
2

What is an Evolutionary Algorithm?

2.1 Aims of this Chapter

The most important aim of this chapter is to describe what an Evolutionary
Algorithm is. This description is deliberately based on a unifying view pre-
senting a general scheme that forms the common basis of all Evolutionary
Algorithm variants. The main components of EAs are discussed, explaining
their role and related issues of terminology. This is immediately followed by
two example applications (unlike other chapters, where example applications
are typically given at the end) to make things more concrete. Further on we
discuss general issues for EAs concerning their working. Finally, we put EAs
into a broader context and explain their relation with other global optimisa-
tion techniques.

2.2 What is an Evolutionary Algorithm?

As the history of the field suggests there are many different variants of Evolu-
tionary Algorithms. The common underlying idea behind all these techniques
is the same: given a population of individuals the environmental pressure
causes natural selection (survival of the fittest) and this causes a rise in the
fitness of the population. Given a quality function to be maximised we can
randomly create a set of candidate solutions, i.e., elements of the function’s
domain, and apply the quality function as an abstract fitness measure – the
higher the better. Based on this fitness, some of the better candidates are cho-
sen to seed the next generation by applying recombination and/or mutation
to them. Recombination is an operator applied to two or more selected can-
didates (the so-called parents) and results one or more new candidates (the
children). Mutation is applied to one candidate and results in one new candi-
date. Executing recombination and mutation leads to a set of new candidates
(the offspring) that compete – based on their fitness (and possibly age)– with
the old ones for a place in the next generation. This process can be iterated

16 2 What is an Evolutionary Algorithm?

until a candidate with sufficient quality (a solution) is found or a previously
set computational limit is reached.

In this process there are two fundamental forces that form the basis of
evolutionary systems.

• Variation operators (recombination and mutation) create the necessary
diversity and thereby facilitate novelty, while

• selection acts as a force pushing quality.

The combined application of variation and selection generally leads to im-
proving fitness values in consecutive populations. It is easy (although some-
what misleading) to see such a process as if the evolution is optimising, or at
least “approximising”, by approaching optimal values closer and closer over
its course. Alternatively, evolution it is often seen as a process of adaptation.
From this perspective, the fitness is not seen as an objective function to be op-
timised, but as an expression of environmental requirements. Matching these
requirements more closely implies an increased viability, reflected in a higher
number of offspring. The evolutionary process makes the population adapt to
the environment better and better.

Let us note that many components of such an evolutionary process are
stochastic. During selection fitter individuals have a higher chance to be se-
lected than less fit ones, but typically even the weak individuals have a chance
to become a parent or to survive. For recombination of individuals the choice
of which pieces will be recombined is random. Similarly for mutation, the
pieces that will be mutated within a candidate solution, and the new pieces
replacing them, are chosen randomly. The general scheme of an Evolution-
ary Algorithm can is given in Figure 2.1 in a pseudo-code fashion; Figure 2.2
shows a diagram.

BEGIN

INITIALISE population with random candidate solutions;

EVALUATE each candidate;

REPEAT UNTIL (TERMINATION CONDITION is satisfied) DO

1 SELECT parents;

2 RECOMBINE pairs of parents;

3 MUTATE the resulting offspring;

4 EVALUATE new candidates;

5 SELECT individuals for the next generation;

OD

END

Fig. 2.1. The general scheme of an Evolutionary Algorithm in pseudo-code

2.2 What is an Evolutionary Algorithm? 17

It is easy to see that this scheme falls in the category of generate-and-test
algorithms. The evaluation (fitness) function represents a heuristic estimation
of solution quality and the search process is driven by the variation and the
selection operators. Evolutionary Algorithms (EA) posses a number of fea-
tures that can help to position them within in the family of generate-and-test
methods:

• EAs are population based, i.e., they process a whole collection of candidate
solutions simultaneously,

• EAs mostly use recombination to mix information of more candidate so-
lutions into a new one,

• EAs are stochastic.

Fig. 2.2. The general scheme of an Evolutionary Algorithm as a flow-chart

The various dialects of evolutionary computing that we have mentioned
previously all follow the above general outlines, and differ only in technical
details, as is shown in the overview table in Chapter 15. For instance, the
representation of a candidate solution is often used to characterise different
streams. Typically, the candidates are represented by (i.e., the data structure
encoding a solution has the form of) strings over a finite alphabet in Genetic
Algorithms (GA), real-valued vectors in Evolution Strategies (ES), finite state
machines in classical Evolutionary Programming (EP) and trees in Genetic
Programming (GP). These differences have a mainly historical origin. Techni-
cally, a given representation might be preferable over others if it matches the

18 2 What is an Evolutionary Algorithm?

given problem better, that is, it makes the encoding of candidate solutions
easier or more natural. For instance, for solving a satisfiability problem the
straightforward choice is to use bit-strings of length n, where n is the number
of logical variables, hence the appropriate EA would be a Genetic Algorithm.
For evolving a computer program that can play checkers trees are well-suited
(namely, the parse trees of the syntactic expressions forming the programs),
thus a GP approach is likely. It is important to note that the recombination
and mutation operators working on candidates must match the given rep-
resentation. Thus for instance in GP the recombination operator works on
trees, while in GAs it operates on strings. As opposed to variation opera-
tors, selection takes only the fitness information into account, hence it works
independently from the actual representation. Differences in the commonly
applied selection mechanisms in each stream are therefore rather a tradition
than a technical necessity.

