Introduction to Parallel Programming

- Language notation: message passing
- Distributed-memory machine
 - All machines are equally fast
 - E.g., identical workstations on a network

- 5 parallel algorithms of increasing complexity:
 - Matrix multiplication
 - Successive overrelaxation
 - All-pairs shortest paths
 - Linear equations
 - Traveling Salesman problem
Message Passing

- **SEND** (destination, message)
 - blocking: wait until message has arrived (like a fax)
 - non blocking: continue immediately (like a mailbox)

- **RECEIVE** (source, message)

- **RECEIVE-FROM-ANY** (message)
 - blocking: wait until message is available
 - non blocking: test if message is available
Syntax

• Use pseudo-code with C-like syntax
• Use indentation instead of { ..} to indicate block structure
• Arrays can have user-defined index ranges
• Default: start at 1
 – int A[10:100] runs from 10 to 100
 – int A[N] runs from 1 to N
• Use array slices (sub-arrays)
 – A[i, *] = elements A[i, 1] to A[i, N] i.e. row i of matrix A
 – A[*, k] = elements A[1, k] to A[N, k] i.e. column k of A
Parallel Matrix Multiplication

- Given two $N \times N$ matrices A and B
- Compute $C = A \times B$
- $C_{ij} = A_{i1}B_{1j} + A_{i2}B_{2j} + \ldots + A_{iN}B_{Nj}$
Sequential Matrix Multiplication

for (i = 1; i <= N; i++)
 for (j = 1; j <= N; j++)
 C[i,j] = 0;
 for (k = 1; k <= N; k++)
 C[i,j] += A[i,k] * B[k,j];

The order of the operations is over specified
Everything can be computed in parallel
Parallel Algorithm 1

Each processor computes 1 element of C
Requires N^2 processors
Each processor needs 1 row of A and 1 column of B
Master distributes work and receives results
Slaves (1 .. P) get work and execute it
How to start up master/slave processes depends on Operating System
Parallel Algorithm 1

Master (processor 0):

```c
int proc = 1;
for (i = 1; i <= N; i++)
    for (j = 1; j <= N; j++)
        SEND(proc, A[i,*], B[*], j, i, j); proc++;
for (x = 1; x <= N*N; x++)
    RECEIVE_FROM_ANY(&result, &i, &j);
C[i,j] = result;
```

Slaves (processors 1 .. P):

```c
int Aix[N], Bxj[N], Cij;
RECEIVE(0, &Aix, &Bxj, &i, &j);
Cij = 0;
for (k = 1; k <= N; k++) Cij += Aix[k] * Bxj[k];
SEND(0, Cij, i, j);
```
Efficiency (complexity analysis)

- Each processor needs $O(N)$ communication to do $O(N)$ computations
 - Communication: $2N + 1$ integers = $O(N)$
 - Computation per processor: N multiplications/additions = $O(N)$

- Exact communication/computation costs depend on network and CPU

- Still: this algorithm is inefficient for any existing machine

- Need to improve communication/computation ratio
Parallel Algorithm 2

Each processor computes 1 row (N elements) of C
Requires N processors
Need entire B matrix and 1 row of A as input
Parallel Algorithm 2

Master (processor 0):

for (i = 1; i <= N; i++)
 SEND (i, A[i,*], B[*,*], i);
for (x = 1; x <= N; x++)
 RECEIVE_FROM_ANY (&result, &i);
 C[i,*] = result[*];

Slaves:

int Aix[N], B[N,N], C[N];
RECEIVE(0, &Aix, &B, &i);
for (j = 1; j <= N; j++)
 C[j] = 0;
 for (k = 1; k <= N; k++)
 C[j] += Aix[k] * B[j,k];
 SEND(0, C[*] , i);
Problem: need larger granularity

Each processor now needs $O(N^2)$ communication and $O(N^2)$ computation -> Still inefficient

Assumption: $N \gg P$ (i.e. we solve a *large* problem)

Assign many rows to each processor
Parallel Algorithm 3

Each processor computes \(\frac{N}{P} \) rows of \(C \)

Need entire \(B \) matrix and \(\frac{N}{P} \) rows of \(A \) as input

Each processor now needs \(O(N^2) \) communication and \(O(N^3 / P) \) computation

\[
\begin{pmatrix}
X & X & X \\
\end{pmatrix}
\begin{pmatrix}
X & X & X \\
\end{pmatrix}
= \begin{pmatrix}
X & X & X \\
\end{pmatrix}
\]
Parallel Algorithm 3 (master)

