context

picture: from math to algorithms to programming

courses before DSaA:
computational thinking, networks and graphs, logic and sets

possible courses after DSaA:
automata and complexity, algorithm engineering, bachelor project

P and NP

a more precise model
for instance size of the input is number of bits needed to encode it

complexity class P
contains all problems that are decidable in polynomial time

complexity class NP
contains all problems that are decidable non-deterministically in polynomial time

undecidable problems

clearly $P \subseteq NP$, but $P = NP$? is an open question

problems in NP

intuitively:

every instance has finitely many solutions

correctness of a possible solution can be checked in polynomial time
NP-completeness

A problem is **NP-complete** if

- it is in **NP** and
- every problem in **NP** can be reduced to it in polynomial time

It is believed that for many problems in **NP** there is no polynomial algorithm

bounded tiling

Given an $n \times n$ square

Given 1 \times 1 tiles where the sides are colored

Given a first row of n tiles in the square that are correctly tiled

Can the complete $n \times n$ square be correctly tiled?

Bounded tiling is **NP-complete**

There are finitely many solutions, and the correctness check of a candidate-solution can be done in polynomial time

satisfiability of first-order propositional logic

A formula is **satisfiable** if there is an assignment from the variables to true or false that makes the formula true

The satisfiability problem (for prop1) is in **NP**

Cook’s Theorem: the satisfiability problem is **NP-complete** (proof via reduction of bounded tiling to satisfiability)

more NP-complete problems

Determine whether a directed graph has an Hamiltonian cycle (a cycle containing all vertices)

However: determine whether a directed graph has an Euler tour is in $O(E)$

Traveling salesman

Decision problem for knapsack01

Optimization problem for knapsack 01 (our problem) is pseudo-polynomial

Fractional knapsack is in $O(n \cdot \log n)$
overview

* context of the course
* greedy
 * activity selection
 * fractional knapsack
 * Huffman codes
 * single-source shortest path
* material

greedy

we look for an optimal solution to a problem

exhaustive search is too much work

we take in each step a *locally optimal choice*

if the problem has the greedy choice property

then *locally optimal choices lead to a globally optimal solution*

making change

Hieronymus Bosch, Allegorie op de Gulzigheid, 1495

remember making change

for the euro-setting: making change admits a greedy choice

for the artificial setting \{1, 3, 4\} we need dynamic programming
overview

- context of the course
- greedy
- activity selection
- fractional knapsack
- Huffman codes
- single-source shortest path
- material

activity selection: definition

given:
set S of activities a_i each with start time s_i and finish time f_i
$s_i < f_i$

definition compatible:
two activities a_i and a_k are compatible if $f_i \leq s_k$ or $f_k \leq s_i$

question:
give a maximum-size set of mutually compatible activities

activity selection: example

set S of activities:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>f_i</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>7</td>
<td>9</td>
</tr>
</tbody>
</table>

a_1 and a_3 are not compatible

$\{a_1, a_6\}$ is a set of mutually compatible activities

$\{a_1, a_4, a_5\}$ is a maximum-size set of mutually compatible activities

$\{a_1, a_2, a_5\}$ is a maximum-size set of mutually compatible activities

we say $\{a_1, a_4, a_5\}$ is a solution for S

set S is considered ordered on increasing finish time

algorithm for activity selection?

problem: S_{ij} set of activities that start after a_i and finish before a_j

wanted: A_{ij} maximum-size subset of S_{ij} of mutually compatible activities

suppose a_k is in A_{ij}
then (informally) $A_{ij} = A_{ik} \cup \{a_k\} \cup A_{kj}$

dynamic programming: take best of this, by checking all possible a_k

optimal substructure: A_{ik} and A_{kj} are solutions of problems S_{ik} and S_{kj}
simplification: greedy approach

take a_1: activity with smallest finish time f_1
then solve S_{1j}
greedy choice for activity with smallest finish time

greedy approach: correctness

let S be an activity-selection problem and
let a_1 be an activity in S with smallest finish time
we show: there is a solution for S containing a_1

let A be a solution
if $a_1 \in A$ then done
if $a_1 \notin A$ then consider $a_k \in A$ with smallest finish time
because $f_1 \leq f_k$ the set $A - \{a_k\} \cup \{a_1\}$ is also a solution

iterative greedy algorithm

input: array s of start times and array f of finish times
monotonically increasing in finish time

k gives the most recent addition to A
time complexity in Θn with n amount of activities

Algorithm activitySelector(s, f):

1. $n := s.length$
2. $A := \{a_1\}$
3. $k := 1$
4. for $m = 2$ to n do
 5. if $s[m] \geq f[k]$ then
 6. $A := A \cup \{a_m\}$
 7. $k := m$

activity selection: variations

every task has benefit
every task has deadline
minimalize number of resources
overview

