data structures for sets of information

where is x?
add x
remove x
what is the smallest?
what is the largest?
given x, what is the next one?
given x, what is the previous one?

linear data structures

- stack
- queue

today: linked list

overview

- linked lists
- direct-address table
- hash tables
- chaining
- hash functions
- open addressing
- material
overview

- linked lists
- direct-address table
- hash tables
- chaining
- hash functions
- open addressing
- material

implementations using arrays

the determined size might be much too large or too small

lists: properties

also a linear data structure
any data can be in a list
nodes with access to the next one (and the previous one)

node in a singly linked list

a node v contains:

- a data element $v.key$ also written $v.element$
- a pointer $v.next$ to the next node
singly linked lists

L.head points to the first node

if list empty, then L.head = nil

possibly also:

variable L.tail points to the last node

possibly also:

variable L.size indicates number of nodes

lists: more possible operations

generic operations:
- size()
- isEmpty()

update operations:
- replaceElement(n, d)
- insertBefore(n, d)
- insertAfter(n, d)
- insertFirst(d)
- insertLast(d)
- remove(n)

(size: different possibilities)

if we have a global variable size: return that one in $O(1)$

otherwise: in $O(n)$

Algorithm size(L):

\begin{verbatim}
 s := 0
 m := L.head
 while m \neq nil do
 s := s + 1
 m := m.next
 return s
\end{verbatim}

n and m are nodes; d is data

many possible operations, so we need to be specific in our ADT
insertAfter example

Algorithm insertAfter\((n, d) \):
\[
\begin{align*}
\text{new } & \quad \text{Node } x \\
& x.\text{key} := d \\
& x.\text{next} := n.\text{next} \\
& n.\text{next} := x
\end{align*}
\]

if \(n \) was the last node then now \(x \) is the last node
the size increases by one

insertAfter in \(O(1) \)

Algorithm listSearch\((L, d) \):
\[
\begin{align*}
& x := L.\text{head} \\
& \text{while } x \neq \text{nil and } x.\text{element} \neq d \text{ do} \\
& \quad x := x.\text{next} \\
& \text{return } x
\end{align*}
\]

input: a list and a key, output: node containing the key or nil

remove a node

how to remove a node?
what is a special case

search

Algorithm listSearch\((L, d) \):
\[
\begin{align*}
& x := L.\text{head} \\
& \text{while } x \neq \text{nil and } x.\text{element} \neq d \text{ do} \\
& \quad x := x.\text{next} \\
& \text{return } x
\end{align*}
\]

input: a list and a key, output: node containing the key or nil
search using sentinels

sentinel is a dummy object that simplifies dealing with boundaries

$L.nil$ represents nil, and is as the start

$L.nil.next$ points to the head of the list

empty list is just the sentinel $L.nil$

$L.head$ no longer necessary

list search

without sentinels:

Algorithm listSearch(L, d):

$x := L.head$

while $x \neq nil \text{ and } x.key \neq d$

$x := x.next$

return x

with sentinels:

Algorithm listSearchSen(L, d):

$x := L.nil.next$

while $x \neq L.nil \text{ and } x.key \neq d$

$x := x.next$

return x

singly linked lists

<table>
<thead>
<tr>
<th>Operation</th>
<th>Worst case Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>size, isEmpty</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>first, (last,)after</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>before</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>replaceElement, swapElements</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>insertFirst, insertLast</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>insertAfter</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>insertBefore</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>remove</td>
<td>$O(n)$</td>
</tr>
</tbody>
</table>

NB: size, last, insertLast, remove

node in a doubly-linked list

a node v contains:

a data element $v.key$

a link to the next node $v.next$

a link to the previous node $v.prev$
doubly linked lists
can also be done without sentinel node
L.nil a sentinel node
L.nil.next points to the head (as for singly linked)
L.nil.prev points to the tail (new)
empty lists consists of just the sentinel L.nil,
then both L.nil.next and L.nil.prev point to L.nil

insertAfter in doubly linked list in $O(1)$

delete in doubly linked list
without sentinel:

