
Quality-Driven Software Architecture Composition1

Hans de Bruin Hans van Vliet

Vrije Universiteit Amsterdam

Mathematics and Computer Science Department

De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

e-mail:{hansdb,hans}@cs.vu.nl

1A shorter version of this paper will appear in the ECBS’02 conference proceedings.

Abstract

This paper discusses an approach for the top-down composition of software architectures. First, an ar-

chitecture is derived that addresses functional requirements only. This architecture contains a number

of variability points which are next filled in to address quality concerns. The quality requirements and

associated architectural solution fragments are captured in a so-called Feature-Solution (FS) graph.

The solution fragments captured in this graph are used to iteratively compose an architecture driven by

quality requirements. Our versatile composition technique allows for pre- and post-refinements, re-

finements that involve multiple variability points, and functionality extensions. In addition, the usage

of the FS graph supports Aspect-Oriented Programming (AOP) at the architecture level.

1 Introduction

The architecture of a software system captures early design decisions. These early design decisions

reflect major quality concerns, including functionality. In order not to reinvent the wheel time and

again, we would like to capture chunks of architectural knowledge explicitly, and use these chunks

when deriving an architecture that fulfills some set of quality concerns. Our solution for capturing

this knowledge is a Feature-Solution (FS) graph, which connects quality requirements with solution

fragments at the architectural level (de Bruin and van Vliet, 2001). The present paper is concerned

with systematically composing an architecture out of the solution fragments captured in the FS-graph.

The process we envisage for deriving the architecture is an iterative, quality-driven approach to soft-

ware architecting (see for instance (Bosch, 2000)). The first step in this process is the derivation of a

software architecture that meets the functional requirements set. This is called the reference architec-

ture. Next, the attention focuses on non-functional requirements by iteratively applying known design

solutions (e.g., architectural and design patterns) to refine the software architecture. Typically, this

requires several iterations. These iterations might also involve backtracking steps because we usually

have to deal with conflicting requirements.

At the heart of this iterative, quality-driven process for composing software architectures is the

Feature-Solution (FS) graph. In this FS graph, requirements are connected with design solutions.

On the basis of requirements specified in the feature space of the FS graph, solutions that are likely to

meet these requirements are selected in the solution space. One way to look at the FS graph is that it

embodies domain knowledge (expressed as requirements) along with design solutions for solving par-

ticular problems in that domain. The role of the FS graph in this iterative approach has been discussed

extensively in (de Bruin and van Vliet, 2001).

In this paper we focus on a composition technique to systematically derive a software architecture

by recursively applying design solutions to a given reference architecture. The reference architecture

contains variability points at those places where the architecture is expected to be varied, for instance,

to cater for non-functional requirements. The variations (e.g., design solutions in the form of patterns)

in their turn may contain variability points as well. So in principle, the architecture can be refined

indefinitely.

We may call our approach a top-down approach to software architecture composition, to contrast

it with the (bottom-up) composition and (top-down) decomposition approaches that are well-known

within software engineering, even though this may sound as a contradiction in terms. In a bottom-

up composition, we start with a set of elementary components and aggregate these into higher level

components using some glue mechanism. The abstraction level is raised each time we compose a

component out of subcomponents. In a system decomposition, the opposite direction is followed.

1

We then start with a top level view of the system and recursively decompose it into manageable

pieces. Thus, system decomposition lowers the abstraction level. In our approach, the starting point

is a reference architecture, a description of basic functionality with variability points. The variability

points are next used to plug-in existing design solutions that address certain quality concerns. These

plug-ins in turn may contain variability points as well which are next used to further fine-tune the

solution. This leads to a top-down approach of system composition.

The FS graph plays a key role in the top-down, iterative composition process. Because the FS graph

is supposed to contain relevant domain knowledge for system construction, it is also used to explore

design alternatives that have a system-wide impact. For instance, it is quite possible to change the

interaction style of a system from user-centered (i.e., the user is in control) to system-centered (i.e.,

don’t call the system, the system will call you). This can be seen as the architecture-level counterpart

of aspect weaving as used in aspect-oriented programming languages (Kiczales et al., 1997).

Use Case Maps (UCM) (Buhr, 1998; Buhr and Casselman, 1996) are used in this paper as a vehicle to

demonstrate the principles. UCM is a diagrammatic modeling technique to describe behavioral and, to

a lesser extent structural, aspects of a system at a high level of abstraction. UCM provides stubs (i.e.,

the hooks or variability points) where the behavior of a system can be varied statically at construction

time as well as dynamically at run time. The advantage of UCM is that it focuses on the larger,

architectural issues, and its support of plug-ins and stubs, both static and dynamic. However, the use

of UCM is not a prerequisite; the composition technique can also be applied using, for instance, UML.

The contributions of this paper are twofold. Firstly, we present a versatile composition technique for

software architectures. This technique offers pre- and post refinement and functionality extension,

supports multiple plug-ins in a design solution, and offers rules to enforce the well-formedness of

refinements. Secondly, the usage of the FS graph supports a guided form of top-down composition

and Aspect-Oriented Programming (AOP) at the architecture level.

The remainder of this paper is organized as follows. Section 2 gives a brief introduction to Use Case

Maps. Section 3 explains the basics of our technique for top-down composition. In section 4, we

illustrate the role of the FS graph in system composition. Section 5 illustrates the use of the FS-graph

to realize global transformations to a software architecture. In section 6, the composition model is

extended to cater for functionality extensions. Section 7 discusses how the concept of refinement can

be formalized. Finally, section 8 discusses related work, and section 9 contains our conclusions.

