1. Consider the model \(\mathcal{M} = (W, R, V) \) given by the following picture:

(a) Write out the definitions of \(W \), \(R \) and \(V \).

(b) Show the following:
 (i) \(\mathcal{M}, a_1 \models \Box(p \lor q) \),
 (ii) \(\mathcal{M}, a_2 \models \Diamond q \rightarrow \Box \Diamond q \),
 (iii) \(\mathcal{M}, a_3 \models \Diamond p \rightarrow \Box(q \rightarrow \Box(p \rightarrow \Box p)) \).

(c) Show the following:
 (i) \(\mathcal{M} \not\models p \rightarrow \Diamond p \),
 (ii) \(\mathcal{M} \models \Box \Box \Box \neg q \),
 (iii) \(\mathcal{M} \not\models q \rightarrow (\Diamond q \rightarrow \Box(q \rightarrow \Diamond q)) \).

(d) Change the valuation \(V \) on the frame such that in the new model \(\mathcal{M}' = (W, R, V') \) it holds that: \(\mathcal{M}' \models \Box p \rightarrow p \).
2. The binary tree is the frame $\mathcal{B} = (W, R)$ where the domain W is the set of all finite strings over the alphabet $\{0,1\}$:

$$W = \{0,1\}^* = \{\varepsilon, 0, 1, 00, 01, 10, 11, 000, \ldots \}.$$

Here ε denotes the empty string, and the transition relation $R \subseteq W \times W$ is given by:

$$Rst \text{ if and only if } t = s0 \text{ or } t = s1$$

(a) Make a drawing of the first four levels of \mathcal{B}.

(b) Consider a valuation V on \mathcal{B} that makes p true on all strings of even length. Show that $\mathcal{B}, V \models \Box \Diamond p \rightarrow \Box \Diamond p$.

(c) Let V' be a valuation on \mathcal{B} which makes the variable p true on all strings whose first letter is 0, and q on strings with first letter 1, so:

$$V'(p) = \{0w \mid w \in \{0,1\}^*\}$$
$$V'(q) = \{1w \mid w \in \{0,1\}^*\}$$

Use this valuation to show that the formula λ defined by:

$$\lambda = \Diamond p \land \Diamond q \rightarrow \Diamond(p \land \Diamond q) \lor \Diamond(p \land q) \lor \Diamond(p \land q)$$

is not valid in the binary tree.

(d) Show that the formula $\Diamond \Diamond p \rightarrow \Diamond p$ is not valid in \mathcal{B}.

3. Prove or disprove universal validity of the following formulas:

(a) $\Box (p \rightarrow q) \rightarrow (\Diamond p \rightarrow \Diamond q)$

(b) $\Box (p \land q) \rightarrow (\Box p \land \Box q)$

(c) $\Box p \rightarrow \Diamond p$

(d) $\Box (\Box p \rightarrow p) \rightarrow \Box p$