
Web Ontology Language: OWL

Grigoris Antoniou1 and Frank van Harmelen2

1 Department of Computer Science, University of Crete, ga@csd.uoc.gr
2 Department of AI, Vrije Universiteit Amsterdam,
Frank.van.Harmelen@cs.vu.nl

1 Motivation and Overview

The expressivity of RDF and RDF Schema that was described in [12] is de-
liberately very limited: RDF is (roughly) limited to binary ground predicates,
and RDF Schema is (again roughly) limited to a subclass hierarchy and a
property hierarchy, with domain and range definitions of these properties.

However, the Web Ontology Working Group of W3C3 identified a number
of characteristic use-cases for Ontologies on the Web which would require
much more expressiveness than RDF and RDF Schema.

A number of research groups in both America and Europe had already
identified the need for a more powerful ontology modelling language. This
lead to a joint initiative to define a richer language, called DAML+OIL4 (the
name is the join of the names of the American proposal DAML-ONT5, and
the European language OIL6).

DAML+OIL in turn was taken as the starting point for the W3C Web
Ontology Working Group in defining OWL, the language that is aimed to
be the standardised and broadly accepted ontology language of the Semantic
Web.

In this chapter, we first describe the motivation for OWL in terms of its
requirements, and the resulting non-trivial relation with RDF Schema. We
then describe the various language elements of OWL in some detail.

Requirements for ontology languages

Ontology languages allow users to write explicit, formal conceptualizations of
domains models. The main requirements are:

3 http://www.w3.org/2001/sw/WebOnt/
4 http://www.daml.org/2001/03/daml+oil-index.html
5 http://www.daml.org/2000/10/daml-ont.html
6 http://www.ontoknowledge.org/oil/

2 Grigoris Antoniou and Frank van Harmelen

1. a well-defined syntax
2. a well-defined semantics
3. efficient reasoning support
4. sufficient expressive power
5. convenience of expression.

The importance of a well-defined syntax is clear, and known from the area of
programming languages; it is a necessary condition for machine-processing of
information. All the languages we have presented so far have a well-defined
syntax. DAML+OIL and OWL build upon RDF and RDFS and have the
same kind of syntax.

Of course it is questionable whether the XML-based RDF syntax is very
user-friendly, there are alternatives better suitable for humans (for example,
see the OIL syntax). However this drawback is not very significant, because
ultimately users will be developing their ontologies using authoring tools, or
more generally ontology development tools, instead of writing them directly in
DAML+OIL or OWL.

Formal semantics describes precisely the meaning of knowledge. “Pre-
cisely” here means that the semantics does not refer to subjective intuitions,
nor is it open to different interpretations by different persons (or machines).
The importance of formal semantics is well-established in the domain of math-
ematical logic, among others.

One use of formal semantics is to allow humans to reason about the knowl-
edge. For ontological knowledge we may reason about:

• Class membership: If x is an instance of a class C, and C is a subclass of
D, then we can infer that x is an instance of D.

• Equivalence of classes: If class A is equivalent to class B, and class B

equivalent to class C, then A is equivalent to C, too.
• Consistency: Suppose we have declared x to be an instance of the class A.

Further suppose that

- A is a subclass of B ∩ C

- A is a subclass of D

- B and D are disjoint

Then we have an inconsistency because A should be empty, but has the
instance x. This is an indication of an error in the ontology.

• Classification: If we have declared that certain property-value pairs are
sufficient condition for membership of a class A, then if an individual x

satisfies such conditions, we can conclude that x must be an instance of
A.

Semantics is a prerequisite for reasoning support: Derivations such as the above
can be made mechanically, instead of being made by hand. Reasoning support
is important because it allows one to

• check the consistency of the ontology and the knowledge;

Web Ontology Language: OWL 3

• check for unintended relationships between classes.
• automatically classify instances in classes

Automated reasoning support allows one to check many more cases than what
can be done manually. Checks like the above are valuable for

• designing large ontologies, where multiple authors are involved;
• integrating and sharing ontologies from various sources.

Formal semantics and reasoning support is usually provided by mapping an
ontology language to a known logical formalism, and by using automated
reasoners that already exist for those formalisms. We will see that OWL is
(partially) mapped on a description logic, and makes use of existing reasoners
such as FaCT and RACER.

Description logics are a subset of predicate logic for which efficient reason-
ing support is possible. See [13] for more detail.

Limitations of the expressive power of RDF Schema

RDF and RDFS allow the representation of some ontological knowledge. The
main modelling primitives of RDF/RDFS concern the organization of vocab-
ularies in typed hierarchies: subclass and subproperty relationships, domain
and range restrictions, and instances of classes. However a number of other
features are missing. Here we list a few:

• Local scope of properties: rdfs:range defines the range of a property,
say eats, for all classes. Thus in RDF Schema we cannot declare range
restrictions that apply to some classes only. For example, we cannot say
that cows eat only plants, while other animals may eat meat, too.

• Disjointness of classes: Sometimes we wish to say that classes are disjoint.
For example, male and female are disjoint. But in RDF Schema we can
only state subclass relationships, e.g. female is a subclass of person.

• Boolean combinations of classes: Sometimes we wish to build new classes
by combining other classes using union, intersection and complement. For
example, we may wish to define the class person to be the disjoint union of
the classes male and female. RDF Schema does not allow such definitions.

