done

sorting algorithms
insertion sort (book 1, 2)
selection sort (book 1, 2)
bubble sort (book 1, 2)
merge sort (book 2)

paradigm and techniques
divide-and-conquer, recursion tree, recurrence equation (book 2, 4.3, 4.4)

asymptotic complexity
intuitive (and book 3.1, today)
overview

- recap
- asymptotic bounds
- trees and binary trees
- heaps
- heap bubble
- building a heap
- heapsort
overview

- recap

- asymptotic bounds

- trees and binary trees

- heaps

- heap bubble

- building a heap

- heapsort
asymptotic bounds: intuition

what is the behaviour of the function for large inputs

Θ asymptotic tight bound (‘=’)
Ο asymptotic upper bound (‘≤’)
Ω asymptotic lower bound (‘≥’)
o asymptotic upper bound not tight (‘<’)
ω asymptotic lower bound not tight (‘>’)

asymptotic tight bound: \(\Theta \)

for \(f, g : \mathbb{N} \rightarrow \mathbb{R}^+ \): \(f(n) \in \Theta(g(n)) \) if

\[
\exists c, c' > 0 \in \mathbb{R} \\
\exists n_0 > 0 \in \mathbb{N} \\
\forall n \in \mathbb{N} : n \geq n_0 \Rightarrow c \cdot g(n) \leq f(n) \leq c' \cdot g(n)
\]

\(f(n) \) is eventually ‘as large as \(g(n) \)’ up to constants
asymptotic upper bound: big-\(O\)

for \(f, g : \mathbb{N} \to \mathbb{R}^+\): \(f(n) \in O(g(n))\) if

\[
\exists c > 0 \in \mathbb{R} \\
\exists n_0 > 0 \in \mathbb{N} \\
\forall n \in \mathbb{N} : n \geq n_0 \Rightarrow f(n) \leq c \cdot g(n)
\]

\(f(n)\) is eventually smaller-equal \(g(n)\) up to a constant
\(\Theta \) in terms of big-\(O \)

alternative definition of \(\Theta \) using \(O \):

\[
f(n) \in \Theta(g(n)) \text{ if } \\
f(n) \in O(g(n)) \\
\text{and} \\
g(n) \in O(f(n))
\]
big-O: simple examples

\[3n^2 + 5n + 8 \in O(n^2)\]
\[3n^2 + 5n + 8 \in \Theta(n^2)\]
\[3n^2 + 5n + 8 \in O(n^3)\]
\[3n^5 + 5n + 8 \not\in \Theta(n^3)\]
\[1000 \in \Theta(1)\]
big-\(O\): some properties

\[n^a \in O(n^b) \text{ for all } 0 < a \leq b \quad \frac{1}{2} n^2 \in O(n^3) \]

\[\log_a(n) \in O(n^b) \text{ for all } a, b > 0 \quad \log n \in O(\sqrt{n}) \]

\[n^a \in O(b^n) \text{ for all } a > 0 \text{ and } b > 1 \quad n^5 \in O(2^n) \]

\[\log_a n \in O(\log_b n) \text{ for all } a, b > 0 \quad \log_2 n \in O(\log_3 n) \]

the latter because

\[a^{\log_a b \cdot \log_b n} = (a^{\log_a b})^{\log_b n} = b^{\log_b n} = n \]

hence we have: \(\log_a b \cdot \log_b n = \log_a n \)
Θ and big-O

worst-case time complexity of insertion sort is in $O(n^2)$
time complexity of insertion sort is in $O(n^2)$
worst-case time complexity of insertion sort is in $\Theta(n^2)$
time complexity of insertion sort is not in $\Theta(n^2)$ (sometimes better!)
growth of some important functions

\[f(x) = e^x \]

\[f(x) = x^2 \]

\[f(x) = x \log x \]

\[f(x) = \log x \]
growth of some functions: table

<table>
<thead>
<tr>
<th>n</th>
<th>$\log n$</th>
<th>n</th>
<th>$n \log n$</th>
<th>n^2</th>
<th>n^3</th>
<th>2^n</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>3</td>
<td>8</td>
<td>24</td>
<td>62</td>
<td>512</td>
<td>256</td>
</tr>
<tr>
<td>16</td>
<td>4</td>
<td>16</td>
<td>64</td>
<td>256</td>
<td>4096</td>
<td>65536</td>
</tr>
<tr>
<td>32</td>
<td>5</td>
<td>32</td>
<td>160</td>
<td>1024</td>
<td>32768</td>
<td>4294967296</td>
</tr>
<tr>
<td>10^3</td>
<td>10</td>
<td>10^3</td>
<td>13000</td>
<td>10^6</td>
<td>10^9</td>
<td>10^{300}</td>
</tr>
<tr>
<td>10^4</td>
<td>13</td>
<td>10^4</td>
<td>10^5</td>
<td>10^8</td>
<td>10^{12}</td>
<td>10^{3000}</td>
</tr>
<tr>
<td>10^5</td>
<td>20</td>
<td>10^5</td>
<td>10^6</td>
<td>10^{10}</td>
<td>10^{15}</td>
<td>10^{3000}</td>
</tr>
</tbody>
</table>
how much times uses the algorithm?

