A frame $\mathcal{F} = (W, R)$ is

- **symmetric** if $\forall xy (Rxy \rightarrow Ryx)$
- **serial** if $\forall x (\exists y (Rxy))$
- **partially functional** if $\forall xyz (Rxy \land Rxz \rightarrow y = z)$
- **functional** if serial and partially functional

1. Let $\mathcal{F} = (W, R)$ be a frame.

 (a) Show that the following implications hold:

 i. if \mathcal{F} is serial, then $\mathcal{F} \vDash \Box p \rightarrow \Diamond p$

 ii. if \mathcal{F} is serial, then $\mathcal{F} \vDash \Diamond \top$

 iii. if \mathcal{F} is partially functional, then $\mathcal{F} \vDash \Diamond p \rightarrow \Box p$

 (b) Show that the modal formulas in (a) define the corresponding frame property. In other words, show that the reverse implications hold as well.

2. Let \mathcal{N} be the frame (\mathbb{N}, S) of the natural numbers $\mathbb{N} = \{0, 1, 2, \ldots\}$ with the successor relation S defined by:

 $$Smn \text{ if and only if } n = m + 1,$$

 and recall the binary tree $\mathcal{B} = (\{0, 1\}^*, R)$ from last week with R defined by:

 $$Rst \text{ if and only if } t = s0 \text{ or } t = s1$$

 (a) Define a valuation U on \mathcal{N} such that:

 $$\mathcal{B}, V, \varepsilon \leftrightarrow \mathcal{N}, U, 0$$

 where V is a valuation on \mathcal{B} such that:

 $$V(p) = \{ w \in \{0, 1\}^* \mid w \text{ is of even length} \}.$$

 Show that this is the only possibility for U.

(b) Let V' be a valuation on B such that:

$$V'(p) = \{ 0w \mid w \in \{0,1\}^* \}$$
$$V'(q) = \{ 1w \mid w \in \{0,1\}^* \} .$$

Show that there exists no valuation U' on N such that:

$$B, V', \varepsilon \models N, U', 0$$

3. Consider the following two frames F and F'

Here it is to be understood that Frame F has infinitely many paths of finite length 1, 2, 3, ... Frame F' is like F but additionaly has one infinite path.

Argue that there cannot be a bisimulation Z between F and F' such that wZw'.

4. (a) Give an example of a formula φ and a model M such that neither $M \models \varphi$ nor $M \models \neg \varphi$.

(b) Give an example of a formula φ, a frame F and two models M and M' based on F such that $M \models \varphi$ and $M' \models \neg \varphi$.

5. Consider the frame $F = (W,R)$ with set of worlds $W = \{1, 2, 3\}$ and $R = \{(1,1), (1,2), (1,3), (2,3)\}$. Give for every $i \in W$ a formula ϕ_i that is for any valuation true in i, but not in any $j \in W \setminus \{i\}$. So $F, V, i \models \phi_i$ for any V, but for $i \neq j$ we have for all V that $F, V, j \not\models \phi_i$.

2