roadmap

‘in between math and programming’
understanding of classical algorithms and data structures
understanding of classical programming paradigms
divide and conquer, dynamic programming, greedy algorithms
be able to analyze time complexity and space complexity
smart choices for data may improve the performance of an algorithm
be able to design new algorithms and reason about them
overview

- make change
- max-subarray
- rod cutting
- knapsack 0/1
- material
overview

- make change
- max-subarray
- rod cutting
- knapsack 0/1
- material
making change: daily life

make 4.35 euro with a minimum number of coins:

as many 2 as possible: $2 + 2$

as many 0,20 as possible: $2 + 2 + 0.2$

as many 0,1 as possible: $2 + 2 + 0.2 + 0.1$

as many 0,05 as possible: $2 + 2 + 0.2 + 0.1 + 0.05$

this is a greedy approach
make change: artificial example

we have (unlimited number of) coins of value 1, 3, and 4

how to make 6 with a minimum number of coins?

dynamic programming approach:

optimal solution using coins of value 1: \(1 + 1 + 1 + 1 + 1 + 1\)

optimal solution using coins of value 1 and 3: \(3 + 3\)

optimal solution using coins of value 1 and 3 and 4: \(3 + 3\)

optimal solution: \(3 + 3\) using dynamic programming
max-subarray problem

assume an array with integers

give the maximum of the sum of the elements of a sub-array

dexample:

```
[-10, 10, 5, -3, 2, 1]
```

yields 15
max-subarray: algorithm in $O(n^2)$

Algorithm maxSubArray(A, n):

```
max := 0
for left := 1 to n do
    sum := 0
    for right := left to n do
        sum := sum + A[right]
        if sum > max then
            max := sum
    return max
```

we explore all possibilities for left, and given left all possibilities for right
max-subarray: divide and conquer?

improve to $O(n \log n)$ using a divide and conquer approach

it still can be done better

array giving the max sum is

either left of the middle so in $A[\text{low} \ldots \text{mid}]$

or right of the middle so in $A[\text{mid} \ldots \text{high}]$

or using the middle so in $A[\text{i} \ldots \text{j}]$ with $\text{mid} \leq \text{i} < \text{j} \leq \text{high}$

algorithm is a bit hairy (not for exam)
find max-subarray in the middle

Algorithm midMaxSubArray(A, low, mid, high):

 $leftsum := -\infty$

 $sum := 0$

 for $i := mid$ **downto** low **do**

 $sum := sum + A[i]$

 if $sum > leftsum$ **then**

 $leftsum := sum$

 $maxleft := i$

 $rightsum := -\infty$

 $sum := 0$

 for $j := mid + 1$ **to** high **do**

 $sum := sum + A[j]$

 if $sum > rightsum$ **then**

 $rightsum := sum$

 $maxright := j$

 return ($maxleft$, $maxright$, $leftsum + rightsum$)
Algorithm maxSubArray(A, low, high):
 if low = high then
 return (low, high, A[low])
 else
 mid := ⌊(low + high)/2⌋
 (Llow, Lhigh, Lsum) := maxSubArray(A, low, mid)
 (Rlow, Rhigh, Rsum) := maxSubArray(A, mid + 1, high)
 (Clow, Chigh, Csum) := midMaxSubArray(A, low, mid, high)
 if Lsum ≥ Rsum and Lsum ≥ Csum then
 return (Llow, Lhigh, Lsum)
 else if Rsum ≥ Lsum and Rsum ≥ Csum then
 return (Rlow, Rhigh, Rsum)
 else
 return (Clow, Chigh, Csum)
max-subarray with divide and conquer

worst-case time complexity via a recurrence equation:

\[T(n) = \begin{cases}
1 & \text{if } n = 1 \\
2T\left(\frac{n}{2}\right) + n & \text{if } n > 1
\end{cases} \]

same as for merge sort, in \(\Theta(n \log(n)) \)

so asymptotically better than brute force which is quadratic
max-subarray: dynamic programming

idea for $B[r]$: maximal sum of subarray ending at index r

start:
$B[1] = \max\{A[1], 0\}$

either empty subarray ending at r, or continue max-subarray ending at $r - 1$:
$B[r] = \max\{0, B[r-1] + A[r]\}$

then: max-subarray of the array is max of all the $B[i]$

increase step by step the possibilities
max-subarray: algorithm in $O(n)$

Algorithm maxSubArray(A, n):

new array B

$B[1] := \max(A[1], 0)$

$m := B[1]$

for $r = 2$ to n do

$B[r] := \max(0, B[r - 1] + A[r])$

$m := \max(m, B[r])$

return m
dynamic programming

used for optimization problems such as minimize or maximize

often an efficient version of brute force

solve sub-problems and re-use solutions to sub-problems

memoization and recursion
overview

- make change
- max-subarray
- rod cutting
- knapsack 0/1
- material
rod cutting

problem: rod of n decimeter

table of prices p_i for $i = 1, \ldots, n$ decimeters

determine maximum revenue r_n

2^{n-1} possibilities
rod cutting: example

length \(n = 4 \)

table with prices:

