context

picture: from math to algorithms to programming

courses before DSaA:
computational thinking, networks and graphs, logic and sets

possible courses after DSaA:
automata and complexity, algorithm engineering, bachelor project
a more precise model for instance size of the input is number of bits needed to encode it

complexity class P
contains all problems that are decidable in polynomial time

complexity class NP
contains all problems that are decidable non-deterministically in polynomial time

undecidable problems

clearly $P \subseteq NP$, but $P = NP$? is an open question
problems in \(NP\)

intuitively:

every instance has finitely many solutions

correctness of a possible solution can be checked in polynomial time
NP-completeness

A problem is NP-complete if it is in NP and every problem in NP can be reduced to it in polynomial time.

It is believed that for many problems in NP there is no polynomial algorithm.
bounded tiling

given an $n \times n$ square

given 1×1 tiles where the sides are colored

given a first row of n tiles in the square that are correctly tiled

can the complete $n \times n$ square be correctly tiled?

bounded tiling is \(NP \)-complete

there are finitely many solutions,
and the correctness check of a candidate-solution can be done in polynomial time
a formula is **satisfiable** if there is an assignment from the variables to true or false that makes the formula true.

the satisfiability problem (for prop1) is in NP

Cook’s Theorem: the satisfiability problem is NP-complete (proof via reduction of bounded tiling to satisfiability)
more \(NP\)-complete problems

determine whether a directed graph has an Hamiltonian cycle (a cycle containing all vertices)

however: determine whether a directed graph has an Euler tour is in \(O(E)\)

classical traveling salesman

decision problem for knapsack 01

optimisation problem for knapsack 01 (our problem) is pseudo-polynomial

fractional knapsack is in \(O(n \cdot \log n)\)
overview

- context of the course
- greedy
- activity selection
- fractional knapsack
- Huffman codes
- single-source shortest path
- material
we look for an optimal solution to a problem
exhaustive search is too much work
we take in each step a **locally optimal choice**
if the problem has the greedy choice property
then locally optimal choices lead to a **globally optimal solution**
Hieronymus Bosch, Allegorie op de Gulzigheid, 1495
making change

remember making change

for the euro-setting: making change admits a greedy choice

for the artificial setting \{1, 3, 4\} we need dynamic programming
overview

- context of the course
- greedy
- activity selection
- fractional knapsack
- Huffman codes
- single-source shortest path
- material
activity selection: definition

given:
set S of activities a_i each with start time s_i and finish time f_i
$s_i < f_i$

definition compatible:
two activities a_i and a_k are compatible if $f_i \leq s_k$ or $f_k \leq s_i$

question:
give a maximum-size set of mutually compatible activities
activity selection: example

set S of activities:

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>f_i</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>7</td>
<td>9</td>
</tr>
</tbody>
</table>

a_1 and a_3 are not compatible

$\{a_1, a_6\}$ is a set of mutually compatible activities

$\{a_1, a_4, a_5\}$ is a maximum-size set of mutually compatible activities

$\{a_1, a_2, a_5\}$ is a maximum-size set of mutually compatible activities

we say $\{a_1, a_4, a_5\}$ is a solution for S

set S is considered ordered on increasing finish time
algorithm for activity selection?

problem: \(S_{ij} \) set of activities that start after \(a_i \) and finish before \(a_j \)

wanted: \(A_{ij} \) maximum-size subset of \(S_{ij} \) of mutually compatible activities

suppose \(a_k \) is in \(A_{ij} \)

then (informally) \(A_{ij} = A_{ik} \cup \{a_k\} \cup A_{kj} \)

dynamic programming: take best of this, by checking all possible \(a_k \)

optimal substructure: \(A_{ik} \) and \(A_{kj} \) are solutions of problems \(S_{ik} \) and \(S_{kj} \)
simplification: greedy approach

take a_1: activity with smallest finish time f_1

then solve S_{1j}

greedy choice for activity with smallest finish time
greedy approach: correctness

let S be an activity-selection problem and

let a_1 be an activity in S with smallest finish time

we show: there is a solution for S containing a_1

let A be a solution
Let S be an activity-selection problem and

let a_1 be an activity in S with smallest finish time

we show: there is a solution for S containing a_1

let A be a solution

if $a_1 \in A$ then done
greedy approach: correctness

let S be an activity-selection problem and

let a_1 be an activity in S with smallest finish time

we show: there is a solution for S containing a_1

let A be a solution

if $a_1 \in A$ then done

if $a_1 \not\in A$ then consider $a_k \in A$ with smallest finish time
greedy approach: correctness

