Using Scalable Vector Graphics to evolve art

Eelco den Heijer*
Vrije Universiteit Amsterdam, Dept. of Computer Science, Amsterdam, Netherlands, E-mail: eelcodenheijer@gmail.com *Corresponding author

A.E. Eiben
Vrije Universiteit Amsterdam, Dept. of Computer Science, Amsterdam, Netherlands, E-mail: gusz@cs.vu.nl

Abstract In this paper we describe our investigations of the use of Scalable Vector Graphics as a genotype representation in evolutionary art. We describe the technical aspects of using SVG in evolutionary art, and explain the genetic operators mutation and crossover. Furthermore, we compare the use of SVG with existing representations in evolutionary art. We perform two series of experiments and describe their setup and results. In the first series of experiments we investigate the feasibility of SVG as a genotype representation for evolutionary art, and we evolve abstract images using a number of aesthetic measures as fitness functions (all experiments described in this paper are done without a human in the loop). We found that SVG is suitable as a genotype representation for evolutionary art, but that the range of the visual output was limited by the design of our genetic operators. In order to increase the range of the visual output, and in order to evolve representational images, we performed a second series of experiments in which we used existing images as source material. We designed and implemented a new initialisation, crossover and mutation operator. We also designed and implemented an ad-hoc aesthetic measure for ‘pop-art’ and used this to evolve images that are visually similar to screen printing art and pop art. All images and SVG code examples in this paper are available at http://www.few.vu.nl/~eelco

Keywords: Evolutionary computation, genetic programming, evolutionary art, SVG, scalable vector graphics

Biographical notes: Eelco den Heijer is a PhD candidate with the Vrije Universiteit in Amsterdam. His PhD research focuses on the unsupervised evolution of aesthetically pleasing images using one or more
2 Eelco den Heijer, A.E. Eiben

aesthetic measures. Additional topics of his PhD research is the use of alternative genotype representations, and the improvement of population diversity in evolutionary art systems. Other research interest include machine learning, machine vision, computer graphics and non-photorealistic rendering.

A.E. (Gusz) Eiben is Professor of Computational Intelligence on the VU University Amsterdam. He is one of the European early birds of evolutionary computing. Since his first publication in the area (1989) he has published numerous papers, book chapters and the first comprehensive text book, Introduction to Evolutionary Computing (together with J.E. Smith). His recent research interests include evolutionary art, embodied evolution and evolutionary robotics.

1 Introduction

Over the last two decades, evolutionary art has developed from an experimental mix of computer art and evolutionary algorithms to an established research topic in evolutionary computation. Although there has been significant progress in various aspects of evolutionary art (notably in the field of interactive evolutionary computation, or IEC [40]) one cannot deny that some aspects of evolutionary art appear to be stuck in a local optimum; perhaps the most visible aspect is that a lot of evolutionary art looks like ... computer art.

In Figure 1 we see a number of images that are the result of previous experiments with the evolution of images using and expression based representation [13]. We see a variety of images, but almost all images are abstract “textures”. When we take a wider view, and regard different artworks of centuries, it is evident that artists over centuries have experimented with art materials, layouts, subjects, techniques etc. All this has resulted in a wide variety of visual output. If we project this observation onto the world of evolutionary art, one could conclude that the field might benefit (in terms of variety of visual output) of new representations and new techniques. In this paper we want to add a new technique to the world of evolutionary art.
Evolving SVG

(the use of Scalable Vector Graphics or SVG) and compare our new technique with an established technique (the use of symbolic expressions). An important starting point of many evolutionary art systems is the choice for symbolic (Lisp) expressions as the representation for the genotypes. The choice for symbolic expressions and the construction of the function set is a very important, but also a potentially restrictive choice in the design of an evolutionary art system. As Jon McCormack wrote [27] “While there might exist a symbolic expression for generating the Mona Lisa for example, no such expression has been found by aesthetic selection”. Our motivation for investigating a new genotype representation is twofold; first of all, current symbolic expression system are limited in the range of their visual output. The limitations of the visual output range is mainly caused by what we will call the ‘pixel paradigm’, in which images are evolved by iteratively calculating the colour of each pixel (the next section gives a short explanation of the ‘pixel-paradigm’). The second motivation follows from the first; using symbolic expression with the ‘pixel-paradigm’ it will be close to impossible to evolve representational (i.e. non-abstract) images. There have been attempts to evolve renderings of target images (e.g. [17]), but these images are renderings of existing images. The visual output range will be limited by the target image, which limits the creative potential of the evolutionary art system.

The research questions of this paper are:

1. Is SVG a suitable representation for evolutionary art? We want to investigate whether it is feasible to implement SVG as a genetic representation, i.e. is it possible to implement all representation dependent components of an evolutionary art system (mutation, crossover and initialisation)?

2. Are the resulting images different from the images produced by evolutionary art systems that use symbolic representation?

3. Can we evolve representational, non-abstract images using SVG?

4. Can we evolve surprising new images using existing images?

This paper is organised as follows; in section 2 we perform a short literature overview of the use of several types of representation in evolutionary art. In section 3 we describe Scalable Vector Graphics. In Section 4 we describe our genetic operators and experiments with evolving abstract images, and in Section 5 we describe our experiments and genetic operators in evolving representational images. We give conclusions and directions for future research in section 6.

