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Abstract. The configuration of Web services is particularly hard given the het-
erogeneous, unreliable and open nature of the Web. Furthermore, such compos-
ite Web services are likely to be complex services, that will require adaptation
for each specific use. Current approaches to Web service configuration are of-
ten based on pre/post-condition-style reasoning, resulting in a planning-style
approach to service configuration, configuring a composite web service “from
scratch” every time.
In this paper, we propose instead a knowledge-intensive brokering approach to
the creation of composite Web services. In our approach, we describe a complex
Web service as a fixed template, which must be configured for each specific use.
Web service configuration can then be regarded as parametric design, in which
the parameters of the fixed template have to be instantiated with appropriate com-
ponent services. During the configuration process, we exploit detailed knowledge
about the template and the components, to obtain the required composite web ser-
vice.
We illustrate our proposal by applying it to a specific family of Web services,
namely “heuristic classification services”. We have implemented a prototype of
our knowledge-intensive broker and describe its execution in a concrete scenario.

1 Introduction

Web services have raised much interest in various areas of Computer Science. In AI,
the notion ofSemantic Web Serviceshas attracted much attention. According to [1]:

“Semantic Web services build on Web service infrastructure to enable auto-
matic discovery and invocation of existing services as well ascreation of new
composite services[...]”.

In particular the configuration of Web services (the “creation of new composite ser-
vices”) has gained attention from AI researchers [2, 3]. This problem is particularly
hard given the heterogeneous, unreliable and open nature of the Web. Furthermore,
such composite Web services will be complex services, that will require adaptation for
each specific use.

Current approaches to Web service configuration are often based on pre/post-
condition-style reasoning. Given more or less semantic descriptions of elementary Web
services, and the required functionality of the composite Web service, they aim to try
to construct a “plan” of how to compose the elementary services in order to obtain



the required functionality. Techniques from the domain of planning are heavily being
investigated for this purpose [4, 5].

This problem of creation of new composite web services is in principle equal to
the old problem of generalised automatic programming. This problem is notoriously
unsolved in general by any known techniques. There is no reason to belief that the Web
service version of this problem will be any less resistant to a general solution.

In this paper, we propose instead aknowledge intensiveapproach to the creation of
composite Web services. Following the general maxim of knowledge-based systems,
problems that are in general hard (or even unsolvable) are perfectly solvable in the
context of specialised knowledge for specific tasks and domains. In our approach, we
describe a complex Web service as a fixed template, which must be configured for each
specific use. Web service configuration can then be regarded as parametric design, in
which the parameters of the fixed template have to be instantiated with appropriate
component services. During the configuration process, we exploit detailed knowledge
about the template and the components, to obtain the required composite web service.

Our approach is directly based on well-established work from Knowledge Engi-
neering, and results obtained there in the 90’s. Knowledge Engineering has extensively
studied the notion ofreusable componentsfor knowledge-based systems, in particu-
lar reusable problem-solving methods: see [6, 7] for general reusability frameworks,
and [8, 9] for example collections of reusable components. In essence, our contribution
is nothing more than the insight that these results for the configuration of knowledge-
based systems from reusable components can be directly brought to bear on the problem
of configuring web-services. Indeed, we will propose to use exactly the same configura-
tion method for web-services as has been used for the configuration of KBS components
[10].

Whereas in other work the main metaphor is “Web service configuration = plan-
ning” (i.e. generalised reasoning based on only component specifications), our approach
is based on the metaphor “Web service configuration = brokering” (i.e. reasoning with
specialised knowledge in a narrow domain). A planner is assumed to be “domain free”:
it is supposed to work on any set of components, given simply their descriptions. A
broker on the other hand (as in: a stock broker, a real-estate broker) exploits specific
knowledge about the objects he is dealing with.

The idea of re-using preconfigured templates for Web service configuration also
appears in other work: the notion of “generic procedures” in [11], the instantiation of
predefined BPEL process models [12], and the coordination patterns from [13].

In the remainder of this paper, we describe how Web services advertise themselves
as components to be used by a particular Web service broker, and how such a broker
can be equipped with configuration knowledge on how to combine these web services.