2.3 Components of Evolutionary Algorithms

In this section we discuss Evolutionary Algorithms in detail. EAs have a num-
ber of components, procedures or operators that must be specified in order to
define a particular EA. The most important components, indicated by italics
in Figure 2.1, are:

• representation (definition of individuals)
• evaluation function (or fitness function)
• population
• parent selection mechanism
• variation operators, recombination and mutation
• survivor selection mechanism (replacement)

Each of these components must be specified in order to define a particular
EA. Furthermore, to obtain a running algorithm the initialisation procedure
and a termination condition must be also defined.

2.3.1 Representation (Definition of Individuals)

The first step in defining an EA is to link the“real world” to the “EA world”,
that is to set up a bridge between the original problem context and the prob-
lem solving space where evolution will take place. Objects forming possible
solutions within the original problem context are referred to as phenotypes,
their encoding, the individuals within the EA, are called genotypes. The
first design step is commonly called representation, as it amounts to spec-
ifying a mapping from the phenotypes onto a set of genotypes that are said
to represent these phenotypes. For instance, given an optimisation problem
on integers, the given set of integers would form the set of phenotypes. Then
one could decide to represent them by their binary code, hence 18 would be

2.3 Components of Evolutionary Algorithms 19

seen as a phenotype and 10010 as a genotype representing it. It is impor-
tant to understand that the phenotype space can be very different from the
genotype space, and that the whole evolutionary search takes place in the
genotype space. A solution – a good phenotype – is obtained by decoding the
best genotype after termination. To this end, it should hold that the (optimal)
solution to the problem at hand – a phenotype – is represented in the given
genotype space.

The common EC terminology uses many synonyms for naming the elements
of these two spaces. On the side of the original problem context, candidate
solution, phenotype, and individual are used to denote points of the space of
possible solutions. This space itself is commonly called the phenotype space.
On the side of the EA, genotype, chromosome, and again individual can be
used for points in the space where the evolutionary search will actually take
place. This space is often termed the genotype space. Also for the elements
of individuals there are many synonymous terms. A place-holder is commonly
called a variable, a locus (plural: loci), a position, or – in a biology oriented
terminology – a gene. An object on such a place can be called a value or an
allele.

It should be noted that the word “representation” is used in two slightly
different ways. Sometimes it stands for the mapping from the phenotype to the
genotype space. In this sense it is synonymous with encoding, e.g., one could
mention binary representation or binary encoding of candidate solutions. The
inverse mapping from genotypes to phenotypes is usually called decoding and
it is required that the representation be invertible: to each genotype there has
to be at most one corresponding phenotype. The word representation can also
be used in a slightly different sense, where the emphasis is not on the mapping
itself, but on the “data structure” of the genotype space. This interpretation
is behind speaking about mutation operators for binary representation, for
instance.

2.3.2 Evaluation Function (Fitness Function)

The role of the evaluation function is to represent the requirements to adapt
to. It forms the basis for selection, and thereby it facilitates improvements.
More accurately, it defines what improvement means. From the problem solv-
ing perspective, it represents the task to solve in the evolutionary context.
Technically, it is a function or procedure that assigns a quality measure to
genotypes. Typically, this function is composed from a quality measure in the
phenotype space and the inverse representation. To remain with the above ex-
ample, if we were to maximise x2 on integers, the fitness of the genotype 10010
could be defined as the square of its corresponding phenotype: 182 = 324.

The evaluation function is commonly called the fitness function in EC.
This might cause a counterintuitive terminology if the original problem re-
quires minimisation for fitness is usually associated with maximisation. Math-

20 2 What is an Evolutionary Algorithm?

ematically, however, it is trivial to change minimisation into maximisation and
vice versa.

Quite often, the original problem to be solved by an EA is an optimisation
problem (treated in more technical detail in Section 12.2.1). In this case the
name objective function is often used in the original problem context and
the evaluation (fitness) function can be identical to, or a simple transformation
of, the given objective function.

2.3.3 Population

The role of the population is to hold (the representation of) possible solu-
tions. A population is a multiset1 of genotypes. The population forms the unit
of evolution. Individuals are static objects not changing or adapting, it is the
population that does. Given a representation, defining a population can be as
simple as specifying how many individuals are in it, that is, setting the popu-
lation size. In some sophisticated EAs a population has an additional spatial
structure, with a distance measure or a neighbourhood relation. In such cases
the additional structure has to be defined as well to fully specify a population.
As opposed to variation operators that act on the one or two parent individ-
uals, the selection operators (parent selection and survivor selection) work at
population level. In general, they take the whole current population into ac-
count and choices are always made relative to what we have. For instance, the
best individual of the given population is chosen to seed the next generation,
or the worst individual of the given population is chosen to be replaced by a
new one. In almost all EA applications the population size is constant, not
changing during the evolutionary search.

The diversity of a population is a measure of the number of different
solutions present. No single measure for diversity exists, typically people might
refer to the number of different fitness values present, the number of different
phenotypes present, or the number of different genotypes. Other statistical
measures, such as entropy, are also used. Note that only one fitness value
does not necessarily imply only one phenotype is present, and in turn only
one phenotype does not necessarily imply only one genotype. The reverse is
however not true: one genotype implies only one phenotype and fitness value.