2 Representation in Evolutionary art

Evolutionary art is a research field where methods from Evolutionary Computation are used to create works of art. Good overviews of the field are [33] and [5]. Some evolutionary art systems use IEC or supervised fitness assignment [39, 34], and in recent years there has been increased activity in investigating unsupervised fitness assignment [3, 35, 24, 12, 11].

A number of different representations have been investigated for use in evolutionary art. We will briefly describe symbolic expressions, shape grammars, cellular
automata and L-systems, vector graphics and representations that use an image as a source.

Symbolic Expressions The most widespread representation within evolutionary art is the symbolic expression $[39, 34, 22, 25, 12, 11, 16]$. The symbolic expression paradigm, pioneered by Karl Sims in 1991 [39] works roughly as follows; each genome is a symbolic expression (i.e. a Lisp function tree) that consists of functions from a predefined functions set and terminals from a predefined terminal set. Terminals can consists of variables like x and y (that correspond to the coordinates in the image grid) or constants. The phenotype is an image of size (w, h), and the expression of genotype into the phenotype is done as follows:

\[
\text{for } x = 0 \text{ to } w \text{ do} \\
\quad \text{for } y = 0 \text{ to } h \text{ do} \\
\quad \quad v \leftarrow \text{calculate}(x, y, \text{tree}) \\
\quad \quad \text{image}[x, y] \leftarrow v \\
\text{end for} \\
\text{end for} \\
\text{return image;}
\]

There are a number of variations on this theme. Some authors normalise the values of x and y between 0 and 1 or between -1 and 1 [22], some authors map the value v onto a colour index table [22, 11, 12] but the main idea is the same.

Shape grammars Although symbolic expressions have been a very popular form of representation in evolutionary art, other forms of representation have been investigated. The most notable other form is the shape grammar. A shape grammar is a formal description of a design and has been pioneered by Stiny and Gips in 1972 [20]. Shape grammars are especially useful in the context of design and architecture, since design heuristics can be coded into the grammar. Examples of the use of shape grammars in evolutionary art and design are [37] and [30]. [31] describes the use of shape grammars (using the Context Free language) to evolve multiple artworks in a similar style. A very particular study by Eiben et al attempted to mimic artwork of M.C. Escher, using a representation based on the mathematical system behind his tilings [19, 18]. This system was described by Escher himself (together with Doris Schattschneider) [36] and transformed into an evolvable genetic representation that produced images with surprising similarity to the original.

Cellular Automata and L-Systems Other representations used in evolutionary art are cellular automata, several types of fractals and L-systems. [2] has used EC to evolve aesthetically pleasing images using Cellular Automata. [1] has investigated the evolution of interesting appearing Julia Sets, and Jerry Ventrella has evolved ‘tweaked’ Mandelbrot functions to make the Mandelbrot figures look like a target image [41].

Vector graphics Stephen Bergen and Brian Ross have explored the use of vector graphics in their JNetic system [6, 7]. Their genotype representation consists of integer based chromosomes, where indices in the chromosome refer to a vector graphics primitive (e.g. a circle, a square), the colour (coded in r,g,b) and the (x,y) position of the vector graphics primitive.

Using images as a source Whereas the previous approaches create images ‘from scratch’, some researchers have investigated the possibilities of manipulating existing images, whereby the manipulating function was subject to evolutionary computation. [8] describes an approach that using non-photorealistic rendering or NPR
Evolving SVG

5
to produce synthetic oil paintings from images; the author uses a genetic algorithm to find suitable values for his NPR system. In the authors describe the evolution of a NPR system using genetic programming, whereby the authors use a number of image filter primitives. Other examples of the use of NPR in evolutionary art are, in which Steve diPaola et al evolve renderings of portraits using a target image (in the paper they use a portrait of Charles Darwin), and in which the authors evolve novel NPR filters using genetic programming.

From this short overview we see that only a few evolutionary art systems use a representation that re-use existing images to evolve new images. For evolutionary art systems that evolve images ‘from scratch’ it is very difficult, if not impossible, to evolve non-abstract art. The work in this paper is similar to the work by Bergen & Ross and the Non-photo Realistic (NPR) work by Neufeld et al. The first series of experiments that we describe in Section uses only SVG graphic primitives, and is similar to, although our goal is to evolve abstract images, and the goal in is to follow an NPR approach.

3 Scalable Vector Graphics

Vector graphics operates on primitives like lines, points, curves and polygons and is complementary to raster graphics that operate on pixels. SVG is a graphics format developed and maintained by the World Wide Web Consortium (W3C) and is an XML format for vector graphics. An important advantage of vector graphics over raster graphics is the possibility to scale an image without loss of image quality. Another important advantage of the use of SVG as a representation for evolutionary art is the potential interoperability with the artist/designer; an artist or designer can start with an SVG document in his or her vector graphics tool (like Inkscape or Adobe Illustrator) and use the output of his or her work as input for the evolutionary art system. Next, the output of the evolutionary art system can be used as input for the artist or designer. Both evolutionary art system and designer tools speak the same language: SVG.