In section 2 we describe our general parametric-design approach to Web service
configuration. In sections 3 and 4 we illustrate our proposal by applying it to a spe-
cific family of Web services, namely “heuristic classification services”. In section 5 we
describe a specific implementation and execution of our approach.



2 Web Service Configuration as Parametric Design

In this section we will describe what parametric design is, why parametric design is
a good basis for a Web service broker, and what descriptions of Web services are re-
quired to enable parametric-design reasoning by a broker, and finally we will describe
a computational method for solving parametric design problems.

2.1 Parametric Design

Parametric Designis a method for designing objects which is a simplification of general
configuration. As any design task, it takes as input the requirements to be met, and
produces a design that satisfies these requirements. Parametric Design assumes that the
objects-to-be-configured all have the same overall structure in the form of preconfigured
templates. Variations on the configuration can only be obtained by choosing the values
of given parameters within these templates.

The canonical example of Parametric Design is the design of elevators: every eleva-
tor has the same basic structure, namely a column, cable, cabin, counterweight, motor,
etc, all in a fixed “template structure”. Individual elevators differ only in the values for
these parameters: the height of the column, the diameter of the cable, the capacity of the
motor, etc. Elevator configuration can be reduced to simply choosing the right values
for all these parameters [14].

In the case of web-service configuration, the “template” is a skeletal control struc-
ture, which determines how a number of component services will have to be composed.
Each component service is then a possible value for one of the parameters within the
overall template.

The advantages of Parametric Designin general are: (i) it is one of the easiest
forms of configuration, (ii) it is well-studied in the literature [15], and (iii) computa-
tional methods are known and tractable (in section 2.2 we will describe one of these
methods: propose-critique-modify). Advantages of parametric design for Web services
configuration specifically are that the re-use of preconfigured templates avoids repeated
multiple configurations of similar composite services for similar applications. These
preconfigured templates are a way of “encoding” knowledge that can be used to obtain
more sophisticated services than would be possible when configuring “from scratch”
(in the sense of planning).

Parametric Design requires that the object-to-be-designed (in our case: a Web ser-
vice) is described in terms of a fixed structure containing parameters with adjustable
values. The following question must be answered before we can confidently apply Para-
metric Design to the problem of Web service configuration:
Question 1:can realistic classes of Web services be described in this way? This question
will be tackled in section 3.

2.2 Propose-Critique-Modify

An existing reasoning method for parametric design isPropose-Critique-Modify, or
PCM for short [15]. The PCM method consists of four steps:



The propose stepgenerates an initial partial or complete configuration. It proposes an
instance of the general template used for representing the family of services.

The verify stepchecks if the proposed configuration satisfies the required properties of
the service. This checking can be done by both analytical pre/post-condition reasoning,
and by running or simulating the service.

The critique step. If the verification step fails the critique step analyses the reasons
for this failure: it indicates which parameters may have to be revised in order to repair
these failures.

The modify stepdetermines alternative values for the parameters identified as culprits
by the critique step. After executing the modification step, the PCM method continues
again with a verify step. This loop is repeated until all required properties of the service
are satisfied.

This method for solving configuration problems has a number of important char-
acteristics: (i) it tries toincrementallyimprove a configuration: when the current can-
didate configuration does not meet all requirements, it is not thrown away, but instead
it is modified in incremental steps. (ii) each of the four steps exploit specific domain
knowledge about the objects-to-be-configured (in our case Web services in general, and
classification-services in particular). Such domain knowledge is used to propose a good
initial configuration, to analyse potential causes of failure, to identify possible modifi-
cations, etc. (iii) it does not solve a configuration problem from scratch, but exploits the
structure of a predefined template.

The propose-critique-modify method for Parametric Design requires specific types
of configuration knowledge to drive the different steps of the configuration process
Question 2:can this PCM-knowledge be identified for realistic classes of Web services?
This question will be tackled in section 4.

3 Classification: an Example Family of Web Services

In this section we will illustrate our proposal by applying it to a specific family of Web
services, namely “heuristic classification services”. This is a good example because:
(i) They are of general applicability and value on the Web. They are used for example,
on e-commerce web-sites, to classify products into categories based on their features
(price, size, performance, etc) ; in web-site personalisation, to classify pages based on
occurences of keywords, date-of-writing, picture-intensity, etc ; or to classify message
in streams such as email or news. based on keyword occurrences, sender, date, size etc.
(ii) Heuristic classification services are complex services that require configuration.
They must be adjusted to the presence of noise in the dataset, the degree of reliability
of the classification rules, the required degree of soundness and completeness of the
final classification, etc. All these properties must be taken into account during service
configuration.
(iii) Classification is well-studied in the AI literature, so a sufficient body of theory is
available as the basis for a configuration theory [16, 17].