- context of the course
- greedy
- activity selection
- fractional knapsack
- Huffman codes
- single-source shortest path
- material

fractional knapsack: example

- 50 kilo jewels, benefit 1 million euro, 0,02 million per kilo
- 1 kilo chewing gum, benefit 20 euro, not much
- 5 kilo diamonds, benefit 5 million euro, 1 million euro per kilo
- 10 kilo gold, benefit 500000 euro, 0,05 million euro per kilo
- backpack for 20 kilo

We take as much as we can from the best benefit per weight:
- 5 kilo diamonds, total weight 5
- 10 kilo gold, total weight 15
- 5 kilo jewels, total weight 20

fractional knapsack: problem

given:
a set S with n items
every item i has weight w_i and benefit b_i
maximum total weight W
goal:
take fractions x_i of all items i such that
$\sum_{i \in S} b_i \cdot \frac{x_i}{w_i}$ maximal
under constraint $\sum_{i \in S} x_i \leq W$

take in each step as much as possible from the item i with b_i/w_i maximal

that is: we take in each step a greedy choice
fractional knapsack: algorithm

input: set S with items with benefit and weight, and total weight W

Algorithm fractionalKnapsack(S, W):
 for each item $i \in S$ do
 $x_i := 0$
 $v_i := b_i / w_i$
 $w := 0$
 while $w < W$ do
 remove from S an item i with highest value index
 $a := \min\{w_i, W - w\}$
 $x_i := a$
 $w := w + a$

fractional knapsack: correctness

let A be a solution for fractional knapsack problem S, W
assume A not greedy
so there are i and k with $\frac{b_i}{w_i} > \frac{b_k}{w_k}$ so i is better
and $x_i < w_i$ A does not take all of i
and $x_k > 0$ A takes some of k
let $a = \min\{x_k, w_i - x_i\}$ the mistake part (all of x_k or what remains of x_i)
take $x'_k = x_k - a$ and $x'_i = x_i + a$

$$\frac{b_i x_i}{w_i} + \frac{b_k x_k}{w_k} \leq \frac{b_i (x_i + a)}{w_i} + \frac{b_k (x_k - a)}{w_k} = \frac{b_i x_i}{w_i} + \frac{b_k x_k}{w_k} + a\left(\frac{b_i}{w_i} - \frac{b_k}{w_k}\right)$$

so A was not optimal

greedy choice also for knapsack01?

for largest benefit does not work; take $W = 4$:

<table>
<thead>
<tr>
<th>s</th>
<th>w</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>s_2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>s_3</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

for lowest weight or highest benefit per weight does not work; take $W = 2$:

<table>
<thead>
<tr>
<th>s</th>
<th>b</th>
<th>w</th>
<th>b/w</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>s_2</td>
<td>3</td>
<td>2</td>
<td>3/2</td>
</tr>
</tbody>
</table>

fractional knapsack: time complexity

we represent the set S as a priority queue
with highest priority for highers benefit per weight value
we implement the priority queue as a heap
then: analysis yields that fractional knapsack is in $O(n \log n)$
there exists a linear time algorithm for fractional knapsack
not treated in this course
overview

- context of the course
- greedy
- activity selection
- fractional knapsack
- Huffman codes
- single-source shortest path
- material

Huffman encoding: intuition

encoding of characters
character that occurs more frequently has a shorter encoding

binary coding of characters

we use words over 0 and 1 to encode characters

fixed-length code:
example: \(a = 000, b = 001 \)
ASCII, Unicode

variable length code:
example: \(a = 0, b = 101, c = 100 \)
Huffman codes

prefix codes

definition:
no codeword is the prefix of another codeword

assumption:
we work with prefix codes

example prefix code:
\(a = 0, b = 101, c = 100 \)

example non prefix code:
\(a = 0, b = 00 \)
representing codes
as a binary tree where left is 0, right is 1, leaves are codes
optimal code is represented by a full binary tree
(every node has 0 or 2 children)

<table>
<thead>
<tr>
<th>00</th>
<th>010</th>
<th>011</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
</tr>
</tbody>
</table>

example:

```
00
010
011
10
11
```

```
a
b
c
d
e
```

Huffman codes

assume a set of characters
every character c has a an attribute for frequency $c.freq$
we build a tree T for an optimal coding

```
Algorithm HuffmanCode(C):
    n := |C|
    Q := C
    for i = 1 to n - 1 do
        new node z
        z.left := x := removeMin(Q)
        z.right := y := removeMin(Q)
        z.freq := x.freq + y.freq
        insert(Q, z)
    return removeMin(Q)
```

Huffman codes: example

```
a b c d r
5 2 1 1 2
```

Huffman's algorithm

greedy
non-deterministic

inventor: David Huffman in 1952 during his PhD
consider an alphabet of n characters; each with frequency

init takes $\log n$

for-loop takes $n \cdot \log n$

using a min-priority queue implemented using a binary min-heap

in $O(n \log n)$
extra material

- wiki about character encoding
- wiki about David Huffman
- splay tree, which has amortized complexity in $O(\log n)$ for insertion