It Wasn't My Fault!

Understanding OS Fault Propagation Via Delta Execution

Cristiano Giuffrida, Lorenzo Cavallaro, and Andrew S. Tanenbaum
{giuffrida, sullivan, ast}@cs.vu.nl
Vrije Universiteit, Amsterdam, The Netherlands

Research Summary

Problem: To recover from operating system crashes, we need to identify and eliminate the damage caused by the faulty execution that led to the crash.

Goal: Observe the way faults propagate throughout the operating system and analyze the behavior of the OS during faulty execution in a fine-grained way.

Our approach: Perform fault injection experiments and isolate the resulting faulty execution in a controlled environment. Compare faulty execution with fault-free execution online to identify all the significant differences.

OS Architecture

![OS Architecture Diagram](diagram)

- The OS is broken down into several separate processes running in user space
- The proposed design results in a multiserver microkernel-based OS architecture
- OS InterProcess Communication (IPC) based entirely on message passing

Fault Injection

1. Execute

2. Inject Fault

3. Branch Execution

Delta Execution

- Monitor normal execution
- Synch at rendezvous points
- Replicate IPC traffic

Online Comparison

- Compare Execution
- Compare State
- Compare IPC Interactions

Supported by European Research Council under grant ERC Advanced Grant 2008 - R3S3