The common definition of classification can be found in [18]:



“To classify something it to identify it as a member of a known class. Classifi-
cation problems begin with data and identify classes as solutions. Knowledge
is used to match elements of the data space to corresponding elements of the
solutions space, whose elements are known in advance.”

More formally,

Classification: Observations× Knowledge→ Classes

whereObservationsis a set of〈feature,value〉-pairs, and theKnowledgeinvolved is a
map of sets of〈feature,value〉-pairs toClasses.

3.1 Template for classification services

We address question 1 above: can a realistic class of classification services be described
in a single template? [19] does indeed present such a general template, on which the
following structure from fig. 1 is based:

Observations

Knowledge

Solutions

Legal
Observations

Scored
Observations

Aggregated
Scores

Candidate
Solutions

MicroMatch

Aggregate

Admissibility

Check

Selection

Fig. 1. Structure of classification services. The boxes with thick lines are input and output. The
ovals are the parameters of the template for the family of classification services.

First the observations have to be verified whether they are legal (Check). Each of
these legal observations (〈feature,value〉-pairs) have to be scored on how they contribute



to every possible solution in the solution space (MicroMatch). These individual scores
are then aggregated (Aggregate). These aggregated scores are the basis for determining
the candidate solutions (Admissibility). A final step (Selection) then selects among these
candidate solutions the best final solutions.

This structure constitutes the overall template for classification services. Each box
from fig. 1 is one parameter to configure in this fixed template.

We will now show that such a template structure can also be easily captured in cur-
rent Web service description languages, such as OWL-S [20]. Any OWL-S description
is conceptually divided into three sub-parts for specifying what a service does (thepro-
file, used for advertising), how the service works internally (theprocess model) and how
to interoperate with the service via messages (thegrounding). We use the schematic
notation for OWL-S introduced in [21].I(.) and O(.) denote input- and output-
arguments. We have used the capitals-only abbreviated version of the identifiers from
figure 1 for typesetting reasons.

*Profile: PrClassification(I(O), I(K), O(S))
(hasProc = CPClassification)

*ProcessModel
CompositeProcess: CPClassification: sequence
{AtomicProcess: APCheck(I(O), O(LO))

AtomicProcess: APMicroMatch(I(LO), I(K), O(SO))
AtomicProcess: APAggregate(I(SO), O(AS))
AtomicProcess: APAdmissibility(I(AS), O(CS))
AtomicProcess: APSelection(I(CS), O(S))

}

Different forms of classification are made up of different values for the five ”Atom-
icProcess” components (and their groundings as specific pieces of code). These Atom-
icProcess components are the parameters within the predefined template of the OWL-S
description.

3.2 Components for classification services

We now give some example values of the different parameters, to illustrate the search
space of the service-configuration process (more examples can be found in [22]):

Example values of theCheck parameter:
• single-value: each feature is required to have at most one value.
• required-value: each feature is required to have at least one value.
• legal-feature-value(P): This specifies that a given predicateP must be true for each
〈feature,value〉-pair.

Example values of theMicroMatch parameter:
• MicroMatch-IEUM: Each feature can have the status inconsistent, explained, unex-
plained or missing. A feature is inconsistent w.r.t. a class if its value does not satisfy the



feature condition of this class. A feature is explained w.r.t. a class if it is observed and
satisfies the feature condition of this class. A feature is missing w.r.t. a class if it is not
observed yet the class has a feature condition for this feature. A feature is unexplained
w.r.t. a class if it is observed yet the class does not have a feature condition for this
feature.MicroMatch-IEUM computes for each feature for each class whether the feature
is inconsistent, explained, unexplained or missing.
• MicroMatch-closeness: Compute for each feature per class how “close” the observed
value is to the value prescribed for the class (e.g. giving a number in [-1,1], with 0 for
unknown values).