Let S be an activity-selection problem and let a_1 be an activity in S with smallest finish time.

We show: there is a solution for S containing a_1.

Let A be a solution.

If $a_1 \in A$ then done.

If $a_1 \notin A$ then consider $a_k \in A$ with smallest finish time.

Because $f_1 \leq f_k$ the set $A - \{a_k\} \cup \{a_1\}$ is also a solution.
iterative greedy algorithm

input: array s of start times and array f of finish times
monotonically increasing in finish time

k gives the most recent addition to A

time complexity in Θn with n amount of activities

Algorithm activitySelector(s, f):

$n := s.length$

$A := \{a_1\}$

$k := 1$

for $m = 2$ to n do

if $s[m] \geq f[k]$ then

$A := A \cup \{a_m\}$

$k := m$
activity selection: variations

every task has benefit

every task has deadline

minimalize number of resources
overview

- context of the course
- greedy
- activity selection
- fractional knapsack
- Huffman codes
- single-source shortest path
- material
fractional knapsack: example

- 50 kilo jewels, benefit 1 million euro, 0.02 million per kilo
- 1 kilo chewing gum, benefit 20 euro, not much
- 5 kilo diamonds, benefit 5 million euro, 1 million euro per kilo
- 10 kilo gold, benefit 500,000 euro, 0.05 million euro per kilo
- backpack for 20 kilo

We take as much as we can from the best benefit per weight:

5 kilo diamonds, total weight 5
10 kilo gold, total weight 15
5 kilo jewels, total weight 20
fractional knapsack: problem

given:
a set S with n items

every item i has weight w_i and benefit b_i

maximum total weight W

goal:
take fractions x_i of all items i such that

$$\sum_{i \in S} b_i \cdot \frac{x_i}{w_i} \text{ maximal}$$

under constraint $\sum_{i \in S} x_i \leq W$
fractional knapsack: idea algorithm

take in each step as much as possible from the item i with b_i/w_i maximal

that is: we take in each step a greedy choice
fractional knapsack: algorithm

input: set S with items with benefit and weight, and total weight W

Algorithm fractionalKnapsack(S, W):

```plaintext
for each item $i \in S$ do
    $x_i := 0$
    $v_i := b_i/w_i$

$w := 0$

while $w < W$ do
    remove from $S$ an item $i$ with highest value index
    $a := \min\{w_i, W - w\}$
    $x_i := a$
    $w := w + a$
```
fractional knapsack: correctness

let A be a solution for fractional knapsack problem S, W

assume A not greedy
fractional knapsack: correctness

let A be a solution for fractional knapsack problem S, W

assume A not greedy

so there are i and k with $\frac{b_i}{w_i} > \frac{b_k}{w_k}$ so i is better

and $x_i < w_i$ A does not take all of i

and $x_k > 0$ A takes some of k
fractional knapsack: correctness

let A be a solution for fractional knapsack problem S, W

assume A not greedy

so there are i and k with $\frac{b_i}{w_i} > \frac{b_k}{w_k}$ so i is better

and $x_i < w_i$ A does not take all of i

and $x_k > 0$ A takes some of k

let $a = \min\{x_k, w_i - x_i\}$ the mistake part (all of x_k or what remains of x_i)
fractional knapsack: correctness

