overview

- single-source shortest path
- string-matching
- brute-force string matching algorithm
- Knuth-Morris-Pratt pattern matching
- material
path

weighted and directed graph

path from v_0 to v_n:
list of vertices $p = (v_0, v_1, \ldots, v_n)$

weight of p:
sum of its edges $\sum_{i=1}^{n} w(v_{i-1}, v_i)$

shortest-path weight $\delta(u, v)$
$\min\{w(p) \mid p \text{ path from } u \text{ to } v\}$ if there is a path from u to v
∞ otherwise

shortest path from u to v:
path with weight $\delta(u, v)$

negative weights

if on the path from s to v there is a negative weight-cycle
then distance from s to v is $-\infty$

either assume positive weights
or produce correct answer as long as no negative-weight cycle reachable

single source shortest-path algorithms

given a (weighted and directed) graph and a source node

give for every node v a shortest path from the source to v
or: single pair shortest path
or: all pair shortest path

input: graph G and start-vertex s in G
set all distances d except to ∞, except for $s.d$
so far no predecessor π

Algorithm initialize(G, s):
for every $v \in V$
$v.d := \infty$
$v.\pi := \text{nil}$
$s.d = 0$
in $\Theta(|V|)$
can we improve ‘price’ of going to v by going to u and then use (u, v)?

input: nodes u and v and weight function w

Algorithm relax(u, v, w):

$$\text{if } v.d > u.d + w(u, v) \text{ then}$$

$$v.d := u.d + w(u, v)$$

$$v.\pi := u$$

in $O(1)$

Dijkstra’s algorithm: time complexity

initialize in $\Theta(|V|)$

init S in constant time

init Q: build priority queue

in while-loop $|V|$ times extract-min

in while-loop $|V|$ times update of S (which is in constant time)

for-loop is executed in total (!) $|E|$ times with inside update key of v

crucial: how we implement the priority queue

Dijkstra’s algorithm

input: directed graph G with positive weights w and start vertex s in G

Algorithm Dijkstra(G, w, s):

initialize(G, s)

$S := \emptyset$

$Q := G.V$

while $Q \neq \emptyset$ do

$u := \text{extractMin}(Q)$

$S := S \cup \{u\}$

for each $v \in G.\text{Adj}[u]$ do

relax(u, v, w)

the set S contains vertices for which the weight of a shortest path has been found

Dijkstra’s algorithm: time complexity

priority queue implemented as heap:

extract-min and update key in $O(\log |V|)$

algorithm in $O((|V| + |E|) \cdot \log |V|) = O(|E| \cdot \log |V|)$

priority queue implemented as array with v at index v:

extract-min takes in the worst case $|V|$ steps

algorithm in $O(|V|^2 + |E|) = O(|V|^2)$
string

string: sequence of characters given as array \(P[1 \ldots m] \)

empty string: \(\epsilon \)

deexample: \(acaabca \) given as \([a, c, a, a, b, c, a] \)

prefix: initial part; \(P[1 \ldots k] \) for \(0 \leq k \leq m \)

deexample: \(acaab \) is prefix of \(acaabca \)

suffix: final part; \(P[k \ldots m] \) for \(1 \leq k \leq m + 1 \)

deexample: \(bca \) is a suffix of \(acaabca \)

substring: subarray

string-matching problem

setting:
text \(T[1 \ldots n] \) and pattern \(P[1 \ldots m] \),
both arrays with characters from a finite alphabet \(\Sigma \)
valid shift:
\(P \) occurs at shift \(s \) if \(T[1 + s \ldots s + m] = P[1 \ldots m] \)
that is: \(P \) occurs beginning at position \(s + 1 \)
or: \(P \) is a substring of \(T \)

then: \(s \) is a valid shift for \(P \) and \(T \)

string matching problem: find all valid shifts for given \(T \) and \(P \)
string matching: example

does $P = \text{bra}$ occur in $T = \text{adacadabra}$?

brute-force algorithm: pseudo code

input: pattern $P[1\ldots m]$ and text $T[1\ldots n]$

output: shift of occurrence s of all matches

Algorithm BruteForceMatch(T, P):

1. $n := T.length$
2. $m := P.length$
3. for $s := 0$ to $n - m$ do
4. $j := 1$
5. while $j \leq m$ and $T[s + j] = P[j]$ do
6. $j := j + 1$
7. if $j = m + 1$ then
8. print 'occurs with shift s'

brute-force algorithm: analysis

worst-case example:

$T = \text{aaaaaaaaaaa}$ en $P = \text{aaa}$

takes $(n - m + 1) \cdot m$ steps

worst-case time complexity:

in $O((n - m + 1) \cdot m)$

so if m roughly half of n, then in $O(n^2)$

pre-processing:

nothing
overview

- single-source shortest path
- string-matching
- brute-force string matching algorithm
- Knuth-Morris-Pratt pattern matching
- material

Knuth-Morris-Pratt algorithm: idea

compare P with T from left to right

if mismatch $T[pos] \neq P[i]$: what is maximal shift?

```
. . a b a a b x . . . .
```

```
 a b a a b b
```

```
 a b a a b a
```

don’t do this again

continue here

KMP algorithm: failure or prefix function

$P = ababaca$

```
  i  1  2  3  4  5  6  7
  P[i] a b a b a c a
  f(i)  0  0  1  2  3  0  1
```

$f(i)$ tells us how many of the i succeeded matches can be reused

Knuth-Morris-Pratt algorithm

Algorithm KMPMatch(T, P):

```
i := 1
j := 1
while i \leq n do
  if $P[j] = T[i]$ then
    if $j = m$ then match
      i := i + 1
      j := j + 1
    else
      if $j > 1$ then
        j := f(j - 1) + 1
      else
        i := i + 1
  return fail
```
KMP algorithm: example

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>f(i)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Knuth-Morris-Pratt: time complexity

computing the failure or prefix function

$O(m)$ with m length of pattern P

iteration:

the while-loop is traversed at most $2n$ times (asks analysis!)
hence the algorithm is in $O(n + m)$

know without proof

overview

- single-source shortest path
- string-matching
- brute-force string matching algorithm
- Knuth-Morris-Pratt pattern matching
- material

extra materiaal

- Dijkstra’s paper from 1959
- Dijkstra’s reflections on his work from 1959
- Knuth
- Morris
- Pratt
- grep