2.3.4 Parent Selection Mechanism

The role of parent selection or mating selection is to distinguish among
individuals based on their quality, in particular, to allow the better individuals
to become parents of the next generation. An individual is a parent if it has
been selected to undergo variation in order to create offspring. Together with
the survivor selection mechanism, parent selection is responsible for pushing
quality improvements. In EC, parent selection is typically probabilistic. Thus,

1 A multiset is a set where multiple copies of an element are possible.

2.3 Components of Evolutionary Algorithms 21

high quality individuals get a higher chance to become parents than those
with low quality. Nevertheless, low quality individuals are often given a small,
but positive chance, otherwise the whole search could become too greedy and
get stuck in a local optimum.

2.3.5 Variation Operators

The role of variation operators is to create new individuals from old ones. In
the corresponding phenotype space this amounts to generating new candidate
solutions. From the generate-and-test search perspective, variation operators
perform the “generate” step. Variation operators in EC are divided into two
types based on their arity2.

Mutation

A unary3 variation operator is commonly called mutation. It is applied to one
genotype and delivers a (slightly) modified mutant, the child or offspring of
it. A mutation operator is always stochastic: its output – the child – depends
on the outcomes of a series of random choices4. It should be noted that an
arbitrary unary operator is not necessarily seen as mutation. A problem spe-
cific heuristic operator acting on one individual could be termed as mutation
for being unary. However, in general mutation is supposed to cause a random,
unbiased change. For this reason it might be more appropriate not to call
heuristic unary operators mutation. The role of mutation in EC is different in
various EC-dialects, for instance in Genetic Programming it is often not used
at all, in Genetic Algorithms it has traditionally been seen as a background
operator to fill the gene pool with “fresh blood”, while in Evolutionary Pro-
gramming it is the one and only variation operator doing the whole search
work.

It is worth noting that variation operators form the evolutionary imple-
mentation of the elementary steps within the search space. Generating a child
amounts to stepping to a new point in this space. From this perspective, mu-
tation has a theoretical role too: it can guarantee that the space is connected.
This is important since theorems stating that an EA will (given sufficient
time) discover the global optimum of a given problem often rely on the prop-
erty that each genotype representing a possible solution can be reached by
the variation operators [118]. The simplest way to satisfy this condition is to
allow the mutation operator to “jump” everywhere, for example, by allowing
that any allele can be mutated into any other allele with a non-zero probabil-
ity. However it should also be noted that many researchers feel these proofs

2 The arity of an operator is the number of objects that it takes as inputs
3 An operator is unary if it applies to one object as input.
4 Usually these will consist of using a pseudo-random number generator to generate

a series of values from some given probability distribution. We will refer to these
as “random drawings”

22 2 What is an Evolutionary Algorithm?

have limited practical importance, and many implementations of EAs do not
in fact possess this property.

Recombination

A binary variation operator5 is called recombination or crossover. As the
names indicate such an operator merges information from two parent geno-
types into one or two offspring genotypes. Similarly to mutation, recombi-
nation is a stochastic operator: the choice of what parts of each parent are
combined, and the way these parts are combined, depend on random draw-
ings. Again, the role of recombination is different in EC dialects: in Genetic
Programming it is often the only variation operator, in Genetic Algorithms
it is seen as the main search operator, and in Evolutionary Programming it
is never used. Recombination operators with a higher arity (using more than
two parents) are mathematically possible and easy to implement, but have
no biological equivalent. Perhaps this is why they are not commonly used, al-
though several studies indicate that they have positive effects on the evolution
[115].

The principal behind recombination is simple – that by mating two individ-
uals with different but desirable features, we can produce an offspring which
combines both of those features. This principal has a strong supporting case
– it is one which has been successfully applied for millennia by breeders of
plants and livestock, to produce species which give higher yields or have other
desirable features. Evolutionary Algorithms create a number of offspring by
random recombination, accept that some will have undesirable combinations
of traits, most may be no better or worse than their parents, and hope that
some have improved characteristics. Although the biology of the planet earth,
(where with a very few exceptions lower organisms reproduce asexually, and
higher organisms reproduce sexually see e.g., [268, 269]), suggests that recom-
bination is the superior form of reproduction, recombination operators in EAs
are usually applied probabilistically, that is, with an existing chance of not
being performed.

It is important to note that variation operators are representation depen-
dent. That is, for different representations different variation operators have
to be defined. For example, if genotypes are bit-strings, then inverting a 0
to a 1 (1 to a 0) can be used as a mutation operator. However, if we rep-
resent possible solutions by tree-like structures another mutation operator is
required.

2.3.6 Survivor Selection Mechanism (Replacement)

The role of survivor selection or environmental selection is to distin-
guish among individuals based on their quality. In that it is similar to parent

5 An operator is binary if it applies to two objects as input.

2.3 Components of Evolutionary Algorithms 23

selection, but it is used in a different stage of the evolutionary cycle. The sur-
vivor selection mechanism is called after having having created the offspring of
the selected parents. As mentioned in section 2.3.3, in EC the population size
is (almost always) constant, thus a choice has to to be made on which individ-
uals will be allowed in the next generation. This decision is usually based on
their fitness values, favouring those with higher quality, although the concept
of age is also frequently used. As opposed to parent selection which is typically
stochastic, survivor selection is often deterministic, for instance ranking the
unified multiset of parents and offspring and selecting the top segment (fitness
biased), or selecting only from the offspring (age-biased).

