program correctness

Hoare Logic is used to prove program correctness of while programs

Hoare Logic uses preconditions and postconditions: \(\{ \phi \} P \{ \psi \} \)

we use regular programs which slightly generalize while programs

we use Propositional Dynamic Logic to express correctness

overview

propositional dynamic logic (PDL): starting point

for every program \(\alpha \) we have a modality \(\langle \alpha \rangle \)

\(\langle \alpha \rangle \phi \) intuitively means
it is possible to execute \(\alpha \) starting in the current state,
and halt (successfully) in a state satisfying \(\phi \)

\([\alpha] \phi \) intuitively means
if \(\alpha \) halts (successfully), then it halts in a state satisfying \(\phi \)
set Prog of PDL (or regular) programs: definition

atomic program
 a from a set A of atomic programs
sequential composition
 $\alpha; \beta$
non-deterministic choice
 $\alpha \cup \beta$
iteration
 α^*
test
 $\phi?$ with ϕ a formula, so depends on the grammar for formulas

PDL programs: intuitive meaning

α
 atomic, indecomposable, step
$\phi?$
 if ϕ then skip else abort, that is,
 if ϕ holds then continue without changing state,
 if ϕ does not hold then block without halting
$\alpha; \beta$
 do α, then do β
$\alpha \cup \beta$
 choose α or β and execute it
α^*
 choose $n \geq 0$ and execute α n times

PDL formulas: definition

atomic formula
 p from a set Var of atomic propositions
true
 \top
negation
 $\neg \phi$
conjunction
 $\phi \land \psi$
diamond
 $\langle \alpha \rangle \phi$, with α a program, so depends on the grammar for programs

mutual dependency: examples

$[p]?p$
 if $?p$ halts then in a state satisfying p
$\langle p? \rangle p$
 it is possible to execute $p?$ and halt in a state where p holds
$[\alpha] \bot$
 α never terminates
$[\alpha] \top$
 is always true
$\top?$
 is skip
$\bot?$
 is fail
PDL formulas: examples

\([\alpha \cup \beta] \phi\)
always if we execute \(\alpha\) or \(\beta\) we arrive at a state where \(\phi\) holds

\(((\alpha \beta)^*) \phi\)
there is a sequence of alternating executions of \(\alpha\) and \(\beta\) bringing us to a state where \(\phi\) holds

\(\langle \alpha^* \rangle \phi \leftrightarrow \phi \lor \langle \alpha; \alpha^* \rangle \phi\)
\(\phi\) holds after a finite number of \(\alpha\) steps
if and only if
either \(\phi\) holds here, or we can do an \(\alpha\) step and then more \(\alpha\) steps to reach
a state where \(\phi\) holds

while programs and regular programs

while programs can be encoded as regular programs:

\[
\text{if } \phi \text{ then } \alpha \text{ else } \beta = (\phi ?; \alpha) \cup (\neg \phi ?; \beta)
\]

\[
\text{while } \phi \text{ do } \alpha = (\phi ?; \alpha^*; \neg \phi ?)
\]

towards a semantics for PDL formulas

we obtain the semantics as an instance of multi-modal logic
in particular:
\[
\mathcal{M}, s \models \langle \alpha \rangle \phi \text{ iff there is } s' \text{ such that } (s, s') \in R_\alpha \text{ and } \mathcal{M}, s' \models \phi
\]
however:
an arbitrary model does respect the intended meaning of the programs
therefore we will impose conditions on the relations \(R_\alpha\)

alternative approach in MLOM 14.3

PDL formulas: more examples

\([\alpha] \phi \land \psi \leftrightarrow [\alpha] \phi \land [\alpha] \psi\) (seems a tautology)

\([\alpha; \beta] \phi \leftrightarrow [\alpha][\beta] \phi\) (seems a tautology)

\([\alpha] p \leftrightarrow [\beta] p\) (gives an equivalence between \(\alpha\) and \(\beta\)
intuitive requirements for a PDL model

consider \(a; b \) and \(R_{a;b} \)

consider \(a \cup b \) and \(R_{a\cup b} \)

consider \(a^* \) and \(R_{a^*} \)

this suggests to start from all the \(R_a \) with \(a \in A \) an atomic program

but what to do with \(R_{\phi} \) ?

PDL frame: definition

a Prog-frame \(\mathcal{F} = (W, \{ R_\alpha | \alpha \in \text{Prog} \}) \) is a PDL-frame if

\[
R_{\alpha \beta} = R_\alpha \circ R_\beta, \quad \text{and} \\
R_{\alpha \cup \beta} = R_\alpha \cup R_\beta, \quad \text{and} \\
R_{\alpha^*} = (R_\alpha)^*
\]

so if we know all \(R_a \) then we know enough!

what are the definitions on the relations?

more definitions on relations

the identity relation: \(\text{Id} = \{(x, x)\} \)

the \(n \)-fold composition of \(R \): \(R^0 = \text{Id} \) and \(R^{n+1} = R^n \circ R \)

the reflexive-transitive closure of \(R \): \(R^* = \bigcup_{n \geq 0} R^n \)

note: if \(x R^* y \), then there exists \(n \geq 0 \) and there exist \(x_1, \ldots, x_{n-1} \) such that \(x = x_0 R x_1 R \ldots R x_n = y \)

note: \(R^* \) is the smallest reflexive and transitive relation containing \(R \)

definitions on relations

the composition of \(R \) and \(S \): \(R \circ S = \{(x, z) | \exists y : Rxy \land Syz\} \)

the union of \(R \) and \(S \): \(R \cup S = \{(x, y) | Rxy \lor Sxy\} \)
PDL model: definition

a model $\mathcal{M} = (W, \{ R_\alpha | \alpha \in \text{Prog} \}, V)$ is a PDL-model if

$(W, \{ R_\alpha | \alpha \in \text{Prog} \}$ is a PDL-frame, and

$R_\phi = \{(w, w) | \mathcal{M}, w \models \phi \}$

PDL extension: definition

now it is sufficient to know the R_a for all $a \in A$

Let $\mathcal{M} = (W, \{ R_a | a \in A \}, V)$ be an A-model

Its PDL-extension is defined as $\hat{\mathcal{M}} = (W, \{ \hat{R}_\alpha | \alpha \in \text{Prog} \}, V)$ with

$\hat{R}_a = R_a$

$\hat{R}_{\alpha \beta} = \hat{R}_\alpha \circ \hat{R}_\beta$

$\hat{R}_{a \cup \beta} = \hat{R}_a \cup \hat{R}_\beta$

$\hat{R}_\phi = \{(x, x) | \mathcal{M}, x \models \phi \}$

can we really encode Hoare Logic?

we encode a while-program as a regular program

we encode $\{ \phi \} P \{ \psi \}$ as $\phi \rightarrow [Q] \psi$ with Q the translation of P

we show that all rules from Hoare Logic are derivable

(so: yes)