• Cardinality restrictions: Sometimes we wish to place restrictions on how
many distinct values a property may or must take. For example, we would
like to say that a person has exactly two parents, and that a course is
taught by at least one lecturer. Again such restrictions are impossible to
express in RDF Schema.

• Special characteristics of properties: Sometimes it is useful to say that a
property is transitive (like “greater than”), unique (like “is mother of”),
or the inverse of another property (like “eats” and “is eaten by”).

4 Grigoris Antoniou and Frank van Harmelen

So we need an ontology language that is richer than RDF Schema, a language
that offers these features and more. In designing such a language one should
be aware of the tradeoff between expressive power and efficient reasoning sup-
port. Generally speaking, the richer the language is, the more inefficient the
reasoning support becomes, often crossing the border of non-computability.
Thus we need a compromise, a language that can be supported by reasonably
efficient reasoners, while being sufficiently expressive to express large classes
of ontologies and knowledge.

Compatibility of OWL with RDF/RDFS

Ideally, OWL would be an extension of RDF Schema, in the sense that
OWL would use the RDF meaning of classes and properties (rdfs:Class,
rdfs:subClassOf, etc), and would add language primitives to support the
richer expressiveness identified above.

Unfortunately, the desire to simply extend RDF Schema clashes with
the trade-off between expressive power and efficient reasoning mentioned be-
fore. RDF Schema has some very powerful modelling primitives, such as the
rdfs:Class (the class of all classes) and rdf:Property (the class of all prop-
erties). These primitives are very expressive, and will lead to uncontrollable
computational properties if the logic is extended with the expressive primitives
identified above.

Three species of OWL

All this as lead to a set of requirements that may seem incompatible: efficient
reasoning support and convenience of expression for a language as powerful
as a combination of RDF Schema with a full logic.

Indeed, these requirements have prompted W3C’s Web Ontology Working
Group to define OWL as three different sublanguages, each of which is geared
towards fulfilling different aspects of these incompatible full set of require-
ments:

• OWL Full: The entire language is called OWL Full, and uses all the OWL
languages primitives (which we will discuss later in this chapter). It also
allows to combine these primitives in arbitrary ways with RDF and RDF
Schema. This includes the possibility (also present in RDF) to change the
meaning of the pre-defined (RDF or OWL) primitives, by applying the
language primitives to each other. For example, in OWL Full we could im-
pose a cardinality constraint on the class of all classes, essentially limiting
the number of classes that can be described in any ontology.
The advantage of OWL Full is that it is fully upward compatible with
RDF, both syntactically and semantically: any legal RDF document is also
a legal OWL Full document, and any valid RDF/RDF Schema conclusion
is also a valid OWL Full conclusion.

Web Ontology Language: OWL 5

The disadvantage of OWL Full is the language has become so powerful
as to be undecidable, dashing any hope of complete (let alone efficient)
reasoning support.

• OWL DL: In order to regain computational efficiency, OWL DL (short
for: Description Logic) is a sublanguage of OWL Full which restricts the
way in which the constructors from OWL and RDF can be used. We will
give details later, but roughly this amounts to disallowing application of
OWL’s constructor’s to each other, and thus ensuring that the language
corresponds to a well studied description logic.
The advantage of this is that it permits efficient reasoning support.
The disadvantage is that we loose full compatibility with RDF: an RDF
document will in general have to be extended in some ways and restricted
in others before it is a legal OWL DL document. Conversely, every legal
OWL DL document is still a legal RDF document.

• OWL Lite: An ever further restriction limits OWL DL to a subset of
the language constructors. For example, OWL Lite excludes enumerated
classes, disjointness statements and arbitrary cardinality (among others).
The advantage of this is a language that is both easier to grasp (for users)
and easier to implement (for tool builders).
The disadvantage is of course a restricted expressivity.

Ontology developers adopting OWL should consider which sublanguage
best suits their needs. The choice between OWL Lite and OWL DL depends on
the extent to which users require the more-expressive constructs provided by
OWL DL and OWL Full. The choice between OWL DL and OWL Full mainly
depends on the extent to which users require the meta-modeling facilities
of RDF Schema (e.g. defining classes of classes, or attaching properties to
classes). When using OWL Full as compared to OWL DL, reasoning support is
less predictable since complete OWL Full implementations will be impossible.

There are strict notions of upward compatibility between these three sub-
languages:

• Every legal OWL Lite ontology is a legal OWL DL ontology.
• Every legal OWL DL ontology is a legal OWL Full ontology.
• Every valid OWL Lite conclusion is a valid OWL DL conclusion.
• Every valid OWL DL conclusion is a valid OWL Full conclusion.

OWL still uses RDF and RDF Schema to a large extent:

• all varieties of OWL use RDF for their syntax
• instances are declared as in RDF, using RDF descriptions and typing in-

formation
• OWL constructors like owl:Class, owl:DatatypeProperty and

owl:ObjectProperty are all specialisations of their RDF counterparts.
Figure 1 shows the subclass relationships between some modelling primi-
tives of OWL and RDF/RDFS.

6 Grigoris Antoniou and Frank van Harmelen

rdfs:Class

owl:Class owl:DatatypePropertyowl:ObjectProperty

rdf:Property

rdfs:Resource

Fig. 1. Subclass relationships between OWL and RDF/RDFS

The original hope in the design of OWL was that there would be a down-
ward compatibility with corresponding re-use of software across the various
layers. However, the advantage of full downward compatibility for OWL (that
any OWL aware processor will also provide correct interpretations of any RDF
Schema document) is only achieved for OWL Full, at the cost of computa-
tional intractability.