Survivor selection is also often called replacement or replacement strat-
egy. In many cases the two terms can be used interchangeably. The choice
between the two is thus often arbitrary. A good reason to use the name sur-
vivor selection is to keep terminology consistent: step 1 and step 5 in Figure
2.1 are both named selection, distinguished by an adjective. A preference for
using replacement can be motivated by the skewed proportion of the number
of individuals in the population and the number of newly created children. In
particular, if the number of children is very small with respect to the popu-
lation size, e.g., 2 children and a population of 100. In this case, the survivor
selection step is as simple as to chose the two old individuals that are to be
deleted to make place for the new ones. In other words, it is more efficient
to declare that everybody survives unless deleted, and to choose whom to
replace. If the proportion is not skewed like this, e.g., 500 children made from
a population of 100, then this is not an option, so using the term survivor
selection is appropriate. In the rest of this book we will be pragmatic about
this issue. We will use survivor selection in the section headers for reasons of
generality and uniformity, while using replacement if it is commonly used in
the literature for the given procedure we are discussing.

2.3.7 Initialisation

Initialisation is kept simple in most EA applications: The first population
is seeded by randomly generated individuals. In principle, problem specific
heuristics can be used in this step aiming at an initial population with higher
fitness. Whether this is worth the extra computational effort or not is very
much depending on the application at hand. There are, however, some general
observations concerning this issue based on the so-called anytime behaviour
of EAs. These will be discussed later on in Section 2.5 and we will also return
to this issue in Chapter 10.

2.3.8 Termination Condition

As for a suitable termination condition we can distinguish two cases. If the
problem has a known optimal fitness level, probably coming from a known
optimum of the given objective function, then reaching this level (perhaps

24 2 What is an Evolutionary Algorithm?

only with a given precision ε > 0) should be used as stopping condition.
However, EAs are stochastic and mostly there are no guarantees to reach an
optimum, hence this condition might never get satisfied and the algorithm
may never stop. This requires that this condition is extended with one that
certainly stops the algorithm. Commonly used options for this purpose are
the following:

1. the maximally allowed CPU time elapses;
2. the total number of fitness evaluations reaches a given limit;
3. for a given period of time (i.e, for a number of generations or fitness

evaluations), the fitness improvement remains under a threshold value;
4. the population diversity drops under a given threshold.

The actual termination criterion in such cases is a disjunction: optimum
value hit or condition x satisfied. If the problem does not have a known
optimum, then we need no disjunction, simply a condition from the above list
or a similar one that is guaranteed to stop the algorithm. Later on in Section
2.5 we will return to the issue of when to terminate an EA.

In the coming chapters we will describe various types of Evolutionary Al-
gorithms by specifying how the EA components are implemented in the given
type. That is we will give a treatment of the representation, variation, and se-
lection operators, specific for that EA variant and give a one glance overview
of the typical representatives in an EA tableau. However, we will not discuss
the initialisation procedure and a termination condition, for they are usu-
ally not “dialect” specific, but implemented along the general considerations
outlined above.

2.4 Example Applications

2.4.1 The 8-Queens Problem

In the 8-queens problem we are given a regular chess board (8 by 8) and eight
queens that must be placed on the board in such a way that no two queens
can check each other. This problem can be naturally generalised, yielding
the N -queens problem. Many classical AI approaches to this problem work
in a constructive, or incremental, fashion: one starts with placing one queen
and after having placed n queens, one attempts to place the (n + 1)th on
a feasible position, i.e., a position where the new queen does not check any
others. Typically some sort of backtracking mechanism is applied: if there
is no feasible position for the (n + 1)th queen, the nth is moved to another
position.

An evolutionary approach to this problem is drastically different in that it
is not incremental. Our candidate solutions are complete, rather than partial,
board configurations where all eight queens are placed. The phenotype space

2.4 Example Applications 25

P is the set of all such configurations. Clearly, most elements of this space
are infeasible, violating the condition of non-checking queens. The quality
q(p) of any phenotype p ∈ P can be simply quantified by the number of
checking queen pairs. The lower this measure, the better a phenotype (board
configuration) and a zero value, q(p) = 0, indicates a good solution. By this
observation we can formulate a suitable objective function (to be minimised)
with a known optimal value. Even though we have not defined genotypes at
this point, we can state that the fitness (to be maximised) of a genotype g that
represents phenotype p is some inverse of q(p). There are many possibilities
to specify what kind of inverse we wish to use here. For instance, 1/q(p) is
an option, but it has the disadvantage that division by zero can deliver a
problem. We could circumvent this by adding that when this occurs we have
a solution, or by adding a small value ε i.e., 1/(q(p) + ε). Another option is
to use −q(p) or M − q(p), where M is a sufficiently large number to make all
fitness values positive, e.g., M = max{ q(p) | p ∈ P }. This fitness function
inherits the property of q that it has a known optimum, M .

To design an EA to search the space P we need to define a representation
of phenotypes from P . The most straightforward idea is to use elements of P
represented as matrices directly as genotypes, meaning that we design vari-
ation operators acting such matrices. In this example however, we define a
more clever representation as follows. A genotype, or chromosome, is a per-
mutation of the numbers 1, . . . , 8, and a given g = 〈i1, . . . , i8〉 denotes the
(unique) board configuration, where the n-th column contains exactly one
queen placed on the in-th row. For instance, the permutation g = 〈1, . . . , 8〉
represents a board where the queens are placed along the main diagonal. The
genotype space G is now the set of all permutations of 1, . . . , 8 and we also
have defined a mapping F : G→ P .

