the Grid more a

essible and will therefore allow ta
klinggrand 
omputational 
hallenges that 
ould not be solved before.
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Complexiteit en verandering ingrid 
omputingHet doel van grid 
omputing is het aan elkaar koppelen en integreren van vers
hillende
omputersystemen zodat ze gebruikt kunnen worden als een virtuele super
omputer,die we een grid of een gridomgeving noemen. De rekenkra
ht van zo'n virtuele su-per
omputer is vele malen groter dan de rekenkra
ht van een traditionele parallelle
omputer. Een grid kan daarom gebruikt worden om uitermate ingewikkelde pro-blemen op te lossen die niet opgelost zouden kunnen worden door een traditionelesuper
omputer.De 
omplexiteit van gridomgevingen is e
hter ook vele malen groter dan de 
om-plexiteit van traditonele super
omputers. In de eerste plaats zijn gridomgevingenheterogeen, dat wil zeggen dat ze uit systemen bestaan die mogelijk vers
hillend zijnvoor wat betreft pro
essoren en besturingssytemen. De vers
hillen in pro
essorsnel-heden kunnen enorm zijn. Ook de kwaliteit van netwerkverbindingen varieert vansnelle LAN netwerken tot langzame WAN netwerken.In de tweede plaats zijn gridomgevingen dynamis
h. Ze bestaan uit grote hoeveel-heden 
omputers en daarom is de kans dat sommige 
omputers uitvallen groot. Eengedeelte van de door een appli
atie gebruikte 
omputers kan ook overgenomen wordendoor een andere appli
atie met een hogere prioriteit. Ook varieert de belasting op
omputers en netwerken 
ontinu.Daarom is het s
hrijven van gridappli
aties een uitermate ingewikkelde taak. Deprogrammeur moet een goed begrip hebben van niet alleen het appli
atiedomein maarook van 
omplexe problemen van het domein van parallel programmeren, zoals hetoptimaliseren van de 
ommuni
atie tussen de pro
essoren, foutbestendigheid, adap-tiviteit, enzovoort.In deze dissertatie kijken we naar mogelijkheden om het s
hrijven van gridappli-
aties te vergemakkelijken. We geloven dat dit doel bereikt kan worden door gebruikvan gridprogrammeeromgevingen. Een gridprogrammeeromgeving is een verzamelingprogramma's, zoals 
ompilers en bibliotheken, die bepaalde taken van de gridpro-grammeur overnemen, bijvoorbeeld het verdelen van taken tussen pro
essoren, hetoptimaliseren van de 
ommuni
atie of het foutbestendig maken van de appli
atie.De gridprogrammeeromgeving die bes
hreven wordt in dit proefs
hrift spitst zi
htoe op een bepaalde klasse van appli
aties, namelijk verdeel-en-heersappli
aties. Ap-
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aties van die soort splitsen een probleem op in deelproblemen, totdat het werkzover opgesplitst is dat het eenvoudig uitgevoerd kan worden. Tenslotte worden alledeeloplossingen ge
ombineerd tot het uiteidelijke resultaat. Verdeel-en-heersappli
atieskunnen e�
iënt worden uitgevoerd op parallelle 
omputers door vers
hillende taken(deelproblemen) te laten berekenen door vers
hillende pro
essoren.Onze programmeeromgeving heet Satin en is gebaseerd op een prototype dat isontwikkeld door Rob van Nieuwpoort. Van Nieuwpoorts prototype implementeerteen e�
iënt taakverdelingsalgoritme: Cluster-aware Random Work Stealing (CRS).CRS is gebaseerd op het stelen (overnemen) van taken van willekeurige ma
hines inhet systeem. Dankzij dit algoritme kunnen Satin-appli
aties erg e�
iënt draaien inomgevingen met langzame WAN netwerken.In hoofdstuk 2 van dit proefs
hrift bes
hrijven en 
lassi�
ieren we de bestaandegridprogrammeeromgevingen en bes
hrijven we het Satin prototype. We leggen uitwat er nog moet gebeuren om dit prototype om te zetten in een volwaardige gridpro-grammeeromgeving.In hoofstuk 3 onderzoeken we hoe we verdeel-en-heersappli
aties foutbestendig enmalleable kunnen maken. We zeggen dat een appli
atie foutbestendig is als zij uit-vallende pro
essoren kan tolereren. We noemen een appli
atie malleable als ze opeen steeds veranderende verzameling pro
essoren kan draaien, dat wil zeggen, datpro
essoren kunnen komen en gaan terwijl de appli
atie draait. Beide eigens
hap-pen zijn belangrijk voor appli
aties die in dynamis
he gridomgevingen draaien. Webes
hrijven een verzameling algoritmes die verdeel-en-heersappli
aties foutbestendigen malleable maken. De basis van die algoritmes is steeds dezelfde: de resultaten dieverloren gingen door het wegvallen van een pro
essor worden herberekend. E
hter,om de hoeveelheid werk dat herberekend moet worden te minimalizeren, gebruikenwe vers
hillende te
hnieken:� We gebruiken de resultaten van zogenaamde weestaken opnieuw. Weestakenzijn taken (deelproblemen) die werden gestolen van weggevallen pro
essoren.� Als we weten dat sommige pro
essoren binnenkort niet meer ter bes
hikkingvan de gridappli
atie zullen staan, slaan we de door die pro
essoren berekenderesultaten op, om ze later opnieuw te kunnen gebruiken.� We slaan regelmatig de resultaten van deelproblemen op op een vaste s
hijf. Alseen pro
essor wegvalt, kunnen wij de resultaten van deze pro
essor terughalenvan de harde s
hijf en ze hergebruiken.Dankzij deze algoritmen kan een appli
atie vers
hillende situaties overleven diekenmerkend zijn voor een grid omgeving:� Een appli
atie kan blijven draaien ondanks wegvallende pro
essoren.� Pro
essoren kunnen worden toegevoegd aan of weggehaald van een draaiendeappli
atie.� Een appli
atie kan gemigreerd worden naar een andere verzameling pro
essoren.