3.1 Basic layout of an SVG document

SVG is an implementation of XML and should comply to all basic XML rules; documents consists of elements and elements can have child elements. Furthermore, an SVG document must be well-formed; i.e. it should comply to all XML syntax rules. There are a number of specific rules to which SVG documents must comply and we will briefly describe the most important ones. First, the root element (the top level element) must be ‘svg’. The SVG specification allows to nest ‘svg’ elements into lower level elements as well, but in our initial implementation we chose not to implement that (but we might do so in the future). Next, there can be zero or more definitions in a ‘defs’ element. Definitions are like declarations of variables. Here we can clearly see a big difference with the symbolic expression representation; symbolic expressions are stateless, they have no state variables (only local variables in leaf nodes). A ‘defs’ element is merely a container of other elements. Elements that can be declared as ‘variables’ in a ‘defs’ container are
Eelco den Heijer, A.E. Eiben

- **filter** - a filter in SVG alters the looks of a certain area of an image by applying an image filter effect on that particular area.

- **linearGradient** and **radialGradient** - gradients are transitions of colour over a certain area. SVG supports linear gradients (linear transition from one point to another) and radial gradients (colour transitions are circular/ring shaped). Gradient definitions may refer to pre-defined filters.

- **style** - a style definition; a container for one or more css declarations. A declaration can define the foreground colour, the background colour, the stroke width, the stroke colour etc. In short, the css class determines the look and feel of a shape element. Shape elements refer directly to the css class definition (and not to the style container). A css class definition may refer to a linear or radial gradient definition.

- **mask** - a mask is an outline whereby everything on the inside of the mask is shown and everything on the outside is ‘masked’. With a mask you can create a ‘hole’ of a a certain shape. A mask is a container element; it contains other elements that define the shape of the mask.

- **pattern** - a pattern is container element that contains other elementary shapes (like ‘rect’ and ‘ellipse’) that are repeated such that they create a pattern (much like a wallpaper pattern).

Next to the ‘defs’ element, an SVG document can have a number of shape elements. In our implementation we have implemented the following shape elements:

- **rect** - a rectangle shape

- **ellipse** - an ellipse; it has a centre coordinate, and x radius and an y radius. If the x radius and y radius are equal, the result is circle.

- **circle** - a special case of ‘ellipse’; there is only one radius.

- **path** - path is the most versatile element. A path defines a number of basic operations that are similar to turtle graphics; operations include move to, a number of basic line commands, and a number of Bézier curve commands. The path element is used extensively in our experiments with evolving abstract images (experiment 3 and 4, Section 4.6) and in evolving representational images (Section 5).

- **polyline** - a polyline is a collection of connected lines. A polyline does not fill an area (like a polygon does).

- **polygon** - a polygon is also a collection of connected lines, whereby the first and last point of the polygon are also (automatically) connected. The surrounding area is filled with the fill colour (if any) of the polygon.

- **group** - a group is a container element that holds one or more other elements (that can also be a ‘group’). Groups are a simple way to implement complex constructs from a number of simple elements. A group can therefore occur both in the ‘defs’ part and in the ‘shapes’ part of an SVG document.
In the declaration of a shape element there can be references to declarations in the aforementioned ‘defs’ section. Elements can specify a filter, a css class, a mask, a pattern, a linear gradient or a radial gradient. For example, a rect element can have a reference to a CSS class in the ‘defs’ part, this css class may have a specification of the ‘fill’ property (that specifies how an element should be filled) that refers to a radial gradient element elsewhere in the ‘defs’ element, and this radial gradient element may have a reference to a filter. As we will see later, the interconnectedness of both ‘defs’ and shape elements with each other requires an elaborate bookkeeping process with the mutation and crossover operator; SVG is a strict standard, and creating offspring that contains broken links (i.e. pointing to a filter element that no longer exists in the new offspring) will result in a SVG rendering error. Figure 2 shows an outline of an SVG as used in our system, and Figure 1 shows a number of simple SVG example documents and their rendered images.

The SVG specification is vast and complex, and we have not covered every aspect of it, nor have we implemented the entire SVG specification. Next to the elements described above, we have implemented ‘use’ and ‘image’, but we have not used them in the experiments in this paper. In our current implementation we have skipped ‘text’ (rendering text labels), ‘metadata’ (specifying RDF metadata in an SVG element), javascript (mainly for animating svg elements and user interaction) and a number of SVG filters.

4 Evolving abstract images

As stated previously, the most used representation in evolutionary art is the symbolic expression. The advantage of using symbolic expressions is twofold; first, when using symbolic expressions, it is easy to create valid new trees from existing ones,
Table 1 Four simple examples of SVG code and their images

since the trees are type-safe (i.e. the type of each sub expression tree is the same, so you can select any (sub)tree node as input for any other tree node). Second, symbolic expressions are stateless; they have no state variables (only local variables in leaf nodes), and this makes crossover and mutation relatively easy to implement. SVG does not have these advantages, so implementing genetic operators for SVG is more complex. In this section we will describe the genetic operators initialisation, crossover and mutation. All operators are SVG specific and all operators produce results that conform to the SVG standard. All declaration elements (the elements in the ‘defs’ element in the svg document) and all shape elements are potentially subject to mutation or crossover.