It is easy to see that by using such chromosome we restrict the search to
board configurations where horizontal constraint violations (two queens on
the same row) and vertical constraint violations (two queens on the same
column) do not occur. In other words, the representation guarantees “half”
of the requirements against a solution – what remains to be minimised is the
number of diagonal constraint violations. From a formal perspective we have
chosen a representation that is not surjective, only part of P can be obtained
by decoding elements of G. While in general this could carry the danger of
missing solutions in P , in our present example this is not the case, since those
phenotypes from P \ F (G) can never be solutions.

The next step is to define suitable variation operators (mutation and
crossover), fitting our representation, i.e., working on genotypes being per-
mutations. The crucial feature of a suitable operator is that it does not lead
out of the space G. In common parlance, offspring of a permutation must be
permutations as well. Later on in Sections 3.4.4 and 3.5.4 we will treat such
operators in much detail. Here we only give one suitable mutation and one
crossover operator for illustration purposes. As for mutation we can use an op-
erator that selects two positions in a given chromosome randomly and swaps

26 2 What is an Evolutionary Algorithm?

the values standing on those positions. A good crossover for permutations is
less obvious, but the mechanism outlined in Figure 2.3 will create two child
permutations from two parents.

1. select a random position, the crossover point, i ∈ {1, . . . , 7}
2. cut both parents in two segments after this position
3. copy the first segment of parent 1 into child 1 and the first segment of parent 2 into

child 2
4. scan parent 2 from left to right and fill the second segment of child 1 with values from

parent 2 skipping those that are already contained in it
5. do the same for parent 1 and child 2

Fig. 2.3. “Cut-and-crossfill” crossover

The important thing about these variation operators is that mutation will
cause a small undirected change and crossover creates children that inherit
genetic material from both parents. It should be noted though that there
can be large performance differences between operators, e.g., an EA using
mutation A could find a solution quickly, while using mutation B can result
in an algorithm never finding a solution. The operators we sketch here are
not necessarily efficient, they merely serve as examples of operators that are
applicable to the given representation.

The next step of setting up an EA is deciding about selection and the
population update mechanism. As for managing the population we choose for
a simple scheme. In each evolutionary cycle we select two parents delivering
two children and the new population of size n will contain the best n of the
resulting n+ 2 individuals (the old population plus the two new ones).

Parent selection (step 1 in Figure 2.1) will be done by choosing 5 individ-
uals randomly from the population and taking the best two as parents that
undergo crossover. This ensures a bias towards using parents with relatively
high fitness. Survivor selection (step 5 in Figure 2.1) checks which old indi-
viduals should be deleted to make place for the new ones – provided the new
ones are better. Following the naming convention discussed from Section 2.3.6
we are to define a replacement strategy. The strategy we will use merges the
population and offspring, then ranks them according to fitness, and deletes
the worst two.

To obtain a full specification we can decide to fill the initial population
with randomly generated permutations and terminate the search if we find a
solution or 10.000 fitness evaluations have elapsed. We can furthermore decide
to use a population size of 100, and using the variation operators with a certain
frequency. For instance we always apply crossover to the two selected parents

2.4 Example Applications 27

and in 80% of the cases applying mutation to the offspring. Putting this all
together we obtain an EA as summarised in Table 2.1.

Representation permutations

Recombination “cut-and-crossfill” crossover

Recombination probability 100%

Mutation swap

Mutation probability 80%

Parent selection best 2 out of random 5

Survival selection replace worst

Population size 100

Number of Offspring 2

Initialisation random

Termination condition solution or 10.000 fitness evaluation

Table 2.1. Tableau describing the EA for the 8-queens problem

2.4.2 The Knapsack Problem

The “0–1 Knapsack” problem, a generalisation of many industrial problems,
can be briefly described as follows: Given a set of n of items, each of which
has some value vi attached to it and some cost ci, how do we select a subset
of those items that maximises the value whilst keep the summed cost within
some capacity Cmax? Thus for example when packing a back-pack for a “round
the world” trip, we must balance likely utility of the items we wish to take
against the fact that we have a limited volume (the items chosen must fit in
one bag) and weight (airlines impose fees for luggage over a given weight).

It is a natural idea to represent candidate solutions for this problem as
binary strings of length n where a 1 in a given position indicates that an item
is included and a 0 that it is omitted. The corresponding genotype space G is
the set of all such strings, with size 2n that increases exponentially with the
number of items considered. By this G we fix the representation in the sense
of “data structure”, and next we need to define the mapping from genotypes
to phenotypes.

The first representation (in the sense of a mapping) that we consider takes
the phenotype space P and the genotype space to be identical. The quality
of a given solution p, represented by a binary genotype g is thus determined
by summing the values of the included items, i.e.: Qp =

∑n
i=1 vi · gi. However

this simple representation leads us to some immediate problems. By using a
one-to-one mapping between the genotype space G and the phenotype space
P , individual genotypes may correspond to invalid solutions which have an
associated cost greater than the capacity, i.e.,

∑n
i=1 ci · gi > Cmax. This issue

28 2 What is an Evolutionary Algorithm?

is typical of a class of problems that we will return to in Chapter 12, and a
number of mechanisms have been proposed for dealing with it.