Example values of theAggregate parameter:
• Aggregate-IEUM: Collect per class the set of features that are inconsistent, explained,
unexplained or missing and represent these in a 4-tuple〈I, E, U, M〉, whereI denotes
the set of inconsistent features, etc.
• Aggregate-#-IEUM: Count per class the number of features that are inconsistent, ex-
plained, unexplained or missing and represent these in a 4-tuple〈|I|, |E|, |U |, |M |〉.

Example values of theAdmissibility parameter:
(The following are all taken from [18]).
• weak-coverage: Each〈feature,value〉 pair in the observations has to be consistent with
the feature specifications of the solution. In other words, a classc1 is a solution if its set
I denoting the inconsistent features ofc1 is empty (I = ∅).
• weak-relevant: Each〈feature,value〉 pair in the observations has to be consistent with
the feature specifications of the solution, and at least one feature is explained by the
solution. A classc1 is a solution if its setI denoting the inconsistent features ofc1 is
empty (I = ∅), and its setE denoting the explained features is not empty (|E| > 0).
• strong-coverage: These are weak-coverage solutions with no unexplained features
(U = ∅).
• explanative: These are weak-coverage solutions for which no feature specifications
are missing (M = ∅).
• strong-explanative: These solutions satisfy both the requirements ofstrong-coverage
and ofexplanative.

Example values of theSelection parameter:
• IEUM-size: Compute the minimal element under the lexicographic ordering on
{|I|,−|E|, |U |, |M |} using<. In other words: minimising inconsistent features, max-
imising explained features, and minimising unexplained and missing features (in order
of importance).
• IE-size: As IEUM-size, but disregarding unexplained and missing features.
• Single-solution: Simply choose an arbitrary solution from the candidates.
• No-ranking: Return all candidate solutions, ie. there is no ranking at all, and all values
are considered as ”best” scores.

We have illustrated a number of instances of the parameters that can be used in the
overall template for classification services. We now show that such parameter instances
can be described in current Web service description languages (e.g. OWL-S). Below we
give an example of aCheck parameter.



*Profile: PrSingleValue(I(O), O(LO))
(hasProc = APSingleValue)
(serviceCategory = Check)

*ProcesModel:
AtomicProcess: APSingleValue(I(O), O(LO))

*Grounding:
GrSingleValue(APSingleValue--> single-value)

This describes an atomic service with a specific implementation (grounding). The
service is registered to belong to the givenserviceCategory Check . This allows
the configuration process to discover that this specific component can be used to instan-
tiate the AtomicProcess “APCheck” in the overall ProcessModel.

Summary: In summary, in this section we have shown that it is possible to develop
a general structure (template) for a complex family of Web services (in our case for
heuristic classification services), and that there exists a large variety of possible val-
ues for the individual components (“parameters”) in this general template. This means
that we can apply parametric design for constructing and adjusting classification Web
services. We have also shown that both the the general structure and the individual
components can be described in OWL-S.

4 PCM-Broker Knowledge

In the previous section, we have seen that indeed Web services can be represented in
the form that is required for parametric design.

The question still remains if it is possible to identify the knowledge required for the
propose-critique-modify method and each of its four steps (i.e. question 2 identified in
section 2.2). We will now show that this is indeed the case, by giving parts of the PCM
knowledge required to configure classification services. (Again, more examples can be
found in [22]).

Example Propose knowledge for theAdmissibility parameter:
• The following values for theAdmissibility parameter are compatible with the value
MicroMatch=MicroMatch-IEUM: weak-relevant, weak-coverage, strong-coverage and
explanative.
• if many 〈feature,value〉 pairs are irrelevant, then do not usestrong-coverage (be-
causestrong-coverage insists on an explanation forall observed features, including the
irrelevant ones).

Example Propose knowledge for theSelection parameter:
• The following values for theSelection parameter are compatible with the value
MicroMatch=MicroMatch-IEUM: IEUM-size, IE-size, no-ranking andsingle-solution.
• if not all observations are equally important, then do not useSelection=IEUM-size,
since IEUM-size simply counts numbers of features in each category, given them all
equal weight.