4.1 Initialisation

Initialisation uses a number of parameters to create new individuals. For example, there is a parameter ‘number of svg shape elements’ with a minimum of 3 and a maximum of 6. This means that between 3 and 6 shape elements are created. Table 2 has all the initialisation parameters and their minimum and maximum values. Initialisation also uses a weight distribution for shape elements; this way we can perform different experiments with different distributions of shape elements (e.g. we can do experiments with only ‘path’ elements). The initialisation procedure that we use for evolving representational images is different, and we will describe it in Section 5.1.

4.2 Mutation

The mutation operator for the experiments with abstract images processes an SVG document top-down, and (depending on the mutation probability) either copies or mutates each child element of the parent. There is a specific mutation operator for each type of SVG element. For instance, if the element is an ellipse, then the ellipse mutation operator is called, and the specific attributes of the ellipse are potentially
subject to mutation (the mutation can change the coordinates of the ellipse, and/or the horizontal/vertical radius). There are a number of heuristics; each numeric attribute (x, y coordinate, radius etc.) is increased or decreased between 0 and 10% of the original value. For the ‘defs’ element, mutation is similar; each child element in the ‘defs’ is potentially subject to mutation; a ‘filter’ element might change from a linear gradient filter to radial gradient filter, or the specific parameters of the filter (like colours, offsets) might be mutated. CSS elements that are defined in the ‘defs’ element can also be mutated; attributes that can be mutated are colour, stroke etc. The mutation operator that we use in the experiments with representational images is different, and we will describe it in Section 5.2.

4.3 Crossover

For the crossover operation in the experiments with abstract images, we implemented a one-point crossover operator specific for SVG. The crossover works on two parent svg documents and creates one child per operation. Each parent consists of a ‘defs’ part and a shapes part. The ‘defs’ part contains only declarations of filters, CSS classes. For sake of simplicity, we define the shapes part as everything that comes after the ‘defs’ part (and contains only shape elements). Crossover is implemented as follows: first we copy the ‘defs’ part of one of the parents to the child. Next, we concatenate the first half of the shapes part of one parent with the second part of the shapes part of the other parent. Since shape elements have references to definitions that reside in the ‘defs’ element, the new child will have references in shape elements that do not exist in the child (since we only copied the ‘defs’ element of one parent, but we have shape elements of both parents). An SVG interpreter will not render such a document (with references to non-existing elements), so we have to fix the broken references; we traverse the shape elements, and check whether the references to a filter, CSS class, mask etc. are available. If not, the reference is replaced with a reference that does exist in the child document. An example: suppose we have a father document that has a ‘rect’ element (a shape element) that refers to a ‘cssClass’ element (a ‘defs’ element) with id ‘123’. Now suppose we do a crossover and this ‘rect’ element in the child class is ‘cut off’ from this ‘cssClass’ with id ‘123’ (because this cssClass definition is not copied to the child document), then we have to re-assign the ‘cssClass’ reference in the ‘rect’ element from ‘123’ to ‘456’ (or any other id that does exist in the ‘defs’ of the child document). This

<table>
<thead>
<tr>
<th>SVG Configuration</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVG shape elements</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Linear gradients</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Radial gradients</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Masks</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Patterns</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Filters</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>CSS classes</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Table 2 SVG initialisation parameters for the declaration part of the SVG document (defined in the ‘defs’ element of the SVG document).
Eelco den Heijer, A.E. Eiben

<table>
<thead>
<tr>
<th>Aesthetic Measure</th>
<th>Various SVG Elements</th>
<th>Only ‘path’ element</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ross & Ralph</td>
<td>Experiment 1</td>
<td>Experiment 3</td>
</tr>
<tr>
<td>GCF</td>
<td>Experiment 2</td>
<td>Experiment 4</td>
</tr>
<tr>
<td>Custom pop-art</td>
<td></td>
<td>Experiment 5</td>
</tr>
</tbody>
</table>

Table 3 Overview of experiments

means that the ‘rect’ element will be rendered differently in the child element. The crossover operator that we use in the experiments with representational images is different, and we will describe it in Section 5.3.

4.4 Experiments with evolving abstract images

In order to explore the potential of SVG as a representation for evolutionary art we conducted four experiments; two experiments with a variety of SVG elements (polygons, polylines, circles and paths) and two experiments with only the ‘path’ element. Two of the experiments were performed with the Ross & Ralph Bell Curve aesthetic measure [35] and two experiments were performed with the Global Contrast Factor aesthetic measure [26] (see Table 3 for more details). These aesthetic measures were used as fitness functions in an unsupervised evolutionary art system; no human evaluation/ interactive evolution was involved.

