Notation: For a frame \((W, R)\) and a point \(x \in W\), we will use \(R[x]\) to denote the set of \(R\)-successors of \(x\) as follows: \(R[x] = \{y \mid Rxy\}\).

Answers:

1. (a)
 \[W = \{a_1, a_2, a_3, a_4, a_5, a_6, a_7\} \]

 \[R = \{(a_1, a_2), (a_1, a_3), (a_1, a_4), (a_2, a_5), (a_3, a_5), (a_4, a_6), (a_5, a_7), (a_6, a_7)\} \]

 \[V(p) = \{a_1, a_2, a_5, a_7\} \]

 \[V(q) = \{a_2, a_3, a_4, a_6\} \]

 (b) (ii) \(a_2 \not\models \diamond q \rightarrow \diamond \diamond q\) holds because \(a_2 \not\models \diamond q\), and this is because \(a_5 \not\in V(q)\) and \(a_5\) is the only \(R\)-successor of \(a_2\).

 (iii) To see that \(a_3 \models \diamond p \rightarrow \square (q \rightarrow \square (p \rightarrow \square p))\) we have to check that \(a_3 \models \square (q \rightarrow \square (p \rightarrow \square p))\) (because \(a_3 \models \diamond p\) holds). So we check \(x \models q \rightarrow \square (p \rightarrow \square p)\) for every \(x \in R[a_3] = \{a_5, a_6\}\):

 - \(a_5 \not\models q\), whence \(a_5 \not\models q \rightarrow \square (p \rightarrow \square p)\);
 - \(a_6 \models q\), so we need to check \(a_6 \not\models \square (p \rightarrow \square p)\), which means, as \(R[a_6] = \{a_7\}\), to check that \(a_7 \not\models p \rightarrow \square p\). This indeed holds since \(R[a_7] = \emptyset\), i.e., \(a_7\) is a blind world, and so, by the truth definition of \(\square\), we get \(a_7 \not\models \square p\), and therefore \(a_7 \not\models p \rightarrow \square p\).

 (c) (ii) \(\square \square \square q\) is satisfied in all points of \(\mathcal{M}\). The only point that has \(R^3\)-successors at all, is \(a_1\), namely \(a_7\) and we have \(a_7 \not\models q\). All other points vacuously satisfy \(\square \square \square \varphi\) for any formula \(\varphi\); for all \(a \neq a_1\), we have \(R^3[a] = \emptyset\).\(^1\)

 (iii) We have to find a point \(a_i\) such that \(\mathcal{M}, a_i \not\models q \rightarrow (\diamond q \rightarrow \square (q \rightarrow \diamond q))\), i.e., such that \(a_i \not\models q\) and \(a_i \models \diamond q\) but \(a_i \not\models (q \rightarrow \diamond q)\). The only candidates meeting the first two, are \(a_3\) and \(a_4\). In fact both will do, as the share \(a_6\) as their \(R\)-successor, and indeed in \(a_6\) the implication \(q \rightarrow \diamond q\) is false (we have \(a_6 \models q\) and \(a_6 \not\models \diamond q\)). Hence we have \(a_4 \not\models (q \rightarrow \diamond q)\).

\(^1\)This possibly sounds a bit vague, but recall that in the lecture we have seen that the composed modality \(\Box^n\) is interpreted by the composed relation \(R^n\), see the remark at the end of this note.
(d) Just let \(p \) be true in all worlds. Then \(\Box p \rightarrow p \) holds everywhere. In fact, this valuation \((V'(p) = W) \) is the only option to make \(\Box p \rightarrow p \) globally true. The reason is that \(\Box p \) is true in \(a_7 \) independent of the valuation we choose. So, in order for the implication \(\Box p \rightarrow p \) to become true in \(a_7 \), we have to make \(p \) true in \(a_7 \). Reasoning backwards, we see that then also \(a_5 \) and \(a_6 \) need to have \(p \), and, in turn, also \(a_2, a_3, \) and \(a_4 \). At last, because of that, also \(a_1 \) must be in the valuation of \(p \).

