1. Show the following in some detail:
 (a) $5n^2 + 3n \log n + 2n + 5 \in O(n^2)$
 (b) $20n^3 + 10n \log n + 5 \in O(n^3)$
 (c) $3 \log n + 2 \in O(\log n)$
 (d) $2^{n^2} \in O(2^n)$,
 (e) $2n + 100 \log n \in O(n)$.

2. Give a concrete example of f_1 and f_2 such that $f_1(n) \in O(g_1(n))$ and
 $f_2(n) \in O(g_2(n))$ but $f_1(n) - f_2(n) \notin O(g_1(n) - g_2(n))$.

3. Describe a recursive algorithm for finding the maximum element in an
 array of n elements. Analyse the worst-case time complexity of your al-
 gorithm.

4. Do we have $2^{n+1} \in O(2^n)$? Do we have $2^{2n} \in O(2^n)$?

5. Show the following: if $f_1(n) \in O(g_1(n))$ and $f_2(n) \in O(g_2(n))$ then $f_1(n) +
 f_2(n) \in O(g_1(n) + g_2(n))$.

6. Depict the max-heap $[16, 14, 10, 8, 7, 9, 3, 2, 4, 1]$ as a tree.

7. Give the array representation of the max heap of the following picture:

8. Is the array

 $[23, 17, 14, 6, 13, 10, 1, 5, 7, 12]$

 a max-heap?

9. Is an array of decreasing numbers always a max-heap?
10. Show that in any subtree of a max-heap, the root of the subtree contains the largest value occurring anywhere in that subtree.

11. Where in a max-heap is the smallest element, assuming that all elements are distinct?

12. What are the minimum and maximum numbers of elements in a heap of height \(h \)?

13. Show that an \(n \)-element heap has height \(\lceil \log(n) \rceil \).

14. Turn the following sequences into a heap, using the procedure `downMaxHeap` from the slides which is the same as the procedure `MaxHeapify` from the book. First determine (by hand) the index of the node that should be bubbled. Use the Figure in the book as model.

 1 8 6 5 3 7 4
 27 17 3 16 13 10 1 5 7 12 4 8 9 0

15. Provide pseudo-code for a procedure `downMinHeap` or in book-terminology `MinHeapify`, similar to `downMaxHeap` or `MaxHeapify` that takes as input an array \(A \) and an index \(i \) in \(A \), and that let the key at \(i \) bubble down to restore the min-heap property.

16. Illustrate the operation of `buildMaxHeap` on the sequence

 5 3 17 10 84 19 6 22 9

 using Figure 6.3 from the book as model.

17. Use heapsort to sort the following sequences; use Figure 6.4 in the book as model.

 1 2 3 4 5
 5 4 3 2 1
 5 13 2 25 7 17 20 8 4

18. Describe an algorithm for checking whether an array of numbers is a max-heap, and determine its worst-case time complexity.

19. Give a definition of a ternary max-heap.