Chapter overview

Section 2 presents OWL in some detail. Because OWL is such a new language,
only very limited examples of its use have been published. Section 3 therefore
illustrates the language by giving a few examples.

2 The OWL Language

Syntax

OWL builds on RDF and RDF Schema, and uses RDF’s XML syntax. Since
this is the primary syntax for OWL, we will use it here, but it will soon become
clear that RDF/XML does not provide a very readable syntax. Because of this,
other syntactic forms for OWL have also been defined:

• an XML-based syntax which does not follow the RDF conventions. This
makes this syntax already significantly easier to read by humans.

• an abstract syntax which is used in the language specification document.
This syntax is much more compact and readable then either the XML
syntax or the RDF/XML syntax

• a graphical syntax based on the conventions of the UML language (Uni-
versal Modelling Language). Since UML is widely used, this will be an
easy way for people to get familiar with OWL.

Web Ontology Language: OWL 7

Header

OWL documents are usually called OWL ontologies, and are RDF documents.
So the root element of a OWL ontology is an rdf:RDF element which also
specifies a number of namespaces. For example:

<rdf:RDF

xmlns:owl ="http://www.w3.org/2002/07/owl#"

xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:xsd ="http://www.w3.org/2001/XLMSchema#">

An OWL ontology may start with a collection of assertions for house-
keeping purposes. These assertions are grouped under an owl:Ontology ele-
ment which contains comments, version control and inclusion of other ontolo-
gies. For example:

<owl:Ontology rdf:about="">

<rdfs:comment>An example OWL ontology</rdfs:comment>

<owl:priorVersion

rdf:resource="http://www.mydomain.org/uni-ns-old"/>

<owl:imports rdf:resource="http://www.mydomain.org/persons"/>

<rdfs:label>University Ontology</rdfs:label>

</owl:Ontology>

The only of these assertions which has any consequences for the logical
meaning of the ontology is owl:imports: this lists other ontologies whose
content is assumed to be part of the current document. ontology. Notice that
while namespaces are used for disambiguation purposes, imported ontologies
provide definitions that can be used. Usually there will be an import element
for each used namespace, but it is possible to import additional ontologies,
for example ontologies that provide definitions without introducing any new
names.

Also note that owl:imports is a transitive property: if ontology A imports
ontology B, and ontology B imports ontology C, then ontology A also imports
ontology C.

Class elements

Classes are defined using a owl:Class element7. For example, we can define
a class associateProfessor as follows:

<owl:Class rdf:ID="associateProfessor">

<rdfs:subClassOf rdf:resource="#academicStaffMember"/>

</owl:Class>

7 owl:Class is a subclass of rdfs:Class.

8 Grigoris Antoniou and Frank van Harmelen

We can also say that this class is disjoint from the professor and
assistantProfessor classes using owl:disjointWith elements. These ele-
ments can be included in the definition above, or can be added by referring
to the id using rdf:about. This mechanism is inherited from RDF.

<owl:Class rdf:about="associateProfessor">

<owl:disjointWith rdf:resource="#professor"/>

<owl:disjointWith rdf:resource="#assistantProfessor"/>

</owl:Class>

Equivalence of classes can be defined using a owl:equivalentClass element:

<owl:Class rdf:ID="faculty">

<owl:equivalentClass rdf:resource="#academicStaffMember"/>

</owl:Class>

Finally, there are two predefined classes, owl:Thing and owl:Nothing. The
former is the most general class which contains everything (everything is
a thing), the latter is the empty class. Thus every class is a subclass of
owl:Thing and a superclass of owl:Nothing.

Property elements

In OWL there are two kinds of properties:

• Object properties which relate objects to other objects.
Examples are isTaughtBy, supervises etc.

• Datatype properties which relate objects to datatype values.
Examples are phone, title, age etc. OWL does not have any predefined
data types, nor does it provide special definition facilities. Instead it al-
lows one to use XML Schema data types, thus making use of the layered
architecture the Semantic Web

Here is an example of a datatype property.

<owl:DatatypeProperty rdf:ID="age">

<rdfs:range rdf:resource="http://www.w3.org/2001/XLMSchema

#nonNegativeInteger"/>

</owl:DatatypeProperty>

User-defined data types will usually be collected in an XML schema, and then
used in an OWL ontology.

Here is an example of an object property:

<owl:ObjectProperty rdf:ID="isTaughtBy">

<owl:domain rdf:resource="#course"/>

<owl:range rdf:resource="#academicStaffMember"/>

<rdfs:subPropertyOf rdf:resource="#involves"/>

</owl:ObjectProperty>

Web Ontology Language: OWL 9

More than one domain and range may be declared. In this case the intersection
of the domains, respectively ranges, is taken.

OWL allows us to relate “inverse properties”. A typical example is
isTaughtBy and teaches.

<owl:ObjectProperty rdf:ID="teaches">

<rdfs:range rdf:resource="#course"/>

<rdfs:domain rdf:resource="#academicStaffMember"/>

<owl:inverseOf rdf:resource="#isTaughtBy"/>

</owl:ObjectProperty>

Actually domain and range can be inherited from the inverse property (inter-
change domain with range).

Equivalence of properties can be defined using a owl:equivalentProperty
element.