The second representation that we outline here solves this problem by em-
ploying a “decoder” function that breaks the one-to-one correspondence be-
tween the genotype space G and the solution space P . In essence our genotype
representation remains the same, but when creating a solution we read from
left to right along the binary string, and keep a running tally of the cost of in-
cluded items. When we encounter a value 1, we first check to see if including
the item would break our capacity constraint, i.e., rather than interpreting
a value 1 as meaning include this item, we interpret it as meaning include
this item IF it does not take us over the cost constraint. The effect of this
scheme is to make the mapping from genotype to phenotype space many-to-
one, since once the capacity has been reached, the value of all bits to the right
of the current position is irrelevant as no more items will be added to the
solution. Furthermore, this mapping ensures that all binary strings represent
valid solutions with a unique fitness, (to be maximised)

Having decided on a fixed length binary representation, we can now choose
off-the-shelf variation operators from the GA literature, because the bit-string
representation is “standard” there. A suitable (but not necessarily optimal)
recombination operator is one-point crossover, where we align two parents
and pick a random point along their length. The two offspring are created by
exchanging the tails of the parents at that point. We will apply this with 70%
probability i.e., for each pair of parents we will select a random value with
uniform probability between 0 and 1, and if it is below 0.7 then we will create
two offspring by crossover, otherwise we will make copies of the parents. A
suitable mutation operator is so-called bit-flipping : in each position we invert
the value with a small probability pm ∈ [0, 1).

In this case we will create the same number of offspring as we have members
our initial population, and as noted above we create two offspring from each
two parents, so we will select that many parents and pair them randomly.
We will use a tournament for selecting the parents, where each time we pick
two members of the population at random (with replacement) and the one
with the highest value Qp wins the tournament and becomes a parent. We
will institute a “generational” scheme for survivor selection, i.e., all of the
population in each iteration are discarded and replaced by their offspring.

Finally we should consider initialisation (which we will do by random choice
of 0 and 1 in each position of our initial population), and termination. In this
case we do not know the maximum value that we can achieve, so we will run
our algorithm until no improvement in the fitness of the best member of the
population has been observed for twenty five generations.

We have already defined our crossover probability as 0.7, we will work with
a population size of 500 and a mutation rate of pm = 1/n i.e., that will on
average change one value in every offspring. Our Evolutionary Algorithm to
tackle this problem can be specified as below in Table 2.2:

2.5 Working of an Evolutionary Algorithm 29

Representation binary strings of length n

Recombination One point crossover

Recombination probability 70%

Mutation each value inverted with independent probability pm per position

Mutation probability pm 1/n

Parent selection best out of random two

Survival selection generational

Population size 500

Number of offspring 500

Initialisation random

Termination condition no improvement in last 25 generations

Table 2.2. Tableau describing the EA for the Knapsack Problem

2.5 Working of an Evolutionary Algorithm

Evolutionary Algorithms have some rather general properties concerning their
working. To illuminate how an EA typically works we assume a one dimen-
sional objective function to be maximised. Figure 2.4 shows three stages of
the evolutionary search, exhibiting how the individuals are distributed in the
beginning, somewhere halfway and at the end of the evolution. In the first
phase, directly after initialisation, the individuals are randomly spread over
the whole search space, see Figure 2.4, left. Already after a few generations
this distribution changes: caused by selection and variation operators the pop-
ulation abandons low fitness regions and starts to “climb” the hills as shown in
Figure 2.4, middle. Yet later, (close to the end of the search, if the termination
condition is set appropriately), the whole population is concentrated around
a few peaks, where some of these peaks can be sub-optimal. In principle it
is possible that the population “climbs the wrong hill” and all individuals
are positioned around a local, but not global optimum. Although there is no
universally accepted definition of what the terms mean, these distinct phases
of search are often categorised in terms of exploration (the generation of
new individuals in as-yet untested regions of the search space), and exploita-
tion (the concentration of the search in the vicinity of known good solutions).
Evolutionary search processes are often referred to in terms of a trade-off be-
tween exploration and exploitation, with to much of the former leading to
inefficient search, and too much of the latter leading to a propensity to focus
the search too quickly (see e.g., [131] for a good discussion of these issues).
Premature convergence is the well-known effect of losing population di-
versity too quickly and getting trapped in a local optimum. This danger is
generally present in Evolutionary Algorithms; techniques to prevent it will be
discussed in Chapter 9.

The other effect we want to illustrate is the anytime behaviour of EAs.
We show this by plotting the development of the population’s best fitness
(objective function) value in time, see Figure 2.5. This curve is characteristic

30 2 What is an Evolutionary Algorithm?

begin halfway end

Fig. 2.4. Typical progress of an EA illustrated in terms of population distribution.

for Evolutionary Algorithms, showing rapid progress in the beginning and
flattening out later on. This is typical for many algorithms that work by
iterative improvements on the initial solution(s). The name “any time” comes
from the property that the search can be stopped at any time, the algorithm
will have some solution, be it suboptimal.

Fig. 2.5. Typical progress of an EA illustrated in terms of development of the best
fitness (objective function to be maximised) value within population in time.

Based on this anytime curve we can make some general observations con-
cerning initialisation and the termination condition for Evolutionary Algo-
rithms. As for initialisation, recall the question from Section 2.3.7 whether
it is worth to put extra computational efforts into applying some intelligent
heuristics to seed the initial populations with better than random individ-
uals. In general, it could be said that that the typical progress curve of an
evolutionary process makes it unnecessary. This is illustrated in Figure 2.6.
As the figure indicates, using heuristic initialisation can start the evolutionary
search with a better population. However, typically a few (in the Figure: k)
generations are enough to reach this level, making the worth of extra effort
questionable. Later on in Chapter 10 we will return to this issue.