let A be a solution for fractional knapsack problem S, W

assume A not greedy

so there are i and k with $\frac{b_i}{w_i} > \frac{b_k}{w_k}$ so i is better

and $x_i < w_i$ A does not take all of i

and $x_k > 0$ A takes some of k

let $a = \min\{x_k, w_i - x_i\}$ the mistake part (all of x_k or what remains of x_i)

take $x'_k = x_k - a$ and $x'_i = x_i + a$

\[
\frac{b_i x_i}{w_i} + \frac{b_k x_k}{w_k} \leq \frac{b_i (x_i + a)}{w_i} + \frac{b_k (x_k - a)}{w_k} = \frac{b_i x_i}{w_i} + \frac{b_k x_k}{w_k} + a\left(\frac{b_i}{w_i} - \frac{b_k}{w_k}\right)
\]

so A was not optimal
fractional knapsack: time complexity

we represent the set S as a priority queue with highest priority for higher benefit per weight value

we implement the priority queue as a heap
then: analysis yields that fractional knapsack is in $O(n \log n)$

there exists a linear time algorithm for fractional knapsack not treated in this course
greedy choice also for knapsack01?

for largest benefit does not work; take $W = 4$:

<table>
<thead>
<tr>
<th></th>
<th>w</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>s_2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>s_3</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

for lowest weight or highest benefit per weight does not work; take $W = 2$:

<table>
<thead>
<tr>
<th></th>
<th>b</th>
<th>w</th>
<th>b/w</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>s_2</td>
<td>3</td>
<td>2</td>
<td>3/2</td>
</tr>
</tbody>
</table>
overview

- context of the course
- greedy
- activity selection
- fractional knapsack
- Huffman codes
- single-source shortest path
- material
Huffman encoding: intuition

encoding of characters

character that occurs more frequently has a shorter encoding
binary coding of characters

we use words over 0 and 1 to encode characters

fixed-length code:

example: $a = 000$, $b = 001$, ASCII, Unicode

variable length code:

example: $a = 0$, $b = 101$, $c = 100$, Huffman codes
prefix codes

definition:
no codeword is the prefix of another codeword

assumption:
we work with prefix codes

example prefix code:
\[a = 0, \ b = 101, \ c = 100\]

example non prefix code:
\[a = 0, \ b = 00\]
representing codes

as a **binary tree** where left is 0, right is 1, leaves are codes

optimal code is represented by a full binary tree
(every node has 0 or 2 children)

example:

<table>
<thead>
<tr>
<th>00</th>
<th>010</th>
<th>011</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
</tr>
</tbody>
</table>

```
          a
         / 
        /   
       /     
      a     d
     /       /
    b   c  e
```
Huffman codes

assume a set of characters
every character c has a frequency $c.freq$
we build a tree T for an optimal coding

Algorithm HuffmanCode(C):

\begin{align*}
n & := |C| \\
Q & := C \\
\text{for } i = 1 \text{ to } n - 1 \text{ do} \\
\text{new node } z \\
z.left & := x := \text{removeMin}(Q) \\
z.right & := y := \text{removeMin}(Q) \\
z.freq & := x.freq + y.freq \\
\text{insert}(Q, z) \\
\text{return } \text{removeMin}(Q)
\end{align*}
Huffman codes: example

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>
Huffman’s algorithm

greedy

non-deterministic

inventor: David Huffman in 1952 during his PhD
consider an alphabet of n characters; each with frequency

init takes $\log n$

for-loop takes $n \cdot \log n$

using a min-priority queue implemented using a binary min-heap

in $O(n \log n)$
overview

- context of the course
- greedy
- activity selection
- fractional knapsack
- Huffman codes
- single-source shortest path
- material
Anup Cowkur
@anupcowkur89

Google Interviewer: How would you find the shortest distance between two nodes in a directed acyclic graph?

Me: I'd Google it

Rejected

RETWEETS LIKES
28 39
overview

- context of the course
- greedy
- activity selection
- fractional knapsack
- Huffman codes
- single-source shortest path
- material
extra material

- wiki about character encoding
- wiki about David Huffman
- splay tree, which has amortized complexity in $O(\log n)$ for insertion