<owl:ObjectProperty rdf:ID="lecturesIn">

<owl:equivalentProperty rdf:resource="#teaches"/>

</owl:ObjectProperty>

Property restrictions

With rdfs:subClassOf we can specify a class C to be subclass of another
class C ′; then every instance of C is also an instance of C ′.

Now suppose we wish to declare, instead, that the class C satisfies certain
conditions, that is, all instances of C satisfy the conditions. Obviously it is
equivalent to saying that C is subclass of a class C ′, where C ′ collects all
objects that satisfy the conditions. That is exactly how it is done in OWL,
as we will show. Note that, in general, C ′ can remain anonymous, as we will
explain below.

The following element requires first year courses to be taught by professors
only (according to a questionable view, older and more senior academics are
better at teaching).

<owl:Class rdf:about="#firstYearCourse">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#isTaughtBy"/>

<owl:allValuesFrom rdf:resource="#Professor"/>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

owl:allValuesFrom is used to specify the class of possible values the property
specified by owl:onProperty can take (in other words: all values of the prop-
erty must come from this class). In our example, only professors are allowed
as values of the property isTaughtBy.

We can declare that mathematics courses are taught by David Billington
as follows:

10 Grigoris Antoniou and Frank van Harmelen

<owl:Class rdf:about="#mathCourse">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#isTaughtBy"/>

<owl:hasValue rdf:resource="#949352"/>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

owl:hasValue states a specific value that the property, specified by
owl:onProperty must have.

And we can declare that all academic staff members must teach at least
one undergraduate course as follows:

<owl:Class rdf:about="#academicStaffMember">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#teaches"/>

<owl:someValuesFrom rdf:resource="#undergraduateCourse"/>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

Let us compare owl:allValuesFrom and owl:someValuesFrom. The ex-
ample using the former requires every person who teaches an instance of the
class, a first year subject, to be a professor. In terms of logic we have a uni-
versal quantification.

The example using the latter requires that there exists an undergraduate
course that is taught by an instance of the class, an academic staff member.
It is still possible that the same academic teaches postgraduate courses, in
addition. In terms of logic we have an existential quantification.

In general, a owl:Restriction element contains a owl:onProperty ele-
ment, and one or more restriction declarations. One type of restriction decla-
rations are those that define restrictions on the kinds of values the property
can take:
owl:allValuesFrom, owl:hasValue and owl:someValuesFrom. Another type
are cardinality restrictions. For example, we can require every course to be
taught by at least someone.

<owl:Class rdf:about="#course">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#isTaughtBy"/>

<owl:minCardinality rdf:datatype="&xsd;nonNegativeInteger">

1

</owl:minCardinality>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

Web Ontology Language: OWL 11

Notice that we had to specify that the literal “1” is to be interpreted
as a nonNegativeInteger (instead of, say, a string), and that we used the
xsd namespace declaration made in the header element to refer to the XML
Schema document.

Or we might specify that, for practical reasons, a department must have
at least ten and at most thirty members.

<owl:Class rdf:about="#department">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasMember"/>

<owl:minCardinality rdf:datatype="&xsd;nonNegativeInteger">

10

</owl:minCardinality>

<owl:maxCardinality rdf:datatype="&xsd;nonNegativeInteger">

30

</owl:maxCardinality>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

It is possible to specify a precise number. For example, a PhD student
must have exactly two supervisors. This can be achieved by using the same
number in
owl:minCardinality and owl:maxCardinality. For convenience, OWL of-
fers also owl:cardinality.

We conclude by noting that owl:Restriction defines an anonymous class
which has no id, is not defined by owl:Class and has only a local scope: it
can only be used in the one place where the restriction appears. When we talk
about classes please bare in mind the twofold meaning: classes that are defined
by owl:Classwith an id, and local anonymous classes as collections of objects
that satisfy certain restriction conditions, or as combinations of other classes,
as we will see shortly. The latter are sometimes called class expressions.

Special properties

Some properties of property elements can be defined directly:

• owl:TransitiveProperty defines a transitive property, such as “has bet-
ter grade than”, “is taller than”, “is ancestor of” etc.

• owl:SymmetricProperty defines a symmetric property, such as “has same
grade as”, “is sibling of”, etc.

• owl:FunctionalProperty defines a property that has at most one unique
value for each object, such as “age”, “height”, “directSupervisor” etc.

• owl:InverseFunctionalProperty defines a property for which two dif-
ferent objects cannot have the same value, for example the property “is-
TheSocialSecurityNumberfor” (a social security number is assigned to one
person only).

12 Grigoris Antoniou and Frank van Harmelen

An example of the syntactic form of the above is:

<owl:ObjectProperty rdf:ID="hasSameGradeAs">

<rdf:type rdf:resource="&owl;TransitiveProperty" />

<rdf:type rdf:resource="&owl;SymmetricProperty" />

<rdfs:domain rdf:resource="#student" />

<rdfs:range rdf:resource="#student" />

</owl:ObjectProperty>

Boolean combinations

It is possible to talk about Boolean combinations (union, intersection, com-
plement) of classes (be it defined by owl:Class or by class expressions). For
example, we can say that courses and staff members are disjoint as follows:

<owl:Class rdf:about="#course">

<rdfs:subClassOf>

<owl:Restriction>

<owl:complementOf rdf:resource="#staffMember"/>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

This says that every course is an instance of the complement of staff members,
that is, no course is a staff member. Note that this statement could also have
been expressed using owl:disjointWith.

The union of classes is built using owl:unionOf.