The Ross & Ralph Bell Curve aesthetic measure is based on the observation that many fine art painting exhibit functions over colour gradients that conform to a normal or bell curve distribution. The authors suggest that works of art should have a reasonable amount of changes in colour, but that the changes in colour should reflect a normal distribution (hence the name ‘Bell Curve’). The computation takes several steps and we refer to [35] for details. Previous experiments with the Ross & Ralph aesthetic measure as a fitness function in an unsupervised evolutionary art system have shown that the use of this measure often leads to images with rich colouring and smooth colour transitions [12]. The global contrast factor computes contrast (difference in luminance or brightness) at various resolutions. Images that have little or few differences in luminance have low contrast and are considered ‘boring’, and thus have a low aesthetic value. Contrast is computed by calculating the (average) difference in luminance between two neighbouring regions. The contrast is calculated for several resolutions (2, 4, 8, 16, 25, 50, 100 and 200) and the average contrast is summed as

\[M_{gcf}(I) = \sum_{k=1}^{9} w_k \cdot \text{contrast}(n, p_k, r_k) \]

where \(r_k \) refers to the resolution of the region, \(w_k \) refers to the weight of the contrast of the region (the weight of the contrast differs per resolution) and \(p_k \) is a power factor. Both \(w \) and \(p \) were optimised using several experiments in [26]. In our implementation we used all the settings from [26], and we refer to that paper for more details. In previous experiments with the global contrast factor as a fitness function it was shown that images that were evolved using GCF as the fitness
function had a lot of alternating black and white areas (hence, a lot of contrast) [11]. Furthermore, we performed 10 runs per configuration, saved the images that had the highest fitness score, and selected a portfolio of 24 images from the 100 images. The portfolio for each experiment is shown in the next subsections.

4.5 Experiment 1 & 2: multiple SVG elements

First we conducted two experiments with a variety of SVG elements. We initialised the SVG elements with circle, polygon, polyline and path elements (all with an initialisation probability of 0.25). The ‘defs’ part of the documents were initialised according to the specifications in Table 2.

4.5.1 Experiment 1: Ross & Ralph

In the first experiment we initialised the population with documents containing circle, polyline, polygon and path elements. We used the Ross & Ralph aesthetic measure as the fitness function. As said before, we did 10 runs using this setup and gathered the 10 fittest images of each run, and handpicked 24 images; these images are shown in Figure 3. Almost all images have rich and variable colouring which is consistent with earlier experiments with the Ross & Ralph aesthetic measure [12]. The polygon elements seem to dominate the look and feel of most images, and they make many images interesting, but they do tend to give them a slight ‘computer art’ flavour (although different from the images evolved using symbolic expressions in Figure 1).

4.5.2 Experiment 2: GCF

The second experiment uses the Global Contrast Factor as the fitness function, but is otherwise identical to Experiment 1. The images are shown in Figure 4. The

<table>
<thead>
<tr>
<th>Symbolic parameters</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Representation</td>
<td>Scalable Vector Graphics (SVG)</td>
</tr>
<tr>
<td>Initialisation</td>
<td>Custom SVG Initialisation (see 4.1)</td>
</tr>
<tr>
<td>Survivor selection</td>
<td>Tournament, Elitist (best 1)</td>
</tr>
<tr>
<td>Parent Selection</td>
<td>Tournament</td>
</tr>
<tr>
<td>Mutation</td>
<td>Custom SVG mutation (see 4.2)</td>
</tr>
<tr>
<td>Recombination</td>
<td>Two parent single point crossover (see 4.3)</td>
</tr>
<tr>
<td>Fitness function</td>
<td>Ralph & Ross or Global Contrast Factor</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Numeric parameters</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Population size</td>
<td>200</td>
</tr>
<tr>
<td>Generations</td>
<td>10</td>
</tr>
<tr>
<td>Tournament size</td>
<td>2</td>
</tr>
<tr>
<td>Crossover probability</td>
<td>0.75</td>
</tr>
<tr>
<td>Mutation probability</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Table 4 Evolutionary parameters of our evolutionary art system used in our experiments
images evolved using the GCF show a lot of contrast, and that is similar to earlier findings [11]. The high level of contrast in the images have a very powerful effect, but it does give the images a certain ‘harshness’ that is not present in the images from Experiment 1 (with the Ross & Ralph aesthetic measure).

4.6 Experiment 3 & 4: the ‘path’ element

In the third and fourth experiment we initialised the population with genomes with only the ‘path’ element. The ‘path’ element is the most versatile SVG element; it contains a number of operations that closely resemble turtle-graphics (see Section 3 on a brief explanation of the ‘path’ element and see the appendix for an SVG document with many path elements). We initialised each document with 3 to 6 (see Table 2) ‘path’ elements, whereby each path element had between 10 and 80 path operations.
4.6.1 Experiment 3: Ross & Ralph

In the third experiment we evolved SVG document with only ‘path’ elements using Ross & Ralph as the fitness functions. The images of this experiment are in Figure 5.

![Portfolio of images gathered from ten runs with Ralph & Ross with the ‘path’ element (Experiment 3)](image)

Figure 5: Portfolio of images gathered from ten runs with Ralph & Ross with the ‘path’ element (Experiment 3)

The first thing that is striking is the variety of the images; it is interesting to see that the ‘path’ element alone is versatile enough to create a wide variety of images, sometimes arguably more interesting than the circles, polygons, polylines and paths from Experiments 1 and 2. The addition of the curve operation in the ‘path’ element seems to have additional value over the standard polygons and polylines. Note that we initialise the points and operations of all ‘path’ elements randomly, there is no use of domain knowledge (e.g. from art theory). This randomness sometimes gives the images a certain artificial flavour. We think we can improve this by creating initialisation methods that use heuristics from art theory. The images from Experiment 3 are also varied in colour and this is consistent with Experiment 1 and previous work [12].