2. (a) The first four levels of the complete binary tree \(\mathcal{B} \):

![Diagram of the complete binary tree]

(b) The given valuation \(V \) is that \(p \) holds at all and only the strings of even length. In order to show that the formula \(\Box \Diamond p \rightarrow \Box \Box p \) is true throughout the model \((\mathcal{B}, V) \), we consider an arbitrary point \(s \in \{0,1\}^* \) in this model, and assume \(s \models \Box \Diamond p \). Our goal is to show \(s \not\models \Diamond \Diamond p \). From \(s \models \Box \Diamond p \) we obtain \(s0 \not\models \Diamond p \) (and also \(s1 \not\models \Diamond p \)). In turn, \(s0 \not\models \Diamond p \) means that \(s00 \not\models p \) or \(s01 \not\models p \). In both cases we see that \(s \) is of even length. This entails that \(s0 \not\models \Box p \) because both children of \(s0 \) have even length. We conclude \(s \not\models \Diamond \Diamond p \).

(c) Now we consider the valuation \(V' \) on \(\mathcal{B} \), which makes \(p \) true at all strings that start with a \(0 \), and make \(q \) true at all points that start with a \(1 \). So \(p \) holds everywhere in the left immediate subtree of the root \(\varepsilon \), whereas \(q \) holds in the entire right immediate subtree of \(\varepsilon \). Moreover, \(\varepsilon \not\in V'(p) \) and \(\varepsilon \not\in V'(q) \).

We have to show that the formula

\[
\Diamond p \land \Diamond q \rightarrow \Diamond (p \land q) \lor \Diamond (p \land q) \lor (\Diamond p \land q)
\]

is not true in all points of the model \((\mathcal{B}, V') \). The only candidate to falsify this formula is \(\varepsilon \), as it is the only one that sees a point with \(p \) (namely \(0 \)) and a point with \(q \) (namely \(1 \)), so that \(\varepsilon \not\models \Diamond p \land \Diamond q \). All three disjuncts of the right-hand side of the implication are false in \(\varepsilon \):

2
- $0 \not\in \diamond q$ (by $00 \not\in q$ and $01 \not\in q$), so $0 \not\in p \land \diamond q$. As $1 \not\in p$, also $1 \not\in p \land \diamond q$. Hence $\varepsilon \not\in \diamond (p \land \diamond q)$.
- $0 \not\in q$, so $0 \not\in p \land q$, and $1 \not\in p \land q$. Hence $\varepsilon \not\in \diamond (p \land q)$.
- $0 \not\in q$, so $0 \not\in \diamond p \land q$. $1 \not\in \diamond p$ (by $10 \not\in p$ and $11 \not\in p$), so $1 \not\in \diamond p \land q$. Hence $\varepsilon \not\in \diamond (p \land q)$.

(d) To show that $\diamond \diamond p \rightarrow \diamond p$ is not valid in \mathcal{B} we have to come up with a valuation V'' and a point x, such that $\mathcal{B}, V'', x \models \diamond \diamond p$ and $\mathcal{B}, V'', x \not\models \diamond p$. For example, we can take $V''(p) = \{00\}$. Then $\mathcal{B}, V'', \varepsilon \models \diamond \diamond p$ (since \mathcal{B}, V'', $0 \models \diamond p$), but $\mathcal{B}, V'', \varepsilon \not\models \diamond p$ (since $0 \not\in p$ and $1 \not\in p$). Another example is the model from (b).