<table>
<thead>
<tr>
<th>n</th>
<th>10</th>
<th>100</th>
<th>1000</th>
<th>10^4</th>
<th>10^5</th>
<th>10^6</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\log n$</td>
<td>$<$</td>
<td>$<$</td>
<td>$<$</td>
<td>$<$</td>
<td>$<$</td>
<td>$0.00002s$</td>
</tr>
<tr>
<td>n</td>
<td>$<$</td>
<td>$<$</td>
<td>0.001s</td>
<td>0.01s</td>
<td>0.1s</td>
<td>1s</td>
</tr>
<tr>
<td>$n \cdot \log n$</td>
<td>$<$</td>
<td>$<$</td>
<td>0.013s</td>
<td>0.1s</td>
<td>1s</td>
<td>10s</td>
</tr>
<tr>
<td>n^2</td>
<td>$<$</td>
<td>0.01s</td>
<td>1s</td>
<td>100s</td>
<td>3h</td>
<td>1000h</td>
</tr>
<tr>
<td>n^3</td>
<td>0.001s</td>
<td>1s</td>
<td>1000s</td>
<td>1000h</td>
<td>100y</td>
<td>10^5y</td>
</tr>
<tr>
<td>2^n</td>
<td>0.001s</td>
<td>$10^{23}y$</td>
<td>$>$</td>
<td>$>$</td>
<td>$>$</td>
<td>$>$</td>
</tr>
</tbody>
</table>

1 step takes $1\mu s$ ($0.000001s$)

$<$ means ($< 0.001s$)

$>$ means 10^{300} year
\[\sum_{i=0}^{n} a^i = \frac{1 - a^{n+1}}{1 - a} \]

\[\sum_{i=1}^{n} i = \frac{n(n + 1)}{2} \]
overview

- recap
- asymptotic bounds

- trees and binary trees

- heaps

- heap bubble

- building a heap

- heapsort
towards heap sort

use a tree data structure

implemented using an array
tree: picture
tree: definitions

(see book B5)

set of nodes with a parent-child relation
	here is a unique distinguished node root

every non-root has a unique ancestor / predecessor / parent

a node may have successors / descendants / children

a node without successors is a leaf or external

a node with successors is internal
the **depth** of a node is the length of a path to the root

the **height** of a node is the maximal length of a path to a leaf

the **height** of a tree is the height of the root, or the maximal depth

a **level** or **layer** of a tree consists of all nodes of the same depth

the number of levels is the height of the tree plus one
binary tree: definitions

binary tree:
every node has zero, one, or two (ordered) successors
binary tree: definitions

binary tree:
every node has zero, one, or two (ordered) successors

complete binary tree:
all leaves have the same depth and all depths are completely filled
binary tree: definitions

binary tree:
every node has zero, one, or two (ordered) successors

complete binary tree:
al all leaves have the same depth and all depths are completely filled

almost or nearly complete binary tree:
complete binary tree where the lowest level is filled from the left up to some point

complete ⇒ almost complete ⇒ normal binary
almost complete binary trees: counting

consider an almost complete binary tree of height \(h \)

if the lowest level contains one element:
number of elements is \(n = 1 + 2 + \ldots + 2^{h-1} + 1 = 2^h - 1 + 1 = 2^h \)

if the lowest level is full:
number of elements is \(n = 1 + 2 + \ldots + 2^h = 2^{h+1} - 1 \)

so \(2^h \leq n \leq 2^{h+1} - 1 \leq 2^{h+1} \)

so \(h \leq \log n \leq h + 1 \)

so \(h = \lfloor \log n \rfloor \)

this is important for the complexity of heap sort
parent-child relation in the array
i an index in the array-representation