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atie kan worden gestopt en later opnieuw gestart op een vers
hillendeverzameling pro
essoren.In hoofdstuk 4 kijken we naar het probleem van sele
tie van pro
essoren en adap-tiviteit. Om e�
iënt te kunnen draaien heeft een appli
atie een juiste verzameling pro-
essoren nodig. De hoeveelheid pro
essoren moest juist zijn, de pro
essoren moetenniet te langzaam zijn en de netwerkverbindingen tussen pro
essoren moeten voldoendesnel zijn. De vereisten vers
hillen per appli
atie. Vaak moet de verzameling pro
es-soren worden aangepast tijdens de berekening omdat de belasting van pro
essoren ennetwerkverbindingen kan veranderen, een gedeelte van de pro
essoren kan wegvallen,of sommige fasen van de apli
atie meer rekenkra
ht nodig hebben.Van oudsher werden deze problemen opgelost door middel van een performan
emodel. Een dergelijk model is een wiskundige formule die gebruikt wordt om te bereke-nen hoe snel een appli
atie zou draaien op een gegeven verzameling pro
essoren. Omde optimale verzameling pro
essoren te sele
teren worden vers
hillende verzamelin-gen geëvalueerd door middel van een performan
e model. De verzameling waaropde appli
atie het snelst zou draaien wordt gekozen. Tijdens de berekening wordt deverzameling pro
essoren herhaaldelijk opnieuw geëvalueerd. Als er een betere verza-meling pro
essoren is gevonden wordt de appli
atie daarnaar gemigreerd, waardoorzij zi
h kan aanpassen aan de veranderingen in de gridomgeving waarin ze draait.Het vinden van een performan
e model voor een appli
atie is e
hter uitermatege
ompli
eerd. Daarom wordt in dit hoofdstuk een alternative benadering gepre-senteerd. In deze benadering wordt een appli
atie op een willekeurige verzamelingpro
essoren gestart. Terwijl de appli
atie loopt worden statistis
he gegevens verza-meld, onder meer over de mate waarin de appli
atie een beroep doet op de pro
essorof het netwerk. Deze gegevens worden gebruikt om af te leiden hoe de verzamelingpro
essoren aangepast kan worden om de appli
atie e�
iënter te laten draaien. Welaten zien dat we met deze benadering:� De verzameling pro
essoren automatis
h kunnen aanpassen aan de behoeftenvan de appli
atie. Als sommige fasen van de appli
atie bijvoorbeeld meerrekenkra
ht nodig hebben, wordt de verzameling pro
essoren automatis
h uit-gebreid.� De appli
atie automatis
h kunnen migreren van een zwaar belaste verzamelingpro
essoren naar een andere, mogelijk minder zwaar belaste, verzameling.� Pro
essoren met langzame netwerkverbindingen kunnen laten weghalen.� Nieuwe pro
essoren kunnen toevoegen als een gedeelte van de pro
essoren weg-valt.In hoofdstuk 5 kijken we naar het programmeermodel van onze omgeving. Eenbelangrijk nadeel van het verdeel-en-heersmodel is het ontbreken van globale vari-abelen. Daarom breiden we het verdeel-en-heersmodel uit met globale obje
ten diedoor alle taken gelezen en ges
hreven kunnen worden. Een belangrijk probleembij het implementeren van zulke globale obje
ten is de 
onsisten
y. Traditionele
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onsisten
y-modellen zijn moeilijk e�
iënt te implementeren in gridomgevingen om-dat netwerkverbindingen traag zijn en omdat de verzameling pro
essoren waarop deappli
atie draait kan veranderen. Daarom hebben wij een nieuw 
onsisten
y-modelontwikkeld onder de naam guard 
onsisten
y. In dit model de�nieert de programmeurwanneer de obje
ten 
onsistent zijn door middel van booleaanse guard fun
tions. Deprogrammeeromgeving zorgt er niet voor dat alle kopieën van een globaal obje
tidentiek zijn. Het zorgt er alleen voor dat de guardfun
ties altijd true retourneren.In dit hoofdstuk worden globale obje
ten gebruikt om een aantal nieuwe appli
atieste implementeren om aan te tonen dat deze appli
aties e�
iënt kunnen draaien ingridomgevingen.Het resultaat van deze dissertatie is een programmeeromgeving die het eenvoudigermaakt om gridappli
aties te s
hrijven. Grid-gerelateerde problemen zoals 
ommu-ni
atie, taakverdeling tussen pro
essoren of foutbestendigheid worden automatis
hopgelost door de programmeeromgeving. De appli
aties die geïmplementeerd wor-den binnen deze programmeeromgeving kunnen e�
iënt draaien in gridomgevingenen ze zijn bestand tegen situaties die kenmerkend zijn voor dat soort omgevingen,zoals wegvallende pro
essoren of veranderende belasting op pro
essoren en netwerkverbindingen.
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