<owl:Class rdf:ID="peopleAtUni">

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#staffMember"/>

<owl:Class rdf:about="#student"/>

</owl:unionOf>

</owl:Class>

The rdf:parseType attribute is a shorthand for an explicit syntax for
building list with <rdf:first> and <rdf:rest> tags. Such lists are required
because the built-in containers of RDF have a serious limitation: there is no
way to close them, i.e., to say “these are all the members of the container”.
This is because, while one graph may describe some of the members, there is
no way to exclude the possibility that there is another graph somewhere that
describes additional members. The list syntax provides exactly this facility,
but is very verbose, which motivates the rdf:parseType shorthand notation.

Note that this does not say that the new class is a subclass of the union,
but rather that the new class is equal to the union. In other words, we have
stated an equivalence of classes. Also, we did not specify that the two classes
must be disjoint: it is possible that a staff member is also a student.

Intersection is stated with owl:intersectionOf.

Web Ontology Language: OWL 13

<owl:Class rdf:ID="facultyInCS">

<owl:intersectionOf rdf:parseType="owl:collection">

<owl:Class rdf:about="#faculty"/>

<Restriction>

<owl:onProperty rdf:resource="#belongsTo"/>

<owl:hasValue rdf:resource="#CSDepartment"/>

</Restriction>

</owl:intersectionOf>

</owl:Class>

Note that we have built the intersection of two classes, one of which was de-
fined anonymously: the class of all objects belonging to the CS department.
This class is intersected with faculty to give us the faculty in the CS depart-
ment.

Further we note that Boolean combinations can be nested arbitrarily. The
following example defines administrative staff to be those staff members that
are neither faculty nor technical support staff.

<owl:Class rdf:ID="adminStaff">

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#staffMember"/>

<owl:complementOf>

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#faculty"/>

<owl:Class rdf:about="#techSupportStaff"/>

</owl:unionOf>

</owl:complementOf>

</owl:intersectionOf>

</owl:Class>

Enumerations

An enumeration is a owl:oneOf element, and is used to define a class by listing
all its elements.

<owl:oneOf rdf:parseType="Collection">

<owl:Thing rdf:about="#Monday"/>

<owl:Thing rdf:about="#Tuesday"/>

<owl:Thing rdf:about="#Wednesday"/>

<owl:Thing rdf:about="#Thursday"/>

<owl:Thing rdf:about="#Friday"/>

<owl:Thing rdf:about="#Saturday"/>

<owl:Thing rdf:about="#Sunday"/>

</owl:oneOf>

Instances

Instances of classes are declared as in RDF. For example:

14 Grigoris Antoniou and Frank van Harmelen

<rdf:Description rdf:ID="949352">

<rdf:type rdf:resource="#academicStaffMember"/>

</rdf:Description>

or equivalently:

<academicStaffMember rdf:ID="949352"/>

We can also provide further details, such as:

<academicStaffMember rdf:ID="949352">

<uni:age rdf:datatype="&xsd;integer">39<uni:age>

</academicStaffMember>

Unlike typical database systems, OWL does not adopt the unique names
assumption, thus: just because two instances have a different name (or: ID),
that does not imply that they are indeed different individuals. For example,
if we state that each course is taught by at most one one staff member:

<owl:ObjectProperty rdf:ID="isTaughtBy">

<rdf:type rdf:resource="&owl;FunctionalProperty" />

</owl:ObjectProperty>

and we subsequently state that a given course is taught by two staff mem-
bers:

<course rdf:about="CIT1111">

<isTaughtBy rdf:resource="949318">

<isTaughtBy rdf:resource="949352">

</course>

this does not cause an OWL reasoner to flag an error. After all, the system
could validly infer that the resources "949318" and "949352" are apparently
equal. To ensure that different individuals are indeed recognised as such, we
must explicitly assert their inequality:

<lecturer rdf:about="949318">

<owl:differentFrom rdf:resource="949352">

</lecturer>

Because such inequality statements occur frequently, and the required
number of such statements would explode if we wanted to state the inequality
of a large number of individuals, OWL provides a shorthand notation to assert
the pairwise inequality of all individuals in a given list:

<owl:allDifferent>

<owl:distinctMembers rdf:parseType="Collection">

<lecturer rdf:about="949318">

<lecturer rdf:about="949352">

<lecturer rdf:about="949111">

</owl:distinctMembers>

</owl:allDifferent>

Web Ontology Language: OWL 15

Note that owl:distinctMembers can only be used in combination with
owl:AllDifferent.

Datatypes

Although XML Schema provides a mechanism to construct user-defined
datatypes (e.g. the datatype of adultAge as all integers greater than 18, or
the datatype of all strings starting with a number), such derived datatypes
cannot be used in OWL. In fact, not even all of of the many the built-in XML
Schema datatypes can be used in OWL. The OWL reference document lists
all the XML Schema datatypes that can be used, but these include the most
frequently used types such as string, integer, boolean, time and date.

Versioning information

We have already seen the owl:priorVersion statement as part of the header
information to indicate earlier versions of the current ontology. This informa-
tion has not formal model-theoretic semantics but can be exploited by humans
readers and programs alike for the purposes of ontology management.

Besides owl:priorVersion, OWL has three more statements to indicate fur-
ther informal versioning information. None of these carry any formal meaning.

• An owl:versionInfostatement generally contains a string giving infor-
mation about the current version, for example RCS/CVS keywords.