Algorithm listDelete(L, x):
 if x.prev \neq nil then
 x.prev.next := x.next
 else
 L.head := x.next
 if x.next \neq nil then
 x.next.prev := x.prev

with sentinels

Algorithm listDeleteSet(L, x):
 x.prev.next := x.next
 x.next.prev := x.prev

<table>
<thead>
<tr>
<th>Operation</th>
<th>Worst case Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>size(), isEmpty()</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>first, last, after</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>before</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>replaceElement(,,) swapElements</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>insertFirst(), insertLast()</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>insertAfter</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>insertBefore</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>remove()</td>
<td>$O(1)$</td>
</tr>
</tbody>
</table>
again sets containing data: dictionaries

insert
search
delete

example: table of identifiers in programming language

we would like to do those operations in $O(1)$
compute address instead of search for item

hashing

hash table is an effective data structure for implementing dictionaries

worst-case for operations usually in $\Theta(n)$ with n number of items

in practice often much better, search even in $O(1)$

hash table generalizes array where we access address i in $O(1)$

applications of hashing in compilers and cryptography

overview

- linked lists
- direct-address table
- hash tables
- chaining
- hash functions
- open addressing
- material

overview

- linked lists
- direct-address table
- hash tables
- chaining
- hash functions
- open addressing
- material
direct-address table

universe of keys: $U = \{0, \ldots, m - 1\}$ with m small

use array of length m: $T[0 \ldots (m - 1)]$

what is stored in $T[k]$?

either nil if there is no item with key k
or a pointer x to the record with key $x.key = i$ and satellite data $x.element$

operations for direct-address table

$\text{insert}(S, x)$ add x in set S
\[T[x.key] := x \]

$\text{delete}(S, x)$ remove x from set S
\[T[x.key] := \text{nil} \]

$\text{search}(S, k)$ search for key k in S
\[\text{return } T[k] \]

x is pointer to record with key $x.key$ and satellite data $x.element$

direct-address table: example

keys: integers in $\{0, \ldots, m - 1\}$
elements: (here) courses
item $i = (k, e)$ is stored in array $[0 \ldots (m - 1)]$

analysis of direct-address table

inserting, deleting, searching all in $O(1)$
drawbacks of direct-address table

if universe of keys U is large we need a lot of storage
also if we actually use only a small subset of U

keys must be integers

so: hashing

hash tables

hash function maps keys to indices (slots) $0, \ldots, m - 1$ of a hash table

so $h: U \rightarrow \{0, \ldots, m - 1\}$

usually more keys than indices: $|U| >> m$

element with key k hashes to slot $h(k)$

overview

- linked lists
- direct-address table
- hash tables
- chaining
- hash functions
- open addressing
- material

hashing: example

keys are first names, elements are phone numbers

hash function: length modulo 5

![Hash Table Example](image-url)
collisions

problem: different keys may be hashed to the same slots
so $h(k) = h(k')$ with $k \neq k'$
this is called a collision
because number of keys $|U|$ larger than number of slots m
the hash function h cannot be injective

do we often have collisions?

for p items and a hash table of size m:

m^p possibilities for a hash function

if $p = 8$ and $m = 10$ already 10^8 possibilities

there are $\frac{m!}{(m-p)!}$ possibilities for hashing without collision

if $p = 8$ and $m = 10$ then $3 \cdot 4 \cdot \ldots \cdot 10$ such possibilities

collisions: probabilities

birthday paradox

for 23 people the probability that everyone has a unique birthday is $< \frac{1}{2}$

that is: for $p = 23$ and $m = 366$ the probability of collision is $\geq \frac{1}{2}$

overview

- linked lists
- direct-address table
- hash tables
- chaining
- hash functions
- open addressing
- material
solving collisions using chaining

create a list for each slot
link records in the same slot into a list
slot in hash table points to head of a linked list
(nil if list is empty)

chaining: example

hash function is month of birth modulo 5
drawback: pointer structures are expensive

chaining: worst-case analysis

for insertion: in $O(1)$
for deletion: in $O(1)$ if lists are doubly-linked
for searching:
if every key hashes to the same slot then just (long) linked list
in $O(n)$ with n size of the dictionary

chaining: average case analysis

assumption:
key is hashed to any arbitrary slot, independent of other keys
we have n keys and m slots
probability of $h(k) = h(k')$ is $\frac{1}{m}$
expected length of list at $T[h(k)]$ is $\frac{n}{m}$
this is called the load factor $\alpha = \frac{n}{m}$
expected search time for unsuccessful case:
computing $h(k)$ and accessing the slot, and cost of searching list
so $\Theta(1 + \alpha)$
remarks

also average-case successful search in $\Theta(1 + \alpha)$

if $\alpha \in O(1)$ (constant!) then expected search time in $\Theta(1)$

$n \in O(m)$ also expected search time in $\Theta(1)$

(number of slots proportional to number of keys)

if hash table is too small it does not work properly!

overview

- linked lists
- direct-address table
- hash tables
- chaining
- hash functions
- open addressing
- material

choosing a hash function

in view of the assumption in the analysis: what is a good hash function?