4.6.2 Experiment 4: GCF

The last experiment is identical to Experiment 3, except for the use of the Global Contrast Factor as the fitness function. The images of Experiment 4 are in Figure 6. The images from Experiment 4 are also varied in shape (like Experiment 3) but again show a tendency towards black and white, which is similar to Experiment 2 and previous work [11].

5 Evolving representational images

In our second series of experiments, we clearly wanted to increase the potential visual output range of our evolutionary art system, and we wanted to evolve representational images. The genetic operators from the previous sections were not sufficient for this task, so we had to design and implement a new initialisation,
mutation and crossover. In this section we will first describe these three operators. Next, we will describe a simple aesthetic measure for pop-art in Section 5.4. We will present our experimental setup and the results of the experiments in Section 5.5.

5.1 Initialisation

In the previous section we initialised SVG genetic programs with path elements and polygons using random initialisation (also see [14]). This approach produced some interesting images, although most images had an artificial, abstract flavour. In this section we intend to depart from evolving strictly abstract art, and decided to use existing images as a starting point. Our initialisation process is represented in Figure 8.

In previous work [15] we evolved SVG images using a collection of personal photographs of the first author. For this paper we created another, more diverse image set, consisting of 80 images from the RGBStock website [23]. We searched for rights free images that contained a single topic, preferably without any background clutter (white background). This way, it would be easier to combine numerous images into one new image. This process is analogous to using sample libraries in electronic music, where prepared audio samples are combined to create new work (audio sample libraries mostly contain samples from a single instrument, often played in a single key).

From the photographs (raster images) we create vector images. We used the publicly available program ‘potrace’ [38] to convert the raster images to our initial SVG sources. The ‘potrace’ program extracts the contours of a raster image and creates path elements with either lines or curves. One important aspect of this approach is that all colour is removed when extracting the contours, thus the resulting SVG images (that come out of ‘potrace’) are in black and white. Next to a collection of images, we also created a collection of colour schemes. A colour scheme is a list of colours that (ideally) combine well. We randomly generated 250 colour schemes with 2 to 5 colours per colour scheme.

To summarise, the step of initialisation are;

1. randomly choose one colour scheme

Figure 6: Portfolio of images gathered from ten runs with GCF with the ‘path’ element (Experiment 4)
2. sample 1 to 3 images from the aforementioned image collection, and create one group (g element) for each sampled image (each containing multiple path elements)

3. create one rectangle (rect element) that will act as the background; SVG does not support setting the background colour of the canvas itself.

4. create a random defs part using the sampled colour scheme; the ‘defs’ element may contain a css part, one or more gradients, and one or more filters.

5. assign filter, css class to the background rectangle and all path elements.

![Figure 7: The outline of our SVG genotype initialisation process](image)

![Figure 8: The initialisation process in a nutshell; we start with a photo or raster image in (a), potrace converts this image into an initial SVG vector image (b), and our initialisation process adds one or more images (in this example only one) to the canvas, and adds and applies filters, gradients and css classes.](image)

5.2 Mutation

We implemented several mutation operators that fall in two categories; macro and micro level mutation. The macro level mutation affects the entire composition and the micro level mutation operator operate at a single ‘group’ (a collection of ‘path’ elements) in the composition. The probability of macro and micro level mutation is 0.5. If macro-level mutation is performed, the mutation is done once on the entire program. If micro-level mutation is ‘selected’, a uniform randomly selected micro level mutation operator is performed for each group of path elements in the SVG document.
Table 5 SVG initialisation parameters for the second series of experiments (representational images).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of svg sources</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Number of linear gradients</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Number of radial gradients</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Number of filters</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Number of CSS classes</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

Algorithm 1 Our reproduction; we perform either crossover or mutation (not both). Within mutation, we do either macro-level mutation or micro-level mutation (not both)

\[r_1 = \text{random}() \]
\[\text{if } (r_1 < \text{crossoverProbability}) \text{ then doCrossover();} \]
\[\text{else} \]
\[d_2 = \text{random}(); \]
\[\text{if } (r_2 < 0.5) \text{ then doMacroMutation();} \]
\[\text{else doMicroMutation()} \]
\[\text{end if} \]
\[\text{end if} \]

5.2.1 Macro level mutation

We have implemented the following macro level operators:

- **thicken** - this operator samples another image from the image collection and adds it at a random point in the composition
- **thin** - opposite of **thicken**; this operator removes a random chosen image from the composition (unless there is only one image on the canvas left; in that case the **thin** operator does nothing).
- **unclutter** - moves the images on the canvas in such a way that they do not overlap
- **updatestyle** - does a mutation on the css class definition of the defs part of the SVG document (affects the rendering of all elements that refer to a css class)
- **updatefilter** - does a mutation on the filter definitions of the defs part of the SVG document (affects the rendering of all elements that refer to a filter)

5.2.2 Micro level mutation

We implemented 11 micro level mutation operators. All operate on a group of path elements.
hideall the ‘hide all’ mutation processes all the path elements in a group, and sets the attribute ‘visibility’ to ‘hidden’. The effect is that the path will be present in the SVG document (the genotype) but will not be expressed in the image (the phenotype).

