1. Illustrate the operation that removes and returns the maximum element on the max-heap $A = [15, 13, 9, 5, 12, 8, 7, 4, 0, 6, 2, 1]$.

2. Let $A = [15, 13, 9, 5, 12, 8, 7, 4, 0, 6, 2, 1]$ be a max-heap. Illustrate the operation of adding 10.

3. Apply quicksort to the following input:

 8 5 2 7 1 3 4 6

 Illustrate at least two runs of partition.

4. Partition can be implemented in many different ways.
 Consider for example a variation where we use $A[p]$ as pivot instead of $A[r]$.
 You may consider even two different solutions: one where you only manipulate with the pivot initially, and one where you consider a ‘mirrored version’ of partition.

5. Here is an example of an alternative implementation of partition.

 Algorithm partition(A, l, r):

 $i := l - 1$
 $j := r + 1$

 while $i < j$ do

 $i := i + 1$

 while $A[i] \leq A[l]$ and $i \leq r$ do

 $i := i + 1$

 $j := j - 1$

 while $A[j] > A[l]$ and $j > l$ do

 $j := j - 1$

 if $i < j$ then

 swap($A[i], A[j]$)
 swap($A[l], A[i - 1]$)

 return $i - 1$
Apply this algorithm to the input we already used above:

\[8 \ 5 \ 2 \ 7 \ 1 \ 3 \ 4 \ 6 \]

or, maybe better, to

\[3 \ 6 \ 1 \ 7 \ 8 \ 2 \ 5 \ 4 \ 6 \]

6. We use quicksort and partition as given in the book.
 Give an example of a best-case input of length 7 for quicksort. Also draw the recursion tree.

7. We use quicksort and partition as given in the book.
 Give an example of a worst-case input for quicksort. Also draw the recursion tree.

8. Adapt quicksort (as given in the book) so that it sorts sequences in non-increasing (instead of non-decreasing) order.

9. Explain why the running time of partition (as given in the book) is in \(\mathcal{O}(n) \).

 (Remark: even in \(\Theta(n) \).)

10. Determine for each of the following functions \(f \) and \(g \) whether \(f \in \mathcal{O}(g) \) and/or \(g \in \mathcal{O}(f) \).

 (a) \(f(n) = 5n^2 + 3n + 7 \) and \(g(n) = n^3 \).
 (b) \(f(n) = \sum_{i=1}^{n} i \) and \(g(n) = n^2 \).
 (c) \(f(n) = n^n \) and \(g(n) = n! \).
 (d) \(f(n) = n \log_2 n \) and \(g(n) = n\sqrt{n} \).