distributes keys uniformly and seemingly randomly

regularity of keys distribution should not affect uniformity

hash values are easy to compute: in $O(1)$

(properties can be hard to check)

hash functions: division method

a key k is hashed to $k \mod m$

pro: easy to compute

contra: not good for all values of m

do not take m with small divisor
division method: bad choices for m

if m and all keys even then we use half of the slots

$m = 100$ and we store $50, 100, 150, 200, 250$

- $50 \mapsto 50$
- $100 \mapsto 100$
- $150 \mapsto 50$
- $200 \mapsto 100$
- $250 \mapsto 50$

$m = 2^4 = 16$ and we store $0, 32, 64, 96$

- $0000000 = 0 \mapsto 16$
- $0010000 = 32 \mapsto 16$
- $0100000 = 64 \mapsto 16$
- $0110000 = 96 \mapsto 16$

heuristics: take m prime not too close to a power of 2 or 10 (common bases)

multiplication method

choose a constant A with $0 < A < 1$

compute $k \cdot A$

take its fractional part: $k \cdot A - \lfloor k \cdot A \rfloor$

multiply the result with number of slots m

take floor

a key k is hashed to $\lfloor (m \cdot (k \cdot c - \lfloor k \cdot c \rfloor)) \rfloor$

multiplication method: example

multiplication method: which A are good?

advantage: value of A is not critical, but some are better than others

an optimal value of A depends on the data being hashed

Knuth recommends the golden ratio (see book p264)

$$A = \frac{\sqrt{5} - 1}{2} \approx 0.6180339887 \ldots$$
overview

- linked lists
- direct-address table
- hash tables
- chaining
- hash functions
- open addressing
- material

open addressing

alternative to chaining for solving collisions

we make a probe sequence

\[h : U \times \{0, \ldots, m - 1\} \rightarrow \{0, \ldots, m - 1\} \]

deletion is difficult

open addressing: example

hash key \(k = 387 \) with table partly full

open addressing: linear probing

next probe: try the next address modulo \(m \)

\[h(k, i) = h'(k) + i \mod m \]

we get clustering!

and removal difficult
quadratic probing

\[h(k, i) = h'(k) + a \cdot i + b \cdot i^2 \mod m \]

open addressing: double hashing

we use two hash functions

\[h(k, i) = h_1(k) + i \cdot h_2(k) \mod m \]

search for a key doing:

\[
\begin{align*}
&h_1(k) + 0 \cdot h_2(k) \mod m \\
&h_1(k) + 1 \cdot h_2(k) \mod m \\
&h_1(k) + 2 \cdot h_2(k) \mod m \\
&\vdots
\end{align*}
\]

double hashing: example

\[m = 13, \ h(k) = k \mod 13, \ h'(k) = 7 - (k \mod 7) \]

\[
\begin{array}{|c|c|c|c|}
\hline
k & h(k) & h'(k) & \text{try} \\
\hline
18 & 5 & 3 & 5 \\
41 & 2 & 1 & 2 \\
22 & 9 & 6 & 9 \\
44 & 5 & 5 & 5, 10 \\
59 & 7 & 4 & 7 \\
32 & 6 & 3 & 6 \\
31 & 5 & 4 & 5, 9, 13 \\
73 & 8 & 4 & 8 \\
\hline
\end{array}
\]
double hashing: analysis

probe sequence: \(h(k, 0), h(k, 1), \ldots, h(k, m-1) \)

assumption:
each key is equally likely to have any one of the \(m! \) permutations as its probe sequence regardless of what happens to the other keys

assumption:
load factor \(\alpha = \frac{n}{m} < 1 \)

expected number of probes for unsuccessful search

probe 1: with probability \(\frac{n}{m} \) collision, so go to probe 2
probe 2: with probability \(\frac{n-1}{m-1} \) collision, so go to probe 3
probe 3: with probability \(\frac{n-2}{m-2} \) collision, so go to probe 4

note: \(\frac{n-i}{m-i} < \frac{n}{m} = \alpha \)

expected number of probes:

\[
1 + \frac{n}{m}(1 + \frac{n-1}{m-1}(1 + \frac{n-2}{m-2}(...))) \leq \sum_{i=0}^{\infty} \alpha^i = \frac{1}{1-\alpha}
\]

double hashing: remarks

if \(\alpha < 1 \) constant then expected number of probes in \(\mathcal{O}(1) \)

if table is full for 50% then we expect 2 probes

if table is full for 90% then we expect 10 probes

universal hashing

a hash function is selected randomly at run-time
from a family of good hash functions
then good expected performance
overview

- linked lists
- direct-address table
- hash tables
- chaining
- hash functions
- open addressing

material

Donald Knuth: The art of computer programming
volume Sorting and Searching