• An owl:backwardCompatibleWith statement contains a reference to an-
other ontology. This identifies the specified ontology as a prior version of
the containing ontology, and further indicates that it is backward com-
patible with it. In particular, this indicates that all identifiers from the
previous version have the same intended interpretations in the new ver-
sion. Thus, it is a hint to document authors that they can safely change
their documents to commit to the new version (by simply updating names-
pace declarations and owl:imports statements to refer to the URL of the
new version).

• An owl:incompatibleWith on the other hand indicates that the contain-
ing ontology is a later version of the referenced ontology, but is not back-
ward compatible with it. Essentially, this is for use by ontology authors
who want to be explicit that documents cannot upgrade to use the new
version without checking whether changes are required.

Layering of OWL

Now that we have discussed all the language constructors of OWL, we can
completely specify which features of the language can be used in which sub-
language (OWL Full, DL and Lite):

16 Grigoris Antoniou and Frank van Harmelen

OWL Full

In OWL Full, all the language constructors can be used in any combination
as long as the result is legal RDF.

OWL DL

In order to exploit the formal underpinnings and computational tractability
of Description Logics, the following constraints must be obeyed in an OWL
DL ontology:

• Vocabulary Partitioning: any resource is allowed to be only either a class,
a datatype, a datatype properties, an object properties, an individuals, a
data value or part of the built-in vocabulary, and not more than one of
these. This means that, for example, a class cannot be at the same time
an individual, or that a property cannot have values some values from a
datatype and some values from a class (this would make it both a datatype
property and an object property).

• Explicit typing: not only must all resources be partitioned (as prescribed
in the previous constraint), but this partitioning must be stated explicitly.
For example, if an ontology contains the following:

<owl:Class rdf:ID="C1">

<rdfs:subClassOf rdf:about="#C2" />

</owl:Class>

this already entails that C2 is a class (by virtue of the range specification
of rdfs:subClassOf). Nevertheless, an OWL DL ontology must explicitly
state this information:

<owl:Class rdf:ID="C2"/>

• Property Separation: By virtue of the first constraint, the set of object
properties and datatype properties are disjoint. This implies that inverse
properties, and functional, inverse functional and symmetric characteris-
tics can never be specified for datatype properties.

• No transitive cardinality restrictions: no cardinality restrictions may be
placed on transitive properties (or their subproperties, which are of course
also transitive, by implication).

• Restricted anonymous classes: anonymous classes are only allowed in the
domain and range of owl:equivalentClass and owl:disjointWith, and
in the range (not the domain) of rdfs:subClassOf.

OWL Lite

An OWL ontology must be an OWL DL ontology, and must further satisfy
the following constraints:

• the constructors owl:oneOf, owl:disjointWith, owl:unionOf,
owl:complementOf and owl:hasValue are not allowed

Web Ontology Language: OWL 17

• cardinality statements (both minimal, maximal and exact cardinality) can
only be made on the values 0 or 1, and no longer on arbitrary non-negative
integers.

• owl:equivalentClass statements can no longer be made between anony-
mous classes, but only between class identifiers.

3 Examples

3.1 An African Wildlife Ontology

This example shows an ontology that describes part of the African wildlife.
Figure 2 shows the basic classes and their subclass relationships.

giraffe

herbivore carnivore

lion

animal plant

tree

Fig. 2. Classes and subclasses of the African wildlife ontology

Note that the subclass information is only part of the information included
in the ontology. The entire graph is much bigger. Figure 3 shows the graphical
representation of the statement that branches are parts of trees.

branch

isPartOf

tree

isSubclassOf

onProperty

toClass

Fig. 3. Branches are parts of trees

Below we show the ontology, with comments written using rdfs:comment.

18 Grigoris Antoniou and Frank van Harmelen

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:owl ="http://www.w3.org/2002/07/owl#"

xmlns="http://www.mydomain.org/african">

<owl:Ontology rdf:about="">

<owl:VersionInfo>

My example version 1.2, 17 October 2002

</owl:VersionInfo>

</owl:Ontology>

<owl:Class rdf:ID="animal">

<rdfs:comment>Animals form a class</rdfs:comment>

</owl:Class>

<owl:Class rdf:ID="plant">

<rdfs:comment>

Plants form a class disjoint from animals

</rdfs:comment>

<owl:disjointWith="#animal"/>

</owl:Class>

<owl:Class rdf:ID="tree">

<rdfs:comment>Trees are a type of plants</rdfs:comment>

<rdfs:subClassOf rdf:resource="#plant"/>

</owl:Class>

<owl:Class rdf:ID="branch">

<rdfs:comment>Branches are parts of trees </rdfs:comment>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#is-part-of"/>

<ow:allValuesFrom rdf:resource="#tree"/>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID="leaf">

<rdfs:comment>Leaves are parts of branches</rdfs:comment>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#is-part-of"/>

<owl:allValuesFrom rdf:resource="#branch"/>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID="herbivore">