Master (processor 0):

```c
int result [N, N / P];

int inc = N / P; /* number of rows per cpu */

int lb = 1; /* lb = lower bound */

for (i = 1; i <= P; i++)
    SEND (i, A[lb .. lb+inc-1, *], B[*,*], lb, lb+inc-1);

    lb += inc;

for (x = 1; x <= P; x++)
    RECEIVE_FROM_ANY (&result, &lb);

for (i = 1; i <= N / P; i++)
    C[lb+i-1, *] = result[i, *];
```
Parallel Algorithm 3 (slave)

Slaves:

```c
int A[N / P, N], B[N,N], C[N / P, N];
RECEIVE(0, &A, &B, &lb, &ub);
for (i = lb; i <= ub; i++)
    for (j = 1; j <= N; j++)
        C[i,j] = 0;
    for (k = 1; k <= N; k++)
        C[i,j] += A[i,k] * B[k,j];
SEND(0, C[*,*] , lb);
```
Comparison

<table>
<thead>
<tr>
<th>Algo\nrm #parallelism (#jobs)</th>
<th>Communication per job</th>
<th>Computation per job</th>
<th>Ratio comp/comm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (N^2)</td>
<td>(N + N + 1)</td>
<td>(N)</td>
<td>(O(1))</td>
</tr>
<tr>
<td>2 (N)</td>
<td>(N + N^2 + N)</td>
<td>(N^2)</td>
<td>(O(1))</td>
</tr>
<tr>
<td>3 (P)</td>
<td>(N^2/P + N^2 + N^2/P)</td>
<td>(N^3/P)</td>
<td>(O(N/P))</td>
</tr>
</tbody>
</table>

- If \(N \gg P\), algorithm 3 will have low communication overhead
- Its grain size is high
Example speedup graph

![Example speedup graph](image-url)
Discussion

• Matrix multiplication is trivial to parallelize

• Getting good performance is a problem

• Need right grain size

• Need large input problem
Successive Over relaxation (SOR)

Iterative method for solving Laplace equations
Repeatedly updates elements of a grid
Successive Over relaxation (SOR)

float G[1:N, 1:M], Gnew[1:N, 1:M];
for (step = 0; step < NSTEPS; step++)
 for (i = 2; i < N; i++) /* update grid */
 for (j = 2; j < M; j++)
 Gnew[i,j] = f(G[i,j], G[i-1,j], G[i+1,j], G[i,j-1], G[i,j+1]);
G = Gnew;
SOR example
SOR example
Parallelizing SOR

- Domain decomposition on the grid
- Each processor owns N/P rows
- Need communication between neighbors to exchange elements at processor boundaries
SOR example partitioning

<table>
<thead>
<tr>
<th>x</th>
<th>x</th>
<th>x</th>
<th>x</th>
<th>x</th>
<th>x</th>
<th>x</th>
<th>x</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>x</td>
</tr>
<tr>
<td>x</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>x</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>x</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>x</td>
</tr>
<tr>
<td>x</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>x</td>
</tr>
<tr>
<td>x</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>x</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>x</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>x</td>
</tr>
<tr>
<td>x</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>x</td>
</tr>
<tr>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>
SOR example partitioning
Communication scheme

Each CPU communicates with left & right neighbor (if existing)
Parallel SOR

float G[lb-1:ub+1, 1:M], Gnew[lb-1:ub+1, 1:M];
for (step = 0; step < NSTEPS; step++)
 SEND(cpuid-1, G[lb]); /* send 1st row left */
 SEND(cpuid+1, G[ub]); /* send last row right */
 RECEIVE(cpuid-1, G[lb-1]); /* receive from left */
 RECEIVE(cpuid+1, G[ub+1]); /* receive from right */
 for (i = lb; i <= ub; i++) /* update my rows */
 for (j = 2; j < M; j++)
 Gnew[i,j] = f(G[i,j], G[i-1,j], G[i+1,j], G[i,j-1], G[i,j+1]);
 G = Gnew;
Performance of SOR

Communication and computation during each iteration:
• Each CPU sends/receives 2 messages with M reals
• Each CPU computes N/P * M updates

The algorithm will have good performance if
• Problem size is large: N >> P
• Message exchanges can be done in parallel

Question:
• Can we improve the performance of parallel SOR by using a different distribution of data?
Example: block-wise partitioning