3. (a) We have $\models \Box (p \rightarrow q) \rightarrow (\diamond p \rightarrow \diamond q)$.
(b) The formula $\Box (p \land q) \rightarrow (\diamond p \land \diamond q)$ is not universally valid. This means we have to give a concrete model and a point where the formula does not hold. Consider the one-point model $\langle \bullet, \emptyset, V \rangle$ without any arrows, and with V irrelevant. In blind worlds boxed formulas always hold whereas diamonds always fail. So $\bullet \models \Box (p \land q)$ and $\bullet \not\models \diamond p$ and $\bullet \not\models \diamond q$. And so $\bullet \not\models \Box (p \land q) \rightarrow (\diamond p \land \diamond q)$.
(c) The formula $\Box (p \land q) \rightarrow (\Box p \land \Box q)$ is valid in all frames. Let $\mathcal{M} = (W, R, V)$ be an arbitrary model, x an arbitrary point of \mathcal{M}, and assume $x \models \Box (p \land q)$. In order to show $x \models \Box p$ we consider an arbitrary y with Rxy (so the goal is to show $y \models p$). From the assumption $x \models \Box (p \land q)$ we know that $y \models p \land q$, and so $y \models p$. The argument for $x \models \Box q$ is analogous (pick an arbitrary R-successor z of $x \ldots$). So we conclude $x \models \Box (p \land q) \rightarrow (\Box p \land \Box q)$. As \mathcal{M} and x were arbitrary we thus have shown universal validity of the formula.
(d) The formula $\Box p \rightarrow \diamond p$ is valid precisely in the serial frames, that is frames where every point has at least one successor. The one-point model mentioned under (b) forms a counterexample against universal validity: $\bullet \models \Box p$ but $\bullet \not\models \diamond p$.

Remark. In question 1 (c) (ii) we refer to the following fact:

$$\mathcal{M}, x \models \Box^n \varphi \quad \text{if and only if} \quad \mathcal{M}, y \models \varphi \quad \text{for all} \quad y \quad \text{such that} \quad x R^n y,$$

(1)

for all models $\mathcal{M} = (W, R, V)$, worlds $x \in W$, formulas φ and natural numbers n. Here, for every $n \in \mathbb{N}$, the modality \Box^n, and the relation R^n
are defined by
\[
\begin{align*}
\Box^0 \varphi &= \varphi \\
\Box^{n+1} \varphi &= \Box \Box^n \varphi
\end{align*}
\]

\[R^0 = \text{Id} = \{(x, x) \mid x \in W\} \]

\[R^{n+1} = R \circ R^n,\]

where for binary relations \(S, T \subseteq W \times W\), their composition \(S \circ T\) is defined by
\[
S \circ T := \{(x, z) \mid \exists y. (x, y) \in S \land (y, z) \in T\}.
\]

(Note that \(S \circ \text{Id} = \text{Id} \circ S = S\) and so \(R^1 = R\).)

We prove (1) by induction on \(n\). If \(n = 0\), \(\Box^n \varphi = \varphi\) and \(R^n = \text{Id}\). So “\(M, y \models \varphi\) for all \(y\) such that \(xR^ny\)” boils down to “\(M, x \models \varphi\)”, and the equivalence holds trivially. For the induction step, fix an arbitrary \(n \in \mathbb{N}\) and assume the statement (1) holds for \(n\) (this is called the induction hypothesis, IH). We have to prove it holds for \(n + 1\) too. Here goes:

\[
M, x \models \Box^{n+1} \varphi \iff M, x \models \Box \Box^n \varphi
\]

\[
\iff \forall x' (xRx' \implies M, x' \models \Box^n \varphi)
\]

\[
\iff \forall x' (xRx' \implies \forall y (x'R^ny \implies M, y \models \varphi)) \quad \text{(by IH)}
\]

\[
\iff \forall x' \forall y (xRx' \implies (x'R^ny \implies M, y \models \varphi))
\]

\[
\iff \forall y \forall x' (xRx' \implies (x'R^ny \implies M, y \models \varphi))
\]

\[
\iff \forall y \forall x' ((xRx' \land x'R^ny) \implies M, y \models \varphi)
\]

\[
\iff \forall y (\exists x' (xRx' \land x'R^ny) \implies M, y \models \varphi)
\]

\[
\iff \forall y (xR^{n+1}y \implies M, y \models \varphi).
\]