<table>
<thead>
<tr>
<th>length (i)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>price (p_i)</td>
<td>1</td>
<td>5</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>
rod cutting: recursive algorithm

input: array $p[1 \ldots n]$ with prices and int n
output: maximum revenue possible for length m ($m \leq n$)

Algorithm rodCuttingRec(p, m):
if $m = 0$ then
 return 0
$q := -\infty$
for $i := 1$ to m do
 $q := \max(q, p[i] + \text{rodCuttingRec}(p, m - i))$
return q
time complexity

recurrence:

\[
T(0) = 1 \\
T(n) = 1 + \sum_{j=0}^{n-1} T(j)
\]

with induction follows:

\[
T(n) = 2^n
\]

intuition: at every possibility we either do or do not cut

see recursion tree for \(n = 4 \)
Algorithm rodCuttingDP\((p, n)\):

new array \(b[0\ldots n]\)

\(b[0] := 0\)

for \(j := 1\) to \(n\) do

\(q := -\infty\)

for \(i := 1\) to \(j\) do

\(q := \max(q, p[i] + b[j - i])\)

\(b[j] := q\)

return \(b[n]\)
rod cutting: time complexity

reconsider example for $n = 4$

summation $\sum_{j=1}^{n} j$ so in $O(n^2)$
rod cutting: alternatives

give not only revenue but also choice for where to cut

order the pieces in increasing length

give top-down algorithm using memoization but without recursion
overview

- make change
- max-subarray
- rod cutting
- knapsack 0/1
- material
knapsack01: problem

given:
a set S with n items
every item i has weight w_i and benefit b_i
maximum total weight W

goal:
take items $T \subseteq S$ such that $\sum_{i \in T} b_i$ maximal
under constraint $\sum_{i \in T} w_i \leq W$

naive approach:
consider all possible subsets T, this is in 2^n
S_k contains elements 1, \ldots, k

$B[k, w]$ best selection from S_k with total weight w

how to find $B[k, w]$?

if $w_k > w$: we cannot take item k

so $B[k, w] = B[k-1, w]$

if $w_k \leq w$: we may take item i

$B[k, w] = \max \{ B[k-1, w], B[k-1, w-w_k] + b_k \}$
knapsack01: algorithm

S consists of n items with b_i and w_i; W is the max total weight

Algorithm 01Knapsack(S, W):

new $B[0 \ldots n, 0 \ldots W]$

for $w := 0$ to W do

$B[0, w] := 0$

for $k := 1$ to n do

$B[k, 0] := 0$

for $w := 1$ to W do

if $w_k \leq w$ then

$B[k, w] := \max(B[k - 1, w], B[k - 1, w - w_k] + b_k)$

else

$B[k, w] := B[k - 1, w]$
knapsack01: application

- item 1 with $w_1 = 3$ and $b_1 = 9$
- item 2 with $w_2 = 2$ and $b_2 = 5$
- item 3 with $w_3 = 2$ and $b_3 = 5$
- max total weight $W = 4$

- $B[0, 0] = 0$, $B[0, 1] = 0$, $B[0, 2] = 0$, $B[0, 3] = 0$, $B[0, 4] = 0$
- $B[1, 0] = 0$, $B[1, 1] = 0$, $B[1, 2] = 0$, $B[1, 3] = 9$, $B[1, 4] = 9$
alternative where only one array is used

Algorithm 01Knapsack(S, W):

```plaintext
for $w := 0$ to $W$ do
    $B[w] := 0$

for $k := 1$ to $n$ do
    for $w := W, \ldots, w_k$ do
        if $B[w - w_k] + b_k > B[w]$ then
            $B[w] := B[w - w_k] + b_k$
```

overview

- make change
- max-subarray
- rod cutting
- knapsack 0/1
- material
extra material

- wiki knapsack problem
- wiki NP-completeness