- Each CPU gets a $\frac{N}{\sqrt{P}} \times \frac{N}{\sqrt{P}}$ block of data (assuming $N=M$)
- Each CPU needs sub-rows/columns from 4 neighbors
- Row-wise: only 2 messages, but with N elements
- Block-wise: 4 messages, with $\frac{N}{\sqrt{P}}$ elements
- Best partitioning depends on machine/network!
- More on this at HPF lecture
All-pairs Shorts Paths (ASP)

• Given a graph G with a distance table C:
 $C[i, j] = \text{length of direct path from node } i \text{ to node } j$

• Compute length of shortest path between any two nodes in G

<table>
<thead>
<tr>
<th></th>
<th>Amsterdam</th>
<th>Berlin</th>
<th>Copenhagen</th>
<th>London</th>
<th>Moscow</th>
<th>Rome</th>
<th>Warsaw</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amsterdam</td>
<td>365</td>
<td>381</td>
<td>220</td>
<td>1325</td>
<td>808</td>
<td>673</td>
<td></td>
</tr>
<tr>
<td>Berlin</td>
<td>365</td>
<td>225</td>
<td>575</td>
<td>995</td>
<td>730</td>
<td>320</td>
<td></td>
</tr>
<tr>
<td>Copenhagen</td>
<td>381</td>
<td>225</td>
<td>590</td>
<td>970</td>
<td>948</td>
<td>415</td>
<td></td>
</tr>
<tr>
<td>London</td>
<td>220</td>
<td>575</td>
<td>590</td>
<td>1540</td>
<td>890</td>
<td>890</td>
<td></td>
</tr>
<tr>
<td>Moscow</td>
<td>1325</td>
<td>995</td>
<td>970</td>
<td>1462</td>
<td>710</td>
<td>810</td>
<td></td>
</tr>
<tr>
<td>Rome</td>
<td>808</td>
<td>730</td>
<td>948</td>
<td>1462</td>
<td>810</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Warsaw</td>
<td>673</td>
<td>320</td>
<td>415</td>
<td>890</td>
<td>710</td>
<td>810</td>
<td></td>
</tr>
</tbody>
</table>
Floyd's Sequential Algorithm

- Basic step:

 \[
 \text{for } (k = 1; k \leq N; k++)
 \text{for } (i = 1; i \leq N; i++)
 \text{for } (j = 1; j \leq N; j++)
 \]
 \[
 C[i, j] = \text{MIN} \left(C[i, j], \right.
 \]
 \[
 \left. C[i, k] + C[k, j] \right)
 \]

 During iteration \(k\), you can visit only intermediate nodes in the set \{1 .. k\}.

 \(k=0 \Rightarrow \) initial problem, no intermediate nodes

 \(k=N \Rightarrow \) final solution
Parallelizing ASP

- Distribute rows of C among the P processors

- During iteration k, each processor executes
 $$C[i,j] = \min (C[i,j], C[i,k] + C[k,j]);$$
on its own rows i, so it needs these rows and row k

- Before iteration k, the processor owning row k sendsit to all the others
<table>
<thead>
<tr>
<th></th>
<th>j</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>k</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Parallel ASP Algorithm

```plaintext
int lb, ub;  /* lower/upper bound for this CPU */
int rowK[N], C[lb:ub, N];  /* pivot row ; matrix */

for (k = 1; k <= N; k++)
    if (k >= lb && k <= ub) /* do I have it? */
        rowK = C[k,*];
        for (proc = 1; proc <= P; proc++)  /* broadcast row */
            if (proc != myprocid) SEND(proc, rowK);
    else
        RECEIVE_FROM_ANY(&rowK);  /* receive row */

for (i = lb; i <= ub; i++)  /* update my rows */
    for (j = 1; j <= N; j++)
        C[i,j] = MIN(C[i,j], C[i,k] + rowK[j]);
```
Performance Analysis ASP

Per iteration:
• 1 CPU sends P -1 messages with N integers
• Each CPU does N/P x N comparisons

Communication/ computation ratio is small if $N >> P$
... but, is the Algorithm Correct?
Parallel ASP Algorithm

```c
int lb, ub; /* lower/upper bound for this CPU */
int rowK[N], C[lb:ub, N]; /* pivot row ; matrix */

for (k = 1; k <= N; k++)
  if (k >= lb && k <= ub) /* do I have it? */
    rowK = C[k,*];
  for (proc = 1; proc <= P; proc++) /* broadcast row */
    if (proc != myprocid) SEND(proc, rowK);
else
  RECEIVE_FROM_ANY(&rowK); /* receive row */
for (i = lb; i <= ub; i++) /* update my rows */
  for (j = 1; j <= N; j++)
    C[i,j] = MIN(C[i,j], C[i,k] + rowK[j]);
```
Non-FIFO Message Ordering