The anytime behaviour also has some general indications regarding termi-
nation conditions of EAs. In Figure 2.7 we divide the run into two equally long
sections, the first and the second half. As the figure indicates, the progress
in terms of fitness increase in the first half of the run, X , is significantly

2.5 Working of an Evolutionary Algorithm 31

Fig. 2.6. Illustrating why heuristic initialisation might not be worth. Level a shows
the best fitness in a randomly initialised population, level b belongs to heuristic
initialisation.

greater than the achievements in the second half, Y . This provides a general
suggestion that it might not be worth to allow very long runs: due to the any-
time behaviour on EAs, efforts spent after a certain time (number of fitness
evaluations) may not result in better solution quality.

Fig. 2.7. Illustrating why long runs might not be worth. X shows the progress in
terms of fitness increase in the first half of the run, Y belongs to the second half.

We close this review of EA behaviour with looking at EA performance from
a global perspective. That is, rather than observing one run of the algorithm,
we consider the performance of EAs on a wide range of problems. Figure 2.8
shows the 80’s view after Goldberg [179]. What the figure indicates is that
robust problem solvers –as EAs are claimed to be– show a roughly even good
performance over a wide range of problems. This performance pattern can be
compared to random search and to algorithms tailored to a specific problem
type. EAs clearly outperform random search. A problem tailored algorithm,
however, performs much better than an EA, but only on that type of problem
where it was designed for. As we move away from this problem type to different
problems, the problem specific algorithm quickly looses performance. In this
sense, EAs and problem specific algorithms form two antagonistic extremes.
This perception has played an important role in positioning Evolutionary

32 2 What is an Evolutionary Algorithm?

Algorithms and stressing the difference between evolutionary and random
search, but it gradually changed in the 90’s based on new insights from practice
as well as from theory. The contemporary view acknowledges the possibility to
combine the two extremes into a hybrid algorithm. This issue will be treated
in detail in Chapter 10, where we also present the revised version of Figure
2.8. As for theoretical considerations, the No Free Lunch Theorem has shown
that (under some conditions) no black-box algorithm can outperform random
walk when averaged over “all” problems [434]. That is, showing the EA line
always above that of random search is fundamentally incorrect. This will be
discussed further in Chapter 11.

Fig. 2.8. 1980’s view on EA performance after Goldberg [179].

2.6 Evolutionary Computing and Global Optimisation

In Chapter 1 we mentioned that there has been a steady increase in the
complexity and size of problems that are desired to be solved by comput-
ing methods. We also noted that Evolutionary Algorithms are often used for
problem optimisation. Of course EAs are not the only optimisation technique
known, and in this section we explain where EAs fall into the general class of
optimisation methods, and why they are of increasing interest.

In an ideal world, we would possess the technology and algorithms that
could provide a provably optimal solution to any problem that we could suit-
ably pose to the system. In fact, such algorithms exist: an exhaustive enumera-
tion of all of the possible solutions to our problem is clearly such an algorithm.
For many problems that can be expressed in a suitably mathematical formu-
lation, much faster, exact techniques such as Branch and Bound Search are
well known. However, despite the rapid progress in computing technology, and
even if there is no halt to Moore’s Law (which states that the available com-
puting power doubles every one and a half year), it is a sad fact of life that all
too often the types of problems posed by users exceed in their demands the
capacity of technology to answer them.

2.6 Evolutionary Computing and Global Optimisation 33

Decades of computer science research have taught us that many “real world”
problems can be reduced in their essence to well known abstract forms for
which the number of potential solutions grows exponentially with the number
of variables considered. For example many problems in transportation can be
reduced to the well known “Travelling Sales Person” problem, i.e., given a
list of destinations, to construct the shortest tour that visits each destination
exactly once. If we have n destinations, with symmetric distances between
them, the number of possible tours is given by n!/2 = n ·(n−1) ·(n−2) · . . .·3,
which is exponential in n. Whilst exact methods whose time complexity scales
linearly (or at least polynomially) with the number of variables, exist for some
of these problems (see e.g., [197] for an overview), it is widely accepted that
for many types of problems often encountered, no such algorithms exist. Thus
despite the increase in computing power, beyond a certain size of problem
we must abandon the search for provably optimal solutions and look to other
methods for finding good solutions.

We will use the term Global Optimisation to refer to the process of
attempting to find the solution x∗ out of a set of possible solutions S which
has the optimal value for some fitness function f . In other words, if we are
trying to find the solution x∗ such that x 6= x∗ ⇒ f(x∗) ≥ f(x) (here we
have assumed a maximisation problem, the inequality is simply reversed for
minimisation).

As noted above, a number of deterministic algorithms exist which if allowed
to run to completion are guaranteed to find x∗. The simplest example is, of
course, complete enumeration of all the solutions in S, which can take an
exponentially long time as the number of variables increases. A variety of
other techniques exist (collectively known as Box Decomposition) which are
based on ordering the elements of S into some kind of tree and then reasoning
about the quality of solutions in each branch in order to decide whether to
investigate its elements. Although methods such as Branch and Bound can
sometimes make very fast progress, in the worst case (due to searching in a
suboptimal order) the time complexity of the algorithms is still the same as
complete enumeration.