hidemore the ‘hidemore’ mutation is similar to ‘hideall’ but the probability of a path to become invisible is 0.25.

mirror the ‘mirror’ mutation creates a mirrored version (around the horizontal or vertical axis) of all the path elements in a group.

copy replaces all curve operations (the operations with operator ‘c’, ‘t’, ‘a’ and ‘q’) with a line operator (‘l’). In many cases this mutation gives the images a simplified or ‘compressed’ look and feel, but in some cases the effect is barely noticeable.

replace the ‘replace’ operator resembles the subtree mutation operator in standard genetic programming; it replaces the entire group with a new initialized group (sampled from the image collection).

siamesetwin the ‘siamesetwin’ operator is a complex mutation operator. It creates a horizontal or vertical mirror image of a group, moves the mirror image to the left (or up) and merges the result in the original group. This mutation operator creates images with symmetry, and sometimes the images resemble Rorschach ink blob tests.

showall ‘show all’ is the inverse of ‘hide all’; it updates all the path elements in a group, and removes the ‘visibility’ attribute (which is equivalent to setting the visibility element to ‘visible’).

showmore is similar to ‘showall’, but the probability of a path to become visible (if it was invisible) is 0.25.

updatefilter this mutation alters the filter identifier of each path (if any) with a probability of 0.25.

updatestyle this mutation alters the CSS class identifier of each path (if any) with a probability of 0.25.

wrinkle the ‘wrinkle’ operator adapts all the parameters in all path elements in a group and adds or subtracts between 0 and 5% of the original value. The effects are different for the different path operators; for the SVG path ‘move’ operator (‘M’), it may result in a displaced path element (sometimes it leads to an eye that appears somewhere on a cheek, somewhat like Picasso), and for the different curve operators it results in different curves, resulting in ‘distorted’ paths. The effect on portrait images is sometimes funny, and sometimes unpleasant (the images sometimes resemble the work of Francis Bacon).

Figure 9 shows five different mutations on the image of Figure 8.
5.3 Crossover

We implemented a uniform crossover operator to create a new SVG genotype from two parent SVG genotypes. Recall that an SVG document consists of two parts: the definitions or declarations, that reside in the `defs` element and the shapes, which are in the rest of the document (they are not contained in a separate container element). The crossover operator consists of 3 steps: first, we select the background rectangle randomly from one of the parents. Next, we select the colour scheme of one of the parents, and assign it to the new child (we do not perform crossover on the colour scheme itself). Next, we iterate over all elements of the `defs` part and the non-`defs` part, and randomly select an element from one of the parents. We present four examples in Figure 10.

![Figure 9: Examples of 5 possible mutations of the original of Figure 8. (a) mirror, (b) mutation of style, (c) polygonize mutation, (d) siamese twin mutation, (e) wrinkle mutation.]

![Figure 10: Four examples of crossovers; from left to right, the two parents (p1 and p2) and the resulting child.]

5.4 A simple aesthetic measure for pop art

In previous work we have applied a number of aesthetic measures in evolutionary art, and in our initial experiments with SVG we tried a number of them. Most of these aesthetic measures that we tried on SVG (most notably Benford Law [10] and Ralph Bell Curve [35]) assigned low scores to the evolved images, also to images that we liked ourselves. We decided to create a simple aesthetic measure that favors contrast in hue, as is often seen in screen printing and pop art [32]. Our aesthetic measure is a combination of two ideas; the first idea comes from the Global Contrast
Factor or GCF [26]. This measure samples the contrast in brightness at various resolutions of the image and computes the amount of contrast. The other idea comes from colour harmony theory [8]; there are several principles that suggest that particular combinations of colour are considered pleasurable, and one principle of colour harmony is the principle of opposing colours. This states that a combination of two colours that are opposed to each other on the colour wheel is preferable to other combinations. Although there are other principles on the harmony of colour (like a colour combines well with tints of itself, etc.), we will focus on the difference in hue. In a nutshell, our hue difference aesthetic measure works as follows: select two regions of the image (A and B), calculate the average hue for both regions, and calculate the difference between the average hues. Repeat this step for all regions of the image, for a number of different resolutions, and calculate the average hue difference.

\[
M_{\text{popart}}(I) = \sum_{k=1}^{9} w_k \cdot \text{hue_difference}(n, p_k, r_k)
\]

where the \text{hue_difference} between two regions A and B is calculated as the difference in the average hue of the pixels of region A and B. Weight \(w \), power factor \(p \) and resolution \(r \) are calculated in the same way as the global contrast factor (see Section 4.4 and [26] for more details).

5.5 Experiment 5: evolving representational images

We performed an experiment with our new initialisation, crossover, mutation and new ad-hoc aesthetic measure for pop-art for the aesthetic evaluation (there is no human in the loop). In the next subsections we will present the parameters of our evolutionary art system, and present the resulting images.