Algorithm parent(i):

```
return \left\lfloor \frac{i}{2} \right\rfloor
```

Algorithm left(i):

```
return 2i
```

Algorithm right(i):

```
return 2i + 1
```
overview

- recap
- asymptotic bounds
- trees and binary trees

- heaps
- heap bubble
- building a heap
- heapsort
heap

data structure used for sorting

and for other things priority queue
heap: definition

condition on the shape:
an almost complete binary tree

every node is labeled with a key / label from a totally ordered set

condition on the keys:
either max-heap condition on the keys:
on every path from the root to a leaf the labels / keys are non-increasing
hence max key at the root

or min-heap condition on the keys:
on every path from the root to a leaf the labels / keys are non-decreasing
hence min key at the root
max-heap: example
min-heap: example

for heapsort we use max-heaps
max-heap and min-heap properties

max-heap property: $H[\text{parent}(i)] \geq H[i]$

min-heap property: $H[\text{parent}(i)] \leq H[i]$
heaps: their strengths

turn an array of length n into a max-heap in $O(n)$

find the largest element in a max-heap in $O(1)$

remove the largest element from a max-heap and restore in $O(\log n)$
overview

- recap
- asymptotic bounds
- trees and binary trees
- heaps
- heap bubble
- building a heap
- heapsort
bubble in heaps

we have a node with left and right heaps
we reconstruct the heap property using a *down-heap bubble*

we have a heap and add a labelled node
we reconstruct the heap property using a *up-heap bubble*
down-heap bubble or maxHeapify for max-heap

downMaxHeap(H, i) (or maxHeapify) with i a node in H
left and right of i are max-heaps

• consider i, its left-child l and its right-child r
• determine max of labels of i, l, r
• if i has the largest label then done
• if l largest label: swap labels of i and of l, do downMaxHeap(H, l)
• if r largest label; swap labels of i and of r, do downMaxHeap(H, r)
Algorithm downMaxHeap(A, i):

$l := \text{left}(i)$
$r := \text{right}(i)$

if $l \leq A.\text{heap-size}$ and $A[l] > A[i]$ then
 $largest := l$
else
 $largest := i$

if $r \leq A.\text{heap-size}$ and $A[r] > A[largest]$ then
 $largest := r$

if $largest \neq i$ then
 swap($A[i], A[largest]$)
 downMaxHeap($A, largest$)
bubble: time complexity

time complexity of down-heap bubble
determined by height of the heap
so in $O(\log(n))$
overview

- recap
- asymptotic bounds
- trees and binary trees
- heaps
- heap bubble

- building a heap
- heapsort
how to build a heap?

(1) given n keys, insert them one by one
one insertion in $O(\log n)$ (not yet discussed)
so totally in $O(n \log n)$

(2) using the bottom-up heap construction
then in $O(n)$

the latter is used in the heapsort algorithm
bottom-up heap construction: idea

we turn the binary tree with root i into a heap as follows:

assume that the binary trees with roots $2i$ and $2i + 1$ are already heaps with at the roots the numbers k and l

perform if necessary a swap of labels to obtain that at index i we have the largest one
continue with down-heaping
building a heap: example
Algorithm buildMaxHeap(H):

\[H.\text{size} := H.\text{length} \]

\[\text{for } i = \lceil H.\text{length}/2 \rceil \text{ downto } 1 \text{ do} \]

\[\text{downMaxHeap}(H, i) \]
building a heap: complexity

\(n/2 \) calls of downMaxHeap which is in \(\mathcal{O}(\log n) \)

so in \(\mathcal{O}(n \log n) \)

correct but not asymptotically tight

more subtle analysis yields

worst-case time complexity of buildMaxHeap in \(\mathcal{O}(n) \)
overview

- recap
- asymptotic bounds
- trees and binary trees
- heaps
- heap bubble
- building a heap
- heapsort
heapsort: idea

first part:
• turn the input-array into a max-heap

second part:
• swap the key on the root with the key on the last node
• exclude the last node from the heap
• reconstruct the heap
heapsort: pseudo-code

$H[1 \ldots n]$ an array of integers

directly after building the heap: H.heap-size = H.length

Algorithm heapsort(H):
 buildMaxHeap(H)
 for $i = H$.length downto 2 do
 swap $H[1]$ and $H[i]$
 H.heap-size := H.heap-size − 1
 downMaxHeap($H, 1$)
example heapsort

[16, 14, 10, 8, 7, 9, 3, 2, 4, 1]
heapsort: properties

why is heapsort correct?

what is the worst-case running time of heapsort?
heapsort: properties

why is heapsort correct?

what is the worst-case running time of heapsort?

buildMaxHeap in $O(n)$
heapsort: properties

why is heapsort correct?

what is the worst-case running time of heapsort?

buildMaxHeap in $\mathcal{O}(n)$

$n - 1$ calls of downHeap

every call in $\mathcal{O}(\log n)$
heapsort: properties

why is heapsort correct?

what is the worst-case running time of heapsort?

buildMaxHeap in $O(n)$

$n - 1$ calls of downHeap

every call in $O(\log n)$

hence running time in $O(n \cdot \log n)$

why is heapsort in-place?
heapsort: inventor

J.W.J. Williams in 1964
implement insertion sort, merge sort, and heap sort in Java

algorithms completely correct: 7 points

programming style: 1 point

annotations: 2 points

hand in via Blackboard