an alternative semantics

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let (\mathcal{M} = (W, R, V)) be a model. We define ([\varphi]_\mathcal{M} \subseteq W), the interpretation of a formula (\varphi) in the model (\mathcal{M}), inductively by</td>
</tr>
<tr>
<td>([p]_\mathcal{M} = V(p)) ((p \in \text{VAR}))</td>
</tr>
<tr>
<td>([\bot]_\mathcal{M} = \emptyset)</td>
</tr>
<tr>
<td>([\top]_\mathcal{M} = W)</td>
</tr>
<tr>
<td>([-\varphi]\mathcal{M} = W \setminus [\varphi]\mathcal{M})</td>
</tr>
<tr>
<td>([\varphi \lor \psi]\mathcal{M} = [\varphi]\mathcal{M} \cup [\psi]_\mathcal{M})</td>
</tr>
<tr>
<td>([\varphi \land \psi]\mathcal{M} = [\varphi]\mathcal{M} \cap [\psi]_\mathcal{M})</td>
</tr>
<tr>
<td>([\varphi \rightarrow \psi]\mathcal{M} = \neg[\varphi]\mathcal{M} \cup [\psi]_\mathcal{M})</td>
</tr>
<tr>
<td>([\Diamond \varphi]\mathcal{M} = { w \in W \mid \exists v \ (Rwv \land v \in [\varphi]\mathcal{M}) })</td>
</tr>
<tr>
<td>([\Box \varphi]\mathcal{M} = { w \in W \mid \forall v \ (Rwv \implies v \in [\varphi]\mathcal{M}) })</td>
</tr>
</tbody>
</table>

(for \(X \subseteq W \) we write \(\neg X \) to denote the **complement** of \(X \), i.e., \(\neg X = W \setminus X \))
Lemma

The interpretation of φ in $\mathcal{M} = (W, R, V)$ is the set of states of \mathcal{M} where φ is true:

$$\mathcal{M}, w \models \varphi \iff w \in [\varphi]_{\mathcal{M}}$$

Hence, we also have:

$$\mathcal{M} \models \varphi \iff [\varphi]_{\mathcal{M}} = W \quad (1)$$
evaluating substitution instances

Definition

Let $\mathcal{M} = (W, R, V)$ be a model, and σ a substitution.
Define $\mathcal{M}^\sigma = (W, R, V^\sigma)$ where V^σ is defined by

$$(V^\sigma)(p) = [\sigma(p)]_M \quad (p \in \text{VAR})$$

Lemma

$$[\varphi^\sigma]_M = [\varphi]_{M^\sigma} \quad (2)$$
validity is closed under substitution

Theorem

If a formula \(\varphi \) is valid in a frame \(\mathcal{F} \), then so are all its substitution instances:

\[
\mathcal{F} \models \varphi \quad \iff \quad \mathcal{F} \models \varphi^\sigma
\]

Proof: immediate from (1) and (2).
substitution as a tool to derive new validities

- substitution generates new valid formulas from old ones
- example: if $\mathcal{F} \models \Box \Diamond p \rightarrow \Diamond \Box p$ then $\mathcal{F} \models \Box \Diamond \varphi \rightarrow \Diamond \Box \varphi$ for all formulas φ
- if ψ is a substitution instance of a propositional tautology then ψ is a modal tautology
- let $\delta : \text{VAR} \rightarrow \text{FORM}$ be the substitution defined by
 \[\delta(p) = \neg p \quad (p \in \text{VAR}) \]
- then we have:
 \[\mathcal{F} \models \varphi \iff \mathcal{F} \models \varphi^\delta \]
- and so:
 \[\mathcal{F} \models p \rightarrow \Diamond p \iff \mathcal{F} \models \Box p \rightarrow p \]
 \[\mathcal{F} \models \Diamond \Diamond p \rightarrow \Diamond p \iff \mathcal{F} \models \Box p \rightarrow \Box \Box p \]
 \[\mathcal{F} \models p \rightarrow \Box \Diamond p \iff \mathcal{F} \models \Diamond \Box p \rightarrow p \]
 \[\mathcal{F} \models \Diamond p \rightarrow \Box \Diamond p \iff \mathcal{F} \models \Diamond \Box p \rightarrow \Box p \]
 etc.
\(\square \Box p \rightarrow p \) valid in all symmetric frames

let \(\text{Symm} = \{(W, R) \mid \forall xy (Rxy \implies Ryx)\} \)

\[\text{Symm} \models \square \Box p \rightarrow p \]