After exact methods, we find a class of search methods known as heuristics
which may be thought of as sets of rules for deciding which potential solution
out of S should next be generated and tested. For some randomised heuristics,
such as Simulated Annealing [2, 231] and (certain variants of) Evolutionary
Algorithms, convergence proofs do in fact exist, i.e., they are guaranteed to
find x∗. Unfortunately these algorithms are fairly weak, in the sense that
they will not identify x∗ as being globally optimal, rather as simply the best
solution seen so far.

An important class of heuristics is based on the idea of using operators
that impose some kind of structure onto the elements of S, such that each
point x has associated with it a set of neighbours N(x). In Figure 1.1 the
variables (traits) x and y were taken to be real valued, which imposes a natural
structure on S. The reader should note that for many types of problem where

34 2 What is an Evolutionary Algorithm?

each variable takes one of a finite set of values (so-called Combinatorial
Optimisation) there are many possible neighbourhood structures. As an
example of how the landscape “seen” by a local search algorithm depends on
its neighbourhood structure, the reader might wish to consider what a chess
board would look like if we re-ordered it so that squares which are possible
next moves for a knight are adjacent to each other. Note that by its definition,
the global optimum, x∗ will always be fitter than all of its neighbours under
any neighbourhood structure.

So-called Local Search algorithms [2] (and their many variants) work by
taking a starting solution x, and then searching the candidate solutions in
N(x) for one x′ that performs better than x. If such a solution exists, then
this is accepted as the new incumbent solution and the search proceeds by ex-
amining the candidate solutions in N(x′). Eventually this process will lead to
the identification of a local optimum: a solution which is superior to all those
in its neighbourhood. Such algorithms (often referred to as Hill Climbers for
maximisation problems) have been well studied over the decades, and have the
advantage that they are often quick to identify a good solutions to the prob-
lem (which is in fact sometimes all that is required in practical applications).
However, the downside is that frequently problems will exhibit numerous local
optima, some of which may be significantly worse than the global optimum,
and no guarantees can be offered in the quality of solution found.

A number of methods have been proposed to get around this problem by
changing the search landscape, either by reordering it through a change of
neighbourhood function (e.g., Variable Neighbourhood Search [191]) or by
temporally assigning low fitness to already seen good solutions (e.g., Tabu
Search [171]). However the theoretical basis behind these algorithms is still
very much in gestation.

There are a number of features of Evolutionary Algorithms which distin-
guish them from Local Search algorithms, relating principally to their use of
a population. It is the population which provides the algorithm with a means
of defining a non-uniform probability distribution function (p.d.f.) governing
the generation of new points from S. This p.d.f. reflects possible interactions
between points in the population, arising from the recombination of partial
solutions from two (or more) members of the population (parents). This con-
trasts with the globally uniform distribution of blind random search, or the
locally uniform distribution used by many other stochastic algorithms such as
simulated annealing and various hill-climbing algorithms.

The ability of Evolutionary Algorithms to maintain a diverse set of points
not only provides a means of escaping from one local optimum: it provides
a means of coping with large and discontinuous search spaces, and if several
copies of a solution can be maintained, provides a natural and robust way of
dealing with problems where there is noise or uncertainty associated with the
assignment of a fitness score to a candidate solution, as will be seen in later
chapters.

2.8 Recommended Reading for this Chapter 35

2.7 Exercises

1. How big is the phenotype space for the 8-queens problem as discussed in
section 2.4.1?

2. Try to design an Evolutionary Algorithm for the 8-queens problem that is
incremental. That is, a solution must represent a way to place the queens
on the chess board one by one. How big is the search space in your design?

3. Find a problem where EAs would certainly perform very poorly compared
to to alternative approaches. Explain why do you expect this would be
the case.

2.8 Recommended Reading for this Chapter

1. T. Bäck. Evolutionary Algorithms in Theory and Practice. Oxford Uni-
versity Press, New York, 1996.
A book giving a formal treatment of evolutionary programming, evolution
strategies, and genetic algorithms (no genetic programming) from a per-
spective of optimisation.

2. Th. Bäck and H.-P. Schwefel. An overview of Evolutionary Algorithms
for parameter optimisation. Evolutionary Computation, 1(1):1–23, 1993.
A classical paper (with formalistic algorithm descriptions) that “unified”
the field.

3. A.E. Eiben. Evolutionary computing: the most powerful problem solver
in the universe? Dutch Mathematical Archive (Nederlands Archief voor
Wiskunde), 5/3(2):126–131, 2002.
A gentle introduction to evolutionary computing with details over
GAs and ES. To be found at http://www.cs.vu.nl/~gusz/papers/

ec-intro-naw.ps

4. D.B. Fogel. Evolutionary Computation. IEEE Press, 1995.
A book covering evolutionary programming, evolution strategies, and ge-
netic algorithms (no genetic programming) from a perspective of achieving
machine intelligence through evolution.

5. M.S. Hillier and F.S. Hillier. Conventional optimization techniques. Chap-
ter 1, pages 3–25.in R. Sarker, M. Mohammadian, and X. Yao, editors.
Evolutionary Optimization. Kluwer Academic Publishers, 2002. Gives a
nice overview of Operations Research techniques for optimisation, includ-
ing linear-, nonlinear-, goal-, and integer programming.

6. X. Yao. Evolutionary computation: A gentle introduction. Chapter 2,
pages 27–53 in R. Sarker, M. Mohammadian, and X. Yao, editors. Evolu-
tionary Optimization. Kluwer Academic Publishers, 2002. Indeed a smooth
introduction presenting all dialects and explicitly discussing EAs in rela-
tion to generate-and-test methods.

