data structures and algorithms
2016 09 08
lecture 2
Algorithm insertionSort(A, n):
 for j := 2 to n do
 key := A[j]
 i := j − 1
 while i ≥ 1 and A[i] > key do
 A[i + 1] := A[i]
 i := i − 1
 A[i + 1] := key
our model

computer:
Random Access Machine (RAM)

algorithm:
description in pseudo-code

data structure:
specification as Abstract Data Type (ADT)

(worst-case) time complexity:
(upper bound on) running time as function of the input size

theoretical analysis
independent of hardware, software, and for all inputs
Random Access Machine (RAM)

Central Processing Unit (CPU) with memory

unlimited number of memory cells (registers)

primitive operations take constant (little) time
we write algorithms in pseudo-code

pseudo-code resembles a programming language

but is independent of specific syntax
pseudo-code: globally

- input
- output using `return`
- block structure via indentation
- declare and call procedures
- declare and use data structures
- recursive calls
- objects with attributes, for example `A.length`
pseudo-code: calculating

- **booleans**: `true`, `false`
- calculating with booleans: `and`, `or` (short-circuiting)

- **integers**
- calculating with integers: addition, subtraction, multiplication, modulo
- elementary tests on integers: greater than, less than
pseudo-code: control

- declare and use variables
- assignment
- declare and update arrays and array elements
- **if** then, **while** do, **for** do, **repeat**,
function $T(n)$ computes the amount of steps
we are mostly interested in the growth of $T(n)$ if n increases
we often give the asymptotic approximation Θ, O
overview

- recap
- selection sort
- bubble sort
- merge sort
- divide and conquer
- material
overview

- recap

- selection sort

- bubble sort

- merge sort

- divide and conquer

- material
selection sort: idea and example

the list consists of a sorted part followed by an unsorted part

initially: the sorted part is empty

loop: while the unsorted part is non-empty:
look for its smallest element
swap it with the first element
that element now belongs to the sorted part

\[5, 4, 3, 7, 1\]
\[1, 4, 3, 7, 5\]
\[1, 3, 4, 7, 5\]
\[1, 3, 4, 5, 7\]
selection sort: pseudo-code

Algorithm selectionSort\((A, n)\):

\[
\text{for } i := 1 \text{ to } n - 1 \text{ do}
\]

\[
m := i
\]

\[
\text{for } j = i + 1 \text{ to } n \text{ do}
\]

\[
\text{if } A[j] < A[m] \text{ then}
\]

\[
m := j
\]

\[
x := A[m]
\]

\[
A[m] := A[i]
\]

\[
A[i] := x
\]

we do a swap
selection sort: correctness

loop-invariant I:

at the start of the for-loop:
$A[1 \ldots (i - 1)]$ is sorted,
and every element in $A[1 \ldots (i - 1)]$ is smaller than
every element in $A[i \ldots n]$

init: I is true initially (for $i = 1$, so for $A[1 \ldots i] = []$)

loop: I remains true under the loop (!)

end: I holds for $i = n$ implies that the array is sorted
selection sort: worst-case time complexity

worst-case: if $A[j] < A[m]$ we do an assignment for m
we do the swap anyway

for a fixed i, we do $n - i$ times the test $A[j] < A[m]$

the important part:

$$\sum_{i=1}^{n-1} (n - i) = (n - 1) + \ldots + 1 + 0$$

$$= \sum_{j=1}^{n-1} j$$

$$= \frac{1}{2} (n - 1) n$$
selection sort: asymptotic bound

worst-case time complexity of selection sort is in $\Theta(n^2)$
overview

- recap
- selection sort
- bubble sort
- merge sort
- divide and conquer
- material
bubble sort: idea

Repeatedly traverse the list from left to right,
compare each pair of adjacent numbers,
and swap them if they are in the wrong order.