<table>
<thead>
<tr>
<th>Symbolic parameters</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Representation</td>
<td>Scalable Vector Graphics (SVG)</td>
</tr>
<tr>
<td>Initialisation</td>
<td>Custom SVG Initialisation (see 5.1)</td>
</tr>
<tr>
<td>Survivor selection</td>
<td>Tournament, Elitist (best 1)</td>
</tr>
<tr>
<td>Parent Selection</td>
<td>Tournament</td>
</tr>
<tr>
<td>Mutation</td>
<td>Custom SVG mutation (see 5.2)</td>
</tr>
<tr>
<td>Recombination</td>
<td>Two parent uniform crossover (see 5.3)</td>
</tr>
<tr>
<td>Fitness function</td>
<td>Colour contrast (hue)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Numeric parameters</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Population size</td>
<td>100</td>
</tr>
<tr>
<td>Generations</td>
<td>10</td>
</tr>
<tr>
<td>Tournament size</td>
<td>3</td>
</tr>
<tr>
<td>Crossover probability</td>
<td>0.5</td>
</tr>
<tr>
<td>Mutation probability</td>
<td>0.5 (within a mutation 'step', the probability for micro vs macro mutation is 0.5)</td>
</tr>
</tbody>
</table>

Table 6 Parameters of our evolutionary art system used in experiment 5
Note that there are a few differences between the evolutionary parameters of the first series (abstract images, Section 4) and second series (representational images, this section) of experiments. First of all, we have implemented new initialisation, mutation and crossover. Next, we have increased the mutation probability (0.25 in the first series, 0.5 in the second series), since we want to see more influence of our wide array of mutation operators. Furthermore, the use of existing vector images can be very memory intensive. In some cases, a single individual in the population can be several megabytes in size, and since all operations (mutation, crossover) are done in memory, and since we use a generational setup (which means that every generation we build up a new population next to the existing one), we ran out of memory at multiple occasions. That is the main reason why we lowered our population size from 200 to 100.

Experimental setup and results

We performed 20 runs with our unsupervised genetic programming system using our aesthetic measure for pop art. The settings of our system are given in Table 6. In Figure 11 we show a portfolio of 35 images that we gathered from the 20 runs of our experiment, and Figure 12 shows a close-up of four images from this portfolio.

Figure 11: Portfolio of images gathered from twenty runs with SVG and Colour Contrast (hue) aesthetic measure

Given the limited input image collection, we think that the output is varied; varied in colour, composition, but also varied in the level of ‘abstractness’. Most images contain representational content; parts of the image or the entire image refer in some degree to something recognisable, whereas some images have parts that are
heavily processed by mutation and are less recognisable or not recognisable at all (and thus become abstract images).

Figure 12: Close-up of four images from Figure 11; the first image 12a is a very simple image of the silhouette of a tree with a linear gradient background. Image 12b is very different; it contains a simple image of a group of sea shells, but it has endured many mutation operations (most notably the ‘siamesetwin’ operator) that the seashells are barely recognisable anymore. Images 12c and 12d are more recognisable but contain ‘interesting’ composition elements. Figure 12d contains a duplicate image of an apple over a ‘wrinkled’ car.

6 Discussion and Conclusions

In this paper we have presented our investigations into the use of SVG or Scalable Vector Graphics in Evolutionary Art. We have defined a number of research questions in 1, and we will answer them here. First, we wanted to know whether SVG is suitable as a representation for evolutionary art. We have shown that we have successfully implemented SVG as a representation for evolutionary art; we have implemented a number of mutation, crossover and initialisation operators, both for abstract and for representational images. Implementing genetic operators for SVG is more complex than for symbolic expressions (mainly due to the many dependencies between the SVG elements), but it is certainly feasible.

Next, we wanted to know whether images evolved using SVG as a representation would result in images that are different from the ‘typical’ symbolic expression evolutionary art systems. In Figure 1 we show eight images evolved in experiments using expression based representation [13]. We think it is safe to conclude that the images in Figures 8, 9, 10 and 11 are different in style from the ones in Figure 1 (see the images of Figure 11 and 12). In the first section we labelled many evolutionary art as ‘computer art’. An interesting question then could be ‘Can evolutionary art using SVG as a representation be labelled as computer art?’ If we look at our first series of experiments, in which we evolved abstract images, we would probably have to answer ‘yes’ to that question. However, if we look at our second series of experiments, in which we evolve representational images, we could probably answer ‘no’ to that question. SVG does not prevent ‘computer art-ness’ per se, the difference clearly lies in the expressive power of the genetic operators initialisation, crossover and mutation.
Our third research question was to investigate whether it was possible to evolve representational (i.e., non-abstract) images using SVG. Our results confirm this. Most images from our experiments contain recognisable images or at least recognisable fragments. Although we used a small image collection with a narrow subject, it will be trivial to repeat the experiments with bigger image collections with more varied subjects. Clearly, having recognisable content in the final images was not a goal in itself. We achieved recognizability by using existing images as starting points.

As for the fourth and last research question regarding the evolution of surprising new images, our findings are positive as well. Many combinations of images and alterations of images are result in images that are very different from the initial source images, sometimes leading to new and surprising images. Although we evolved pop-art in this research, we believe that SVG can be used for other, different categories of art and design, like collages of different kinds of images and shapes, the design of logos and album covers (SVG also supports the use of text elements).

References

Evolving SVG

Thorsten Schmier and John S. Gero. Learning genetic representations as alternative to hand-coded shape grammars. In Artificial Intelligence in Design ’96.