Example Critique knowledge for theSelection parameter:
• When the solution set is too small (e.g. empty) or too large (e.g.> 1), then adjust the
Admissibility or theSelection parameter.How this adjustment should be done is part of
the modify-knowledge for these parameters:

Example Modify knowledge for theAdmissibility parameter:
• If the solution set has to increased (reduced) in size, then the value for theAdmissibility
parameter has to be moved down (up) in the following partial ordering:

weak-coverage ≺ weak-relevant
weak-coverage ≺ strong-coverage ≺ strong-explanative
weak-coverage ≺ explanative ≺ strong-explanative

• If the configurationAdmissibility=explanative gives no solutions, then choose
Admissibility=strong-coverage. (This amounts to shifting from a conjunctive reading of
class-definitions in terms of〈feature,value〉 pairs to a disjunctive reading).

Example Modify knowledge for theSelection parameter:
• If the solution set has to be increased (reduced), then the value for theSelection
parameter has to be moved down (up) in the following ordering:

no-ranking ≺ IE-size ≺ IEUM-size ≺ single-solution

Conclusion: These examples affirmatively answer our question 2 from section 2.2. A
PCM-broker requires knowledge about component-services in order to perform its task,
and it has turned out to be possible to identify such knowledge for a realistic class of
classification Web services.

This leaves open the question on how this knowledge is best represented in the bro-
ker. However, it should be clear that OWL-S isnot the language in which this knowledge
is expected to be stated. OWL-S is only used (1) to specify the general schema for the
overal service to be configured (in the form of aCompositeProcess , and (2) to
specify the seperate atomic services that can be used to fill out this general schema (in
the form of aAtomicProcess ). The implementation behind our example scenario in
section 5 uses an ad-hoc Prolog representation for the brokering knowledge, but more
principled representations can be found in the Knowledge Engineering literature

5 An Example Scenario

In section 3 we have already argued that classification services are used in many Web
service scenario’s (e-commerce, personalisation, alerting-services, etc.). To test our pro-
posed brokering approach to Web service composition, we have chosen to configure the
services needed to support Programme Chairs of major scientific conferences. Such
services are available on commercial websites4. Currenlty, it is up to the programme
chair to configure the services offered by such sites. Ideally, such web-services should

4 e.g.http://www.conferencereview.com /



be configured in a (semi-)automatic scenario, which is what we will investigate in this
section.

All scientific conferences are in essence similar, yet no two are exactly the same. Pa-
pers are always received, classified into areas, and allocated to reviewers, but the details
of this process vary greatly: how many areas are available, how are they characterised,
are papers allowed to fall under multiple areas, etc. This makes classification of con-
ference papers a good example case for a parametric-design broker: a generally valid
template, but with so much variation that a non-trivial configuration process is required.

In our experiment, we have emulated the paper-classification process for the ECAI
2002 conference. There were 605 submissions to ECAI 2002, each characterised by a
set of author-supplied keywords, i.e. each keyword is a〈feature,value〉-pair with value
either 0 (keyword absent) or 1 (present). In total, 1990 keywords were given by authors.
These had to be mapped onto 88 classes (“topic areas”): 15 broad classes which were
further subdivided into 73 more specific classes. Of the 650 papers, 189 were classified
by hand by the Programme Chair. These classifications can be considered as a golden
standard.
Requirement 1: The classification service must classify each paper in at least one of
the 15 major categories (since these reflected the structure of the programme commit-
tee).
Requirement 2: The service must reproduce the Chair’s solution on the 189 handclas-
sified papers.

Important characteristics of this domain are that:
Characteristic 1: the feature-values are often noisy (authors choose remarkably bad
keywords to characterise their paper), and
Characteristic 2: it is hard to determine in advance what the required classification
mechanism should be. Requiring all keywords of a paper to belong to a solution class
might be too strict, resulting in many unclassified papers, and violating requirement
1. But requiring only a single keyword to appear might well be too liberal, causing
violation of requirement 2. Again, these characteristics ensure that this domain is indeed
suited for a dynamic configuration of the classification process.

