overview

- AVL-trees
- amortized complexity
- material
binary search trees: towards AVL trees

binary search in ordered array (look-up table)

binary search in binary search tree (BST)

because the height is crucial for the time complexity of the operations
there are many subclasses of balanced binary search trees

compromise between the optimal and arbitrary binary search tree

examples of balanced BSTs: AVL trees, red-black trees, splay trees
recap definitions

binary tree:
every node has at most 2 successors (empty tree is also a binary tree)

depth of a node x:
length (number of edges) of a path from the root to x

height of a node x:
length of a maximal path from x to a leaf

height of a tree:
height of its root
AVL-tree: definition

binary search tree with in addition balance-property:

for every node
the absolute value of the difference between
the height of the left sub-tree
and the height of the right sub-tree
is at most 1

(take height -1 for the empty tree)
AVL-tree: example

the key is in the node, the height of the sub-tree above the node
ALV-tree: height

height of an AVL-tree with \(n \) nodes is in \(\mathcal{O}(\log n) \)

(no proof)
operations on AVL-trees

search: exactly as for binary search trees

worst-case time complexity is in $O(h)$ so in $O(\log n)$

add: as for binary search trees, and then restore balance

remove: as for binary search trees, and then restore balance
the four cases of unbalanced nodes after insertion
example: left-left

adding yields left-left unbalanced node:

rebalance using single rotation of nodes with labels 3 and 2:
left-left general

left-left unbalanced node

rebalance using single rotation:
(compare \((ab)c = a(bc)\))
left-left: general intuition of correctness

insertion in A-subtree

AB-tree balanced before and after insertion

hence if after insertion A-tree height $h + 1$ then B-tree height h

ABC-tree balanced before but not after insertion

hence C-tree height h

after single rotation: ABC-subtree balanced and has height as before
symmetry: right-right

right-right unbalanced node

rebalance using single rotation
example: left-right

adding yields left-right unbalanced node

rebalance using double rotation (cf. \((a(bc)d) = (ab)(cd)\)):
left-right general

left-right unbalanced node

rebalance using double rotation
symmetry: right-left

right-left unbalanced node

rebalance using double rotation
rules for rebalancing

single rotation: left-left and right-right

double rotation: left-right and right-left

inorder of the nodes remains the same
AVL-trees: insertion

step 1: insert new node as for binary search tree

step 2: identify the first unbalanced node on the path from the new node to the root

step 3: rebalance that node (there are 4 possible cases)

we need at most 1 rebalance (single or double rotation) step (why?)

insertion operation is in $O(\log n)$
insertion: correctness

only nodes on the path from the inserted node to the root may become unbalanced.

take the lowest unbalanced node x

a single or double rotation restores the balance of x

in addition, x gets the same height as before insertion

hence above x the nodes are balanced as before insertion

so the tree is an AVL tree (again)
question: add node with key 0
the six cases of unbalanced nodes after removal

Left Left
-2
-1
A
h + 1
B
h
C
h deleted

Left Right
-2
1
A
h + 1
B
h
C
h deleted

Left
-2
A
h + 1
B
h + 1
C
h deleted

Right Right
2
1
A
h deleted
B
h
C
h + 1

Right Left
2
-1
A
h deleted
B
h + 1
C
h deleted

Right
2
0
A
h deleted
B
h + 1
C
h + 1
example: left
removal yields left unbalance

rebalance using single rotation
symmetry: right

symmetry gives unbalance right

rebalance using single rotation
AVL-trees: removal

step 1: remove node as for binary search trees

step 2: walk from the removal point upwards and rebalance the first unbalanced node
how to rotate? take the heaviest child

step 3: go back to step 1 if necessary
removal: remarks

6 possible cases of unbalanced nodes after update

we do not need more rules for rebalancing

after removal we possibly need more than one rebalance step

removal is in $O(\log n)$
example: remove node with key 9
overview for ordered dictionaries

<table>
<thead>
<tr>
<th>Data Structure</th>
<th>Search</th>
<th>Insert</th>
<th>Remove</th>
</tr>
</thead>
<tbody>
<tr>
<td>log file</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>lookup table</td>
<td>$O(\log n)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>binary search tree</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>AVL-tree</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
</tr>
</tbody>
</table>
AVL-trees: inventors