Row 2 may be received before row 1
FIFO Ordering

Row 5 may be received before row 4
Correctness

Problems:
• Asynchronous non-FIFO SEND
• Messages from different senders may overtake each other

Solution is to use a combination of:
• Synchronous SEND (less efficient)
• Barrier at the end of outer loop (extra communication)
• Order incoming messages (requires buffering)
• RECEIVE (cpu, msg) (more complicated)
Introduction to Parallel Programming

• Language notation: message passing
• Distributed-memory machine
 – (e.g., workstations on a network)

• 5 parallel algorithms of increasing complexity:
 – Matrix multiplication
 – Successive overrelaxation
 – All-pairs shortest paths
 – Linear equations
 – Traveling Salesman problem
Linear equations

- Linear equations:
 \[a_{1,1}x_1 + a_{1,2}x_2 + \ldots + a_{1,n}x_n = b_1 \]

 \[\ldots \]

 \[a_{n,1}x_1 + a_{n,2}x_2 + \ldots + a_{n,n}x_n = b_n \]

- Matrix notation: \(Ax = b \)
- Problem: compute \(x \), given \(A \) and \(b \)
- Linear equations have many important applications
 Practical applications need huge sets of equations
Solving a linear equation

- Two phases:
 - Upper-triangularization -> $U \mathbf{x} = \mathbf{y}$
 - Back-substitution -> \mathbf{x}
- Most computation time is in upper-triangularization
- Upper-triangular matrix:
 - $U_{i, i} = 1$
 - $U_{i, j} = 0$ if $i > j$

\[
\begin{bmatrix}
1 & . & . & . & . & . & . & . \\
0 & 1 & . & . & . & . & . & . \\
0 & 0 & 1 & . & . & . & . & . \\
0 & 0 & 0 & 1 & . & . & . & . \\
0 & 0 & 0 & 0 & 1 & . & . & . \\
0 & 0 & 0 & 0 & 0 & 1 & . & . \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & . \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{bmatrix}
\]
Sequential Gaussian elimination

for (k = 1; k <= N; k++)
 for (j = k+1; j <= N; j++)
 y[k] = b[k] / A[k,k]
A[k,k] = 1
for (i = k+1; i <= N; i++)
 for (j = k+1; j <= N; j++)
 b[i] = b[i] - A[i,k] * y[k]
A[i,k] = 0

- Converts $Ax = b$ into $Ux = y$
- Sequential algorithm uses $2/3 \ N^3$ operations
Parallelizing Gaussian elimination

- **Row-wise partitioning scheme**
 - Each cpu gets one row *(striping)*
 - Execute one (outer-loop) iteration at a time

- **Communication requirement:**
 - During iteration k, cpus P_{k+1} \ldots P_{n-1} need part of row k
 - This row is stored on CPU P_k
 - \(\rightarrow\) need partial broadcast (multicast)
Performance problems

- Communication overhead (multicast)
- Load imbalance

 CPUs \(P_0 \ldots P_K \) are idle during iteration \(k \)

 Bad load balance means bad speedups, as some CPUs have *too much* work
- In general, number of CPUs is less than \(n \)

 Choice between block-striped & cyclic-striped distribution
- Block-striped distribution has high load-imbalance
- Cyclic-striped distribution has less load-imbalance
Block-striped distribution

- CPU 0 gets first N/2 rows
- CPU 1 gets last N/2 rows
- CPU 0 has much less work to do
- CPU 1 becomes the bottleneck
Cyclic-striped distribution

- CPU 0 gets odd rows
- CPU 1 gets even rows
- CPU 0 and 1 have more or less the same amount of work
Traveling Salesman Problem (TSP)

- Find shortest route for salesman among given set of cities (NP-hard problem)
- Each city must be visited once, no return to initial city
Sequential branch-and-bound

- Structure the entire search space as a tree, sorted using nearest-city first heuristic
Pruning the search tree

- Keep track of best solution found so far (the “bound”)
- Cut-off partial routes \geq bound
Parallelizing TSP

- Distribute the search tree over the CPUs
- Results in reasonably large-grain jobs
Distribution of the tree

- Static distribution: each CPU gets fixed part of tree
 - Load imbalance: subtrees take different amounts of time
 - Impossible to predict load imbalance statically (as for Gaussian)
Dynamic load balancing: Replicated Workers Model