We now discuss the iterative service-configuration process performed by our PCM
broker. The scenario is summarised in the table below:

Iteration AnswersGolden StandardModification
1 0 (0%) 0 (0%)Admissibility
2 93 (15%) 16 (8%)Admissibility
3 595 (98%) 81 (45%) Selection
4 595 (98%) 103 (54%)Selection
5 595 (98%) 145 (76%)Selection
6 595 (98%) 169 (89%)

• Propose1: the broker generates an initial configuration. Based on the domain charac-
teristics described above, a simpleCheck-parameter checks whether all features have
at most one 0/1-value. The default-choiceMicroMatch=MicroMatch-IEUM is taken, with
the corresponding valueAggregate=Aggregate-IEUM. Of the values for theAdmissibility
parameter that are compatible with the chosenMicroMatch method, the broker initially



takes the most conservative choice:Admissibility=explanative. The given requirements
and domain characteristics do not strongly favour any particular value for theSelection
parameter, so the broker chooses the default-valueSelection=single-solution.
• Verify 1: The broker now determines that this initial choice is not very successful (see
the first entry in the table): no papers are assigned to any class, violating both require-
ment 1 and 2.
• Critique 1: The broker now determines which parameter has to be adjusted. Increas-
ing the number of solutions can be realised by adapting theSelection-criterion and by
adapting theAdmissibility-criterion.
• Modify 1: Since the number of solutions has to increase, it is attractive to adopt
Admissibility=strong-coverage (switching from a conjunctive to a disjunctive reading
of the class definitions in terms of keywords).
• Verify 2: This does indeed improve the results of the classification (2nd iteration in
the table above), but not enough. Both requirements are still strongly violated.
• Critique 2: Again the broker decides to adjust theAdmissibility-criterion.
• Modify 2: The next value that is one step weaker than the current choice is
Admissibility=weak-coverage.
• Verify 3: Now requirement 1 is all but fulfilled, but requirement 2 still fails (iteration
3 in the table).
• Critique 3: An option to remove this failure is again to increase the set of solutions.
Since the valueAdmissibility=weak-coverage cannot be reasonably weakened anymore,
the broker decides to adapt theSelection-parameter.
• Modify 3: The next option down from the current value isSelection=IEUM-size.
• Verify 4: Although increasing, the Golden Standard is not yet achieved (only 45%).
• Critique 4: By the same reasoning as inCritique3, the broker decides to further adjust
theSelection-parameter.

After a repeated series of six of such cycles, the broker finally arrives at a web-
configuration that satisfies requirements 1 and 2 to a sufficient degree.

A snapshot of part of the broker’s searchspace for this scenario is displayed in figure
2: at some point in the brokering process, a particular service configuration consists
of a certain set of components, say〈c1, c2, c3, c4, c5, c6〉, with each of theci being a
value for the corresponding parameter in the template from figure 1. At that point, the
verify step detects this configuration fails to satisfy requirement 1. An alternative path
in this search space would be to notice that the other requirement is not satisfied. If
all requirements had been satisfied, that would have lead to the current configuration
〈c1, c2, c3, c4, c5, c6〉 as a terminal node in the search space. After noticing the failure
to comply with requirement 1, a subsequentcritique step determines the parameters
that may be the culprit for this failure. Again, it is a matter of search strategy to decide
which culprit to choose. Each of these choices leads to a subsequentmodify step to repair
the identified culprit. In our scenario, the broker decides to identify theAdmissibility-
criterion as the culprit. Themodify step then has three options to adjust thisAdmissibility-
criterion, and the broker chooses to selectAdmissibility=strong-coverage. This results in
a new configuration,〈c1, c2, c3, strong-coverage, c5, c6〉, which is then again subject to
a verify step in the next iteration in this search space.
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Fig. 2. Part of the search space of broker in the example scenario. Tuples〈c1, c2, c3, c4, c5, c6〉
in white boxes represent service configurations (iestatesin the search space), while grey boxes
represent steps of the propose-critique-modify method (ietransitionsin the search space). The
thick arrows indicate the path in the search space chosen by the broker in the example scenario,
while thin arrows indicate possible alternatives in this search space.



The entire scenario above is implemented in SWI-Prolog5 The PCM-broker uses the
template for classification services from figure 1, and a library of service-components
much larger than those described in section 3, together with brokering knowledge as
described in section 4.

The scenario from this section illustrates that indeed: (i) the broker configures a
Web service by iteratively adjusting a fixed template of the service, and (ii) the bro-
ker uses extensive knowledge of the constituent services used to fill the parts of this
template. This substantiates our metaphor in section 1 that our configuration process is
“knowledge-intensive brokering”, and not “generalised planning”.