Adelson-Velskii (1922-2014) and Landis (1921-1997) in 1962
overview

- AVL-trees
- amortized complexity
- material
stack

operation **push(e)** in $\mathcal{O}(1)$

operation **pop** in $\mathcal{O}(1)$

worst-case cost per operation is in $\mathcal{O}(1)$

worst-case cost for n operations is in $\mathcal{O}(n)$
stack with multipop

operation \textbf{push}(e) \text{ in } \mathcal{O}(1)

operation \textbf{pop} \text{ in } \mathcal{O}(1)

new operation \textbf{multipop}(k): \text{ remove } k \text{ elements as far as possible}

\begin{verbatim}
Algorithm multipop(S, k):
 while not isEmpty(S) and k > 0 do
 pop()
 k := k - 1
\end{verbatim}

time taken by \textbf{multipop} is minimum of \(k\) and number of elements on \(S\)
time complexity stack with multipop

we consider a sequence of \(n \) operations
worst-case cost for multipop is in \(\mathcal{O}(n) \)
worst-case cost for an operation is in \(\mathcal{O}(n) \)
worst-case cost for \(n \) operations is in \(\mathcal{O}(n^2) \)
this analysis is not tight
stack with multipop: aggregate analysis

observe: a single multipop operation may be expensive

observe: an object that is pushed on the stack can be popped at most once

therefore: a sequence of n operations on an initially empty stack is in $\mathcal{O}(n)$

hence: the average cost of an operation is in $\mathcal{O}(1)$

we take for the amortized cost the average cost
aggregate analysis

we take a worst-case sequence of n operations

we take the average cost of one operation

amortized cost := average cost

all operations have the same amortized cost

no average case analysis, no probability distribution of possible inputs
accounting method: actual cost and amortized cost

we have the actual cost of an operation

we define what we charge for an operation

amortized cost := what we charge

amortized cost intuitively: actual cost plus credit

different operations may have different amortized costs

goal: we can pay for any sequence of operations using amortized costs
accounting method: consider sequences

we require for all sequences of n operations:

$$\sum_{i=1}^{n} \text{amortized-cost}_i \geq \sum_{i=1}^{n} \text{actual-cost}_i$$

so for any sequence of operations the amortized cost bounds the actual cost

so we require that at any 'time' n the total credit is non-negative:

$$\sum_{i=1}^{n} \text{amortized-cost}_i - \sum_{i=1}^{n} \text{actual-cost}_i \geq 0$$
multipop: accounting method

intuition: with push we pay for the later pop

we have actual costs:

actual cost for push and for pop: 1

actual cost for multipop: \(\min(k, s) \)
(removing \(k \) elements from stack with \(s \) elements)

we define amortized costs:

amortized cost for push: 2

amortized cost for pop and for multipop: 0

total amortized cost of a sequence of \(n \) operations in \(\mathcal{O}(n) \)

so actual cost of a sequence of \(n \) operations also in \(\mathcal{O}(n) \)
binary counter

an array $A[0 \ldots k - 1]$ of bits

lowest-order bit in $A[0]$

higher-order bit in $A[k - 1]$

so number stored: $x = \sum_{i=0}^{k-1} A[i] \cdot 2^i$

initially $x = 0$
incrementing binary counter

pseudo-code for the operation increment:

Algorithm increment(A):
 i := 0
 while i < A.length and A[i] = 1 do
 A[i] := 0
 i := i + 1
 if i < A.length then
 A[i] := 1
we consider a sequence of \(n \) operations

worst-case cost for increment is in \(\mathcal{O}(k) \)

worst-case cost for \(n \) operations is in \(\mathcal{O}(nk) \)

this analysis is not tight
counter: aggregate analysis

observe: not all bits flip every time increment is called

A[0] flips every time

A[1] flips every other time, or ⌊n/2⌋ times of the n operations

A[2] flips ⌊n/4⌋ times in a sequence of n operations

A[i] flips ⌊n/2^i⌋ times in a sequence of n operations

total number of flips in a sequence of n operations:

\[\sum_{i=0}^{k-1} \left\lfloor \frac{n}{2^i} \right\rfloor < n \cdot \sum_{i=0}^{\infty} \frac{1}{2^i} = 2n \]

hence the average cost of increment is in \(O(1) \)
we use \(\sum_{k=0}^{\infty} x^k = \frac{1}{1-x} \) for \(|x| < 1\)
counter: accounting method

running time is proportional to number of bits flipped

we have actual costs:

actual cost for flipping bit from 0 to 1 : 1
actual cost for flipping bit from 1 to 0 : 1

we define amortized costs:

amortized cost for flipping bit from 0 to 1: 2
amortized cost for flipping bit from 1 to 0: 0
overview

- AVL-trees

- amortized complexity

- material
material