After a traversal,
the rightmost element is always largest in the traversed list,
so can be left out from the next traversal.
bubble sort: example
bubble-sort: pseudocode

input: array A of length n

Algorithm bubbleSort(A, n):

for $i := n - 1$ downto 1 do

for $j := 1$ to i do

bubble sort: analysis

correctness?
worst-case time complexity?
best-case time complexity?
overview

- recap
- selection sort
- bubble sort
- merge sort
- divide and conquer
- material
merge sort: idea

how do we sort?

loop: while the sequence is non-empty
split the sequence into two parts of (almost) equal length
sort the two subsequences using mergesort (recursion)
merge the two sorted sublists

how do we merge?

loop: as long as both sequences are non-empty
compare the first elements of both sequences
remove the smallest and move it to the end of the output-sequence
last: if one of the sequences is empty, add the other to the tail of the output-sequence
mergesort: some pseudo-code

Algorithm mergeSort(A, p, r):
 if p < r then
 q := ⌊(p + r)/2⌋
 mergeSort(A, p, q)
 mergeSort(A, q + 1, r)
 Merge(A, p, q, r)

where is the work done?

for pseudo-code Merge see the book
Merge: example

input:

\[A = [1, 3, 5, 7, 2, 4, 6, 8] \]

\[p = 1 \]

\[q = 4 \]

\[r = 8 \]

\(A[1\ldots 4] \) is sorted and \(A[5\ldots 8] \) is sorted
merge sort: example

each node represents a recursive call
question

give the recursion tree of applying mergesort to the sequence

3 7 8 5 2 1 5 4
mergesort: time complexity via tree analysis

for input of size $n = 2^i$, the recursion tree has $\log n + 1 = i + 1$ layers

(for general n: $\lceil \log n \rceil + 1$)

the work per layer is in $\Theta(n)$

so the worst-case time complexity is in $\Theta(n \log n)$
mergesort: time complexity via recurrence equations

divide is easy, in $\Theta(1)$

conquer uses recursion, two subproblems of size half

combine is difficult, in $\Theta(n)$

first assume $n = 2^i$

$$T(n) = \begin{cases} 1 & \text{als } n = 1 \\ 2T\left(\frac{n}{2}\right) + n & \text{als } n > 1 \end{cases}$$
mergesort was invented by John von Neumann (1903–1957) in 1945
mergesort: drawback

space complexity

merging two sublists takes place outside the memory for the input-sequence

so worst-case time complexity of insertion sort is in \(\Theta(n^2) \)

worst-case time complexity of merge sort is in \(\Theta(n \cdot \log n) \)

but insertion sort is in-place and merge sort is not in-place

obvious question: is there a ‘\(n \cdot \log n \) in-place’ sorting algorithm?
overview

- recap
- selection sort
- bubble sort
- merge sort
- divide and conquer
- material
divide and conquer

mergesort is a *divide-and-conquer* algorithm

- **divide**: divide the problem into smaller subproblems
- **conquer**: solve the subproblems using recursion
- **combine**: combine the solutions to the subproblems to a solution of the original problem
logarithms: where

for merge sort:

dividing an input of size 2^k into subproblems of size 1 takes

$k + 1 = \log 2^k + 1$ steps

typically logarithms occur in the complexity analysis of divide-and-conquer algorithms
logarithms: what

addition is symmetric, has inverse subtraction:

\[(m + n) - n = m\]
\[(m + n) - m = (n + m) - m = n\]

multiplication is symmetric, has inverse division:

\[(m \cdot n) \div n = m\]
\[(m \cdot n) \div m = (n \cdot m) \div m = n\]

exponentiation is not symmetric, has two inverses root and log:

\[n \sqrt[m]{m^n} = m\]
\[\log_m(m^n) = n\]
divide and conquer: tiling

problem:
tile a $2^k \times 2^k$ square with L-tiles
leave open exactly one tile which is selected beforehand

idea algorithm:
divide and conquer: tile the four quarters

correctness:
use induction
overview

- recap
- selection sort
- bubble sort
- merge sort
- divide and conquer
- material
sorteren: puzzle

- books on algorithms by David Harel
- art of computer programming Donald Knuth
- art of computer programming
- how can we sort 5 elements using at most 7 comparisons?

experiment: sort 5 elements on 5 memory locations

from ‘Sorting and Searching’ by Knuth