6 Limitations

As stated in the introduction, our approach to web-service configuration is based on
earlier work on configuring reusable components of knowledge-based systems. Conse-
quently, our proposal suffers from a number of limitations causes by mismatches be-
tween the old setting and the new one. We will now discuss some of these limitations.

The most obvious problem with our approach is the amount of high quality knowl-
edge that the broker must be equipped with. This concerns both the general template
(fig. 1) and the knowledge required to drive the propose-critique-modify steps (section
4). On the one hand, this meta-knowledge makes our approach to web-service configu-
ration more computationally feasible then the generic planning approach, on the other
hand the costs of acquiring this knowledge may well be prohibitive in a web-service
scenario.

A second problem concerns that fact that candidate configurations are tested by
actually executing them (the “verify”-step). In application domains where the service
execution has irreversible effects in the real world, such multiple trials of a web-service
would not be allowed (think for example what this would do to credit-card payments!).
In such domains, the verification step must be done entirely through reasoning in the
broker. Our previous experience in writing brokers ([10]) indicates that sufficiently
strong verification knowledge will be very hard to obtain.

A final and more subtle problem concerns the fact that the current broker knowl-
edge refers to individual web-service components by their name (see the examples in
section 4). This is reasonable in a library-setting (as in the origins of our work in [10]),
where the broker can be assumed to know which components are available. However,
this is unrealistic in an open-world web-service scenario, where the broker cannot be
assumed to know beforehand all the component services it has available for configu-
ration. Ideally, new component services should be able to register themselves with the
broker, declaring their type and properties, enabling the broker to include them in any
informed choice it makes. This requires two changes over our current meta-knowledge:
Firstly, the components must explicitly state their functional properties when they reg-
ister themselves. Although principle in possible, current web-service languages like
OWL-S do not provide any agreed-upon formalism for stating such functional proper-
ties [21]. Secondly, the broker must then use these properties to derive relations between

5 http://www.swi-prolog.org/



components, such as the partial orderings in section 4, instead of having been given
these relations explicitly, as is the case now. Of course, deriving such relations from the
properties of the individual component-services would be a very hard reasoning task
(and is currently done by the knowledge engineers that were building the broker (=
us)).

7 Conclusion

In this paper, we have proposed an architecture for Web service brokers. The central
idea is that a broker performs a parametric design task. This significantly reduces the
complexity of the broker’s task, for two reasons:

First, a broker no longer performs a completely open design task (as in more main-
stream planning-style approaches to Web service configuration). Instead, the task of
the broker is limited to choosing parameters within a fixed structure. This requires that
the “Web service to be configured” can be described in terms of such a parameterised
structure. For the case of classification Web services, we have shown that these can
indeed be represented in this way, using current Web service description languages as
OWL-S.

Secondly, viewing brokering as parametric design gives a reasoning model for the
broker: propose-critique-modify (PCM) is a well-understood method for parametric de-
sign tasks, and can be exploited as the basis for the broker. PCM brokering offers the
possibility of dynamically adapting the Web service on the basis of an assessment of
the results of executing an earlier configuration. To this end, the required knowledge for
the PCM method must be made available to the broker.

We have shown that for configuring heuristic classification tasks, this knowledge
can be made sufficiently precise to be useable in an automated broker.

We have shown the feasibility of our approach by describing a specific broker that
configures and adapts a classification service to be used for a realistic task, namely the
classification of papers submitted to a large AI conference. In a number of iterations, our
broker is able to increase the quality of the classification by successive reconfigurations.

We feel confident that this approach to Web service configuration is applicable in
more than just our single example scenario (see for example our own work on diagnostic
reasoners [10] and work by others on general task models [6]).

Our experience in realising the example scenario is that the main difficulty with the
proposed approach lies in the identification of the knowledge for the critique and revise
steps: if certain requirements are not met by the current service-configuration, which
knowledge must be exploited to identify and repair the current configuration in order to
improve its performance. Although we have now successfully met this challenge in two
separate domains (diagnostic and classification reasoning), only further experiments
can tell if our proposal is indeed generally applicable across a wide variety of Web
services.
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