Web Ontology Language: OWL 19

<rdfs:comment>

Herbivores are exactly those animals that eat only plants,

or parts of plants

</rdfs:comment>

<owl:intersectionOf rdf:parsetype="Collection">

<owl:Class rdf:about="#animal"/>

<owl:Restriction>

<owl:onProperty rdf:resource="#eats"/>

<owl:allValuesFrom>

<owl:unionOf rdf:parsetype="Collection">

<owl:Class rdf:about="#plant"/>

<owl:Restriction>

<owl:onProperty rdf:resource="#is-part-of"/>

<owl:allValuesFrom rdf:resource="#plant"/>

</owl:Restriction>

</owl:unionOf>

</owl:allValuesFrom>

</owl:Restriction>

</owl:intersectionOf>

</owl:Class>

<owl:Class rdf:ID="carnivore">

<rdfs:comment>Carnivores are exactly those animals

that eat also animals</rdfs:comment>

<owl:intersectionOf rdf:parsetype="Collection">

<owl:Class rdf:about="#animal"/>

<owl:Restriction>

<owl:onProperty rdf:resource="#eats"/>

<owl:someValuesFrom rdf:resource="#animal"/>

</owl:Restriction>

</owl:intersectionOf>

</owl:Class>

<owl:Class rdf:ID="giraffe">

<rdfs:comment>Giraffes are herbivores, and they

eat only leaves</rdfs:comment>

<rdfs:subClassOf rdf:type="#herbivore"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#eats"/>

<owl:allValuesFrom rdf:resource="#leaf"/>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID="lion">

<rdfs:comment>Lions are animals that eat

only herbivores</rdfs:comment>

<rdfs:subClassOf rdf:type="#carnivore"/>

20 Grigoris Antoniou and Frank van Harmelen

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#eats"/>

<owl:allValuesFrom rdf:resource="#herbivore"/>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID="tasty-plant">

<rdfs:comment>Tasty plants are plants that are eaten

both by herbivores and carnivores</rdfs:comment>

<rdfs:subClassOf rdf:resource="#plant"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#eaten-by"/>

<owl:someValuesFrom>

<owl:Class rdf:about="#herbivore"/>

</owl:someValuesFrom>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#eaten-by"/>

<owl:someValuesFrom>

<owl:Class rdf:about="#carnivore"/>

</owl:someValuesFrom>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:TransitiveProperty rdf:ID="is-part-of"/>

<owl:ObjectProperty rdf:ID="eats">

<rdfs:domain rdf:resource="#animal"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="eaten-by">

<owl:inverseOf rdf:resource="#eats"/>

</owl:ObjectProperty>

</rdf:RDF>

3.2 A printer ontology

The classes and subclass relationships in this example are shown in Figure 4

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

Web Ontology Language: OWL 21

product

padid hpProduct

printer

personalPrinter hpPrinterlaserJetPrinter

hpLaserJetPrinter

1100series

1100xi1100se

Fig. 4. Classes and subclasses of the printer ontology

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:owl ="http://www.w3.org/2002/07/owl#"

xmlns:xsd="http://www.w3.org/2001/XLMSchema#"

xmlns="http://www.mydomain.org/printer#">

<owl:Ontology rdf:about="">

<owl:VersionInfo>

My example version 1.2, 17 October 2002

</owl:VersionInfo>

</owl:Ontology>

<owl:Class rdf:ID="product">

<rdfs:comment>Products form a class</rdfs:comment>

</owl:Class>

<owl:Class rdf:ID="padid">

<rdfs:comment>Printing and digital imaging devices

form a subclass of products</rdfs:comment>

<rdfs:label>Device</rdfs:label>

<rdfs:subClassOf rdf:resource="#product"/>

</owl:Class>

22 Grigoris Antoniou and Frank van Harmelen

<owl:Class rdf:ID="hpProduct">

<rdfs:comment>HP products are exactly those products

that are manufactured by Hewlett Packard</rdfs:comment>

<owl:intersectionOf>

<owl:Class rdf:about="#product"/>

<owl:Restriction>

<owl:onProperty rdf:resource="#manufactured-by"/>

<owl:hasValue>

<xsd:string rdf:value="Hewlett Packard"/>

</owl:hasValue>

</owl:Restriction>

</owl:intersectionOf>

</owl:Class>

<owl:Class rdf:ID="printer">

<rdfs:comment>Printers are printing and

digital imaging devices</rdfs:comment>

<rdfs:subClassOf rdf:resource="#padid"/>

</owl:Class>

<owl:Class rdf:ID="personalPrinter">

<rdfs:comment>Printers for personal use form

a subclass of printers</rdfs:comment>

<rdfs:subClassOf rdf:resource="#printer"/>

</owl:Class>

<owl:Class rdf:ID="hpPrinter">

<rdfs:comment>HP printers are HP products and printers

</rdfs:comment>

<rdfs:subClassOf rdf:resource="#printer"/>

<rdfs:subClassOf rdf:resource="#hpProduct"/>

</owl:Class>

<owl:Class rdf:ID="laserJetPrinter">

<rdfs:comment>Laser Jet printers are exactly those printers

that use laser jet printing technology</rdfs:comment>

<owl:intersectionOf >

<owl:Class rdf:about="#printer"/>

<owl:Restriction>

<owl:onProperty rdf:resource="#printingTechnology"/>

<owl:hasValue><xsd:string rdf:value="laser jet"/></owl:hasValue>

</owl:Restriction>

</owl:intersectionOf>

</owl:Class>

<owl:Class rdf:ID="hpLaserJetPrinter">

<rdfs:comment>HP laser jet printers are HP products

and laser jet printers</rdfs:comment>

Web Ontology Language: OWL 23

<rdfs:subClassOf rdf:resource="#laserJetPrinter"/>

<rdfs:subClassOf rdf:resource="#hpPrinter"/>

</owl:Class>

<owl:Class rdf:ID="1100series">

<rdfs:comment>1100series printers are HP laser jet printers with 8ppm

printing speed and 600dpi printing resolution</rdfs:comment>

<rdfs:subClassOf rdf:resource="#hpLaserJetPrinter"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#printingSpeed"/>