1. let \(\mathcal{F} = (W, R) \in \text{Symm} \)
2. consider an arbitrary model \(\mathcal{M} \) based on \(\mathcal{F} \), and a state \(w \in W \) such that \(\mathcal{M}, w \models \square \Box p \). we have to show \(\mathcal{M}, w \models p \)
3. from 2 follows the existence of a state \(v \in W \) such that
 a. \(Rwv \) and
 b. \(\mathcal{M}, v \models \Box p \)
4. \(\mathcal{M}, u \models p \) for all \(u \) with \(Rvu \) (3b)
5. \(Rvw \) (3a & 1)
6. \(\mathcal{M}, w \models p \) (5 & 4)
7. \(\mathcal{M}, w \models \square \Box p \rightarrow p \) (2 & 6)
8. \(\text{Symm} \models \square \Box p \rightarrow p \)
truth versus validity

- validity is a **stable** form of truth
- validity is independent of valuation, truth is not, e.g.:
 - $\mathcal{F} \models p \rightarrow \diamond p$ implies $\mathcal{F} \models q \rightarrow \diamond q$
 - but $\mathcal{M} \models p \rightarrow \diamond p$ does not imply $\mathcal{M} \models q \rightarrow \diamond q$

- local truth (truth in a point of a model) is preserved by
 - modus ponens: if $\mathcal{M}, w \models \varphi \rightarrow \psi$ and $\mathcal{M}, w \models \varphi$ the $\mathcal{M}, w \models \psi$
- global truth (truth in all points of a model) is preserved by
 - modus ponens: if $\mathcal{M} \models \varphi \rightarrow \psi$ en $\mathcal{M} \models \varphi$ the $\mathcal{M} \models \psi$
 - necessitation: if $\mathcal{M} \models \varphi$ then $\mathcal{M} \models \Box \varphi$

- frame validity (truth in all models on the frame) is preserved by:
 - modus ponens: if $\mathcal{F} \models \varphi \rightarrow \psi$ and $\mathcal{F} \models \varphi$ then $\mathcal{F} \models \psi$
 - necessitation: if $\mathcal{F} \models \varphi$ then $\mathcal{F} \models \Box \varphi$
 - substitution: if $\mathcal{F} \models \varphi$ then $\mathcal{F} \models \varphi^\sigma$
The set of universally valid formulas, or modal tautologies:

- contains all propositional tautologies
- contains $\Box(p \to q) \to (\Box p \to \Box q)$
- is closed under modus ponens:
 if $\vdash \varphi \to \psi$ and $\vdash \varphi$ then $\vdash \psi$
- is closed under necessitation:
 if $\vdash \varphi$ then $\vdash \Box \varphi$
- is closed under substitution:
 if $\vdash \varphi$ then $\vdash \varphi^\sigma$
- and contains nothing else.
Definition

A modal formula φ defines, or characterizes, a class C of frames (a frame property) when

$$\mathcal{F} \in C \iff \mathcal{F} \models \varphi$$

In other words, φ characterizes C if

(⇒) φ is valid in C: $C \models \varphi$

and

(⇐) φ is invalid outside of C:

if $\mathcal{F} \notin C$ then $\mathcal{F} \not\models \varphi$
example: ♢□p → p characterizes symmetry

Example

\[\mathcal{F} \in \text{Symm} \text{ if and only if } \mathcal{F} \models \Box \Box p \rightarrow p \]

(⇒) Symm ⊨ ♢□p → p (slide 13)

(⇐) by contraposition:

- let \(\mathcal{F} = (W, R) \not\in \text{Symm} \). we will show \(\mathcal{F} \not\models \Box \Box p \rightarrow p \)
- as \(R \) is not symmetric, there are states \(a \) and \(b \) (not necessarily distinct) such that \(Rab \) and \(\neg Rba \)
- let \(V \) on \(\mathcal{F} \) be such that \(V(p) = \{ x \in W \mid Rbx \} \) and \(\mathcal{M} = (\mathcal{F}, V) \)
- then \(\mathcal{M}, b \models \Box p \)
- by \(Rab \) also \(\mathcal{M}, a \models \Box \Box p \)
- also \(\mathcal{M}, a \not\models p \), as \(a \not\in V(p) \) since \(\neg Rba \)
- so \(\mathcal{M}, a \not\models \Box \Box p \rightarrow p \) and so \(\mathcal{F} \not\models \Box \Box p \rightarrow p \)
- conclusion: if \(\Box \Box p \rightarrow p \) is valid in a frame, then the frame is symmetric
example: $\diamond p \rightarrow \square p$ characterizes partial functionality

Example

$\mathcal{F} \in PF$ if and only if $\mathcal{F} \models \diamond p \rightarrow \square p$

where

$PF = \{ (W, R) \mid \forall xyz \ (Rxy \land Rxz \implies y = z) \}$
example

$$(W, R) \models \Box(\Box p \rightarrow q) \vee \Box(\Box q \rightarrow p)$$

if and only if

$$\{ (W, R) \mid \forall xyz \in W \ (Rxy \land Rxz \rightarrow Ryz \lor Ryz) \}$$