Exercises

1. Formulate the box version of “Modal Decomposition” (MLOM, p. 41, and slide number 8 of lecture 6), i.e., give necessary and sufficient conditions for validity of a modal sequent of the form

\[\Box p, \Box \varphi_1, \ldots, \Box \varphi_k \implies \Box \psi_1, \ldots, \Box \psi_m, \Box \bar{q} \]

2. Consider both the sequent- and the tableau approach for the following formulas:

(a) \(\Diamond p \land \Diamond q \rightarrow \Diamond (p \land q) \),
(b) \((\Box p \rightarrow \Box q) \rightarrow \Box (p \rightarrow q) \)

(see also MLOM p44).

3. Prove or disprove the validity of the following formulas in the temporal frame \(\mathcal{N} = (\mathbb{N}, \prec) \) of the natural numbers \(\mathbb{N} = \{0, 1, \ldots \} \) with the usual ordering \(\prec \):

(a) \(\Diamond \Box p \rightarrow \Box \Diamond p \)
(b) \(\Box \Diamond p \rightarrow \Diamond \Box p \)
(c) \(\langle F \rangle [F] \bot \)
(d) \(\langle P \rangle \top \rightarrow \langle P \rangle [P] \top \)
(e) \(\langle P \rangle \langle F \rangle q \rightarrow \langle \langle P \rangle q \lor q \lor \langle F \rangle q \rangle \)

4. Show that the formula

\[\lambda = \Diamond p \land \Diamond q \rightarrow \Diamond (p \land \Diamond q) \lor \Diamond (p \land q) \lor \Diamond (\Diamond p \land q) \]

defines right-linearity, that is, for all (not necessarily temporal) frames \(\mathcal{F} = (W, R) \):

\(\mathcal{F} \models \lambda \) if and only if \(R \) is right-linear

A relation \(R \) is right-linear if \(R_{xy} \land R_{xz} \) implies \(R_{yz} \lor y = z \lor R_{zy} \) for all \(x, y, z \).
5. Show that $\Diamond p \rightarrow \Diamond \Diamond p$ defines density.

6. Let τ and γ abbreviate the following formulas:

$$
\tau = (\langle F \rangle[F]q \land \langle F \rangle\neg q) \rightarrow \langle F \rangle(\neg q \land [F]q)
$$

$$
\gamma = (\langle F \rangle[F]q \land \langle F \rangle\neg q) \rightarrow \langle F \rangle([F]q \land [P](F)\neg q)
$$

Consider the temporal frames $Z = (\mathbb{Z}, <)$, $Q = (\mathbb{Q}, <)$, and $R = (\mathbb{R}, <)$ of the integers, rational and real numbers, respectively, with their usual orderings.

(a) Show that τ is valid in Z.

(b) Show that τ is not valid in Q.

(c) Show that γ is not valid in Q.

(d) Is γ valid in R?