<owl:hasValue><xsd:string rdf:value="8ppm"/></owl:hasValue>

</owl:Restriction>

</rdfs:subClassOf>

<owl:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#printingResolution"/>

<owl:hasValue><xsd:string rdf:value="600dpi"/></owl:hasValue>

</owl:Restriction>

</owl:subClassOf>

</owl:Class>

<owl:Class rdf:ID="1100se">

<rdfs:comment>1100se printers belong to the 1100 series

and cost $450</rdfs:comment>

<rdfs:subClassOf rdf:resource="#1100series"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#price"/>

<owl:hasValue>

<xsd:integer rdf:value="450"/>

</owl:hasValue>

</owl:Restriction>

</owl:subClassOf>

</owl:Class>

<owl:Class rdf:ID="1100xi">

<rdfs:comment>1100xi printers belong to the 1100 series

and cost $350</rdfs:comment>

<rdfs:subClassOf rdf:resource="#1100series"/>

<owl:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#price"/>

<owl:hasValue>

<xsd:integer rdf:value="350"/>

</owl:hasValue>

</owl:Restriction>

</owl:subClassOf>

</owl:Class>

24 Grigoris Antoniou and Frank van Harmelen

<owl:DatatypeProperty rdf:ID="manufactured-by">

<rdfs:domain rdf:resource="#product"/>

<rdfs:range

rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="price">

<rdfs:domain rdf:resource="#product"/>

<rdfs:range

rdf:resource="&xsd;nonNegativeInteger"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="printingTechnology">

<rdfs:domain rdf:resource="#printer"/>

<rdfs:range

rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="printingResolution">

<rdfs:domain rdf:resource="#printer"/>

<rdfs:range

rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="printingSpeed">

<rdfs:domain rdf:resource="#printer"/>

<rdfs:range

rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

</rdf:RDF>

This ontology demonstrates that siblings in a hierarchy tree need not be dis-
joint. For example, a personal printer may be a HP printer or a LaserJet
printer, though the three classes involved are subclasses of the class of all
printers.

4 Summary

• OWL is the proposed standard for Web ontologies. It allows us to describe
the semantics of knowledge in a machine-accessible way.

• OWL builds upon RDF and RDF Schema: (XML-based) RDF syntax is
used; instances are defined using RDF descriptions; and most RDFS mod-
elling primitives are used.

Web Ontology Language: OWL 25

• Formal semantics and reasoning support is provided through the mapping
of OWL on logics. Predicate logic and description logics have been used
for this purpose.

While OWL is sufficiently rich to be used in practice, extensions are in the
making. They will provide further logical features, including rules.

References

The key references for OWL (at the date of writing, April 2003):

1. D. McGuinness and F van Harmelen (eds) OWL Web Ontology Language
Overview
http://www.w3.org/TR/2003/WD-owl-features-20030331/

2. M. Dean, G. Schreiber (eds), F. van Harmelen, J. Hendler, I. Horrocks, D.
McGuinness, P. Patel-Schneider, L. Stein, OWL Web Ontology Language
Reference
http://www.w3.org/TR/2003/WD-owl-ref-20030331/

3. M. Smith, C. Welty, D. McGuinness, OWL Web Ontology Language Guide
http://www.w3.org/TR/2003/WD-owl-guide-20030331/

4. P. Patel-Schneider, P. Hayes, I. Horrocks, OWL Web Ontology Language
Semantics and Abstract Syntax
http://www.w3.org/TR/2003/WD-owl-semantics-20030331/

5. J. Hefflin, Web Ontology Language (OWL) Use Cases and Requirements
http://www.w3.org/TR/2003/WD-webont-req-20030331/

Further interesting articles related to DAML+OIL and OIL include:

6. J. Broekstra et al. Enabling knowledge representation on the Web by
Extending RDF Schema. In Proc. 10th World Wide Web Conference
(WWW’10), 2001.

7. D. Fensel et al. OIL: An Ontology Infrastructure for the Semantic Web.
IEEE Intelligent Systems 16,2 (2001).

8. D. McGuinness. Ontologies come of age. In D. Fensel et al. (eds): The
Semantic Web: Why, What, and How. MIT Press 2002.

9. P. Patel-Schneider, I. Horrocks, F. van Harmelen, Reviewing the Design of
DAML+OIL: An Ontology Language for the Semantic Web, Proceedings
of AAAI’02.

There is a number of interesting Web sites. A key site is:

10. On OWL: http://www.w3.org/2001/sw/WebOnt/
11. On its precursor DAML+OIL: http://www.daml.org Interesting sub-

pages include:

a) http://www.daml.org/language

b) http://www.daml.org/ontologies

26 Grigoris Antoniou and Frank van Harmelen

c) http://www.daml.org/tools

The two most relevant chapters from this Handbook are

12. B. McBride, The Resource Description Framework (RDF) and its Vocab-
ulary Description Language RDFS, in: The Handbook on Ontologies in
Information Systems, S. Staab, R. Studer (eds.), Springer Verlag, 2003.

13. F. Baader, I. Horrocks and U. Sattler, Description Logics, in: The Hand-
book on Ontologies in Information Systems, S. Staab, R. Studer (eds.),
Springer Verlag, 2003.