- Master process generates large number of jobs (subtrees) and repeatedly hands them out
- Worker processes repeatedly get work and execute it
- Runtime overhead for fetching jobs dynamically
- Efficient for TSP because the jobs are large
Real search spaces are huge

- NP-complete problem -> exponential search space
- Master searches MAXHOPS levels, then creates jobs
 - Eg for 20 cities & MAXHOPS=4 -> 20*19*18*17 (>100,000) jobs, each searching 16 remaining cities
Parallel TSP Algorithm (1/3)

process master (CPU 0):

generate-jobs([]); /* generate all jobs, start with empty path */
for (proc=1; proc <= P; proc++) /* inform workers we're done */
 RECEIVE(proc, &worker-id); /* get work request */
 SEND(proc, []); /* return empty path */

generate-jobs (List path) {
if (size(path) == MAXHOPS) /* if path has MAXHOPS cities ... */
 RECEIVE-FROM-ANY (&worker-id); /* wait for work request */
 SEND (worker-id, path); /* send partial route to worker */
else
 for (city = 1; city <= NRCITIES; city++) /* (should be ordered) */
 if (city not on path) generate-jobs(path||city) /* append city */
}
process worker (CPUs 1..P):

int Minimum = maxint; /* Length of current best path (bound) */
List path;
for (;;)
 SEND (0, myprocid) /* send work request to master */
 RECEIVE (0, path); /* get next job from master */
 if (path == []) exit(); /* we're done */
 tsp(path, length(path)); /* compute all subsequent paths */
Parallel TSP Algorithm (3/3)

tsp(List path, int length) {
 if (NONBLOCKING_RECEIVE_FROM_ANY (&m))
 /* is there an update message? */
 if (m < Minimum) Minimum = m; /* update global minimum */
 if (length >= Minimum) return /* not a shorter route */
 if (size(path) == NRCITIES) /* complete route? */
 Minimum = length; /* update global minimum */
 for (proc = 1; proc <= P; proc++)
 if (proc != myprocid) SEND(proc, length) /* broadcast it */
 else
 last = last(path) /* last city on the path */
 for (city = 1; city <= NRCITIES; city++) /* should be ordered */
 if (city not on path) tsp(path||city, length+distance[last,city])
}

Search overhead

CPU 1

CPU 2

CPU 3

Not pruned :-(

Not pruned :-(

Not pruned :-(

Not pruned :-(

Search overhead

- Path \(<n \rightarrow m \rightarrow s>\) is started (in parallel) before the outcome \((6)\) of \(<n \rightarrow c \rightarrow s \rightarrow m>\) is known, so it cannot be pruned.
- The parallel algorithm therefore does more work than the sequential algorithm.
- This is called *search overhead*.
- It can occur in algorithms that do speculative work, like parallel search algorithms.
- Can also have negative search overhead, resulting in superlinear speedups!
Performance of TSP

• Communication overhead (small)
 – Distribution of jobs + updating the global bound
 – Small number of messages

• Load imbalances
 – Small: does automatic (dynamic) load balancing

• Search overhead
 – Main performance problem
Discussion

Several kinds of performance overhead

- Communication overhead:
 - communication/computation ratio must be low

- Load imbalance:
 - all processors must do same amount of work

- Search overhead:
 - avoid useless (speculative) computations

Making algorithms correct is nontrivial

- Message ordering
Designing Parallel Algorithms

Source: Designing and building parallel programs (Ian Foster, 1995)
(available on-line at http://www.mcs.anl.gov/dbpp)

- Partitioning
- Communication
- Agglomeration
- Mapping
Figure 2.1 from Foster's book
Partitioning

• Domain decomposition
 Partition the data
 Partition computations on data:
 owner-computes rule

• Functional decomposition
 Divide computations into subtasks
 E.g. search algorithms
Communication

- Analyze data-dependencies between partitions
- Use communication to transfer data
- Many forms of communication, e.g.
 - Local communication with neighbors (SOR)
 - Global communication with all processors (ASP)
 - Synchronous (blocking) communication
 - Asynchronous (non-blocking) communication
Agglomeration

• Reduce communication overhead by
 – increasing granularity
 – improving locality
Mapping

• On which processor to execute each subtask?

• Put concurrent tasks on different CPUs

• Put frequently communicating tasks on same CPU?

• Avoid load imbalances
Summary

Hardware and software models

Example applications
• Matrix multiplication - Trivial parallelism (independent tasks)
• Successive over relaxation - Neighbor communication
• All-pairs shortest paths - Broadcast communication
• Linear equations - Load balancing problem
• Traveling Salesman problem - Search overhead

Designing parallel algorithms