2 A Brief Introduction to Use Case Maps

A Use Case Map (UCM) is a graphical notation for humans to use to understand the behavior of a

system at a high level of abstraction. It is scenario-based, showing cause-effects by traveling over

2

paths through a system. UCMs do not have clearly defined semantics, their strong point is to show

how things globally work.

The basic UCM notation is quite simple. It has three basic elements: responsibilities, paths and

components. A simple UCM exemplifying these basic elements is shown in Figure 1. A path is

executed as a result of the receipt of an external stimulus. Imagine an execution pointer is then

placed on the start position. Next, the pointer is moved along the path thereby entering and leaving

components, and touching responsibility points. A responsibility point represents a place where the

state of a system is affected or interrogated. The effect of touching a responsibility point is not defined

since the concept of state is not part of UCM. Typically, the effects are described in natural language.

Finally, the end position is reached and the execution pointer is removed from the diagram.

A UCM is concurrency neutral, that is, a UCM does not prescribe the number of threads associ-

ated with a path. By the same token, nothing is said about the transfer of control or data when a

pointer leaves one component and (re-)enters another one. The only thing that is guaranteed is the

causal ordering of executing responsibility points along a path. This is not necessarily a strict tem-

poral ordering. The execution of a responsibility point may overlap with the execution of subsequent

responsibility points.

Path

r1

r2

r3

r4

r5

Start

End
Components

Pointer

Figure 1: UCM basic elements.

A more realistic example is shown in Figure 2, depicting a distributed client-server system. Because

the client communicates with the server over a network that can fail occasionally, a proxy server is

included to provide transparent access to the real server. The proxy server is modeled as a stub for

which two implementations are given: a transparent proxy server which passes the requests to and

the replies from the server unaltered thereby denying the possibility of network failures, and a proxy

server with a timeout facility with which failures are detected. The notation used in the figure is

supposed to be self-explanatory.

It is interesting to note that many things are unspecified in UCMs, but the intended meaning is sug-

gested strongly. For instance, distribution aspects (e.g., connection mechanisms and the amount of

concurrency in a component) are not dealt with. However, the client, the server and the proxy server

3

are distinct components that are connected by a network, which is also modeled as a component.

By using these names, it is natural to assume that the components are distributed over a number of

computer systems. But again, it is not specified, it is all in the eye of the beholder.

null

a

c

b

Watchdog Proxy Server

d

a b

cd

Proxy Server
Transparent

OR-forkOR-join

failure point

continuing
paths

AND-forkwaiting place
(with timeout)

continuing
path

timeout
path

entering
path

clearing
path

NotationProxy
Server
Stub

ba

d c

(possible failure)

Client ServerProxy Server Network

Figure 2: Distributed Client-Server UCM.

3 The Basic Composition Technique

In (de Bruin and van Vliet, 2001), we described a very simple, but effective way of system composition

through successive refinements. The basic idea is to provide a UCM with stubs in which plug-ins can

be placed. A plug-in may contain a stub as well, so a plug-in can be placed in a plug-in, and so on.

This approach was used, amongst others, to secure the communication between WEB-browsers and a

WEB-based system by first adding encryption/decryption components and next a firewall component.

This idea works out fine for local refinements, that is, refinements such as encryption and firewall that

apply toonevariability point (UCM stub) only. It falls short when we have to deal with refinements

that should be applied to multiple variability points. An example of the latter type of refinement is

the use of the Observer design pattern, which affects both a component in the role of subject and one

or more components in the role of observers. The solution presented below can handle refinement of

multiple variability points.

The basic concepts of refinement are explained using the example shown in Figure 3 and Figure 4.

This first example again deals with encryption/decryption and firewall refinement. This time, though,

we model encryption and decryption as one refinement with two variability points, which gives greater

flexibility than the solution presented in (de Bruin and van Vliet, 2001). The example involves two

components, Peer1 and Peer2. Component Peer1 communicates with component Peer2. Peer1 pro-

vides a socket for sending data, whereas Peer2 provides a socket for receiving data. The communi-

4

cation between the peers is refined by first adding encryption and decryption components in Peer1

and Peer2, respectively, and next a firewall component in Peer2. The meaning of the UCM elements

used for refinement is given in Table 1. Notice that we have two options for firewall placement in this

example. Either the firewall component is placed before the Decryptor component, or it is placed after

it, depending on whether the firewall is placed in the Pre-stub or in the Post-stub of the Rcv (Receiver)

socket in Peer2, respectively.

A basic UCM modeling peer to peer communication in which each peer provides a socket for refine-
ment:

Peer1

Snd:SenderMySubComp

Peer2

Rcv:Receiver
AnotherSubComp

IN1
OUT1OUT1OUT1 IN1 IN1 IN1OUT1

Pre Post Pre Post

A refinement containing a plug-in for encryption and decryption:

Encrypt:PlugInBoundary

Snd:Sender

Encryptor

Decrypt:PlugInBoundary

Rcv:Receiver

Decryptor
IN1 OUT1 IN1 OUT1 IN1 OUT1 IN1 OUT1

Pre Post Pre Post

The result of refining the basic UCM with encryption and decryption:

Peer1

Snd:Sender

Encryptor
MySubComp

Peer2

Rcv:Receiver
Decryptor AnotherSubComp

IN1 OUT1OUT1OUT1 IN1 IN1 IN1OUT1
Pre Post Pre Post

Figure 3: Refinement basics.

Refinements have to obey certain rules. These rules enforce the well-formedness of the transformation

between successive refinements of architectures. These rules are easily understood by viewing a

refinement and the UCM to which it is applied as patterns that should match. The rules for refinement

are as follows:

Type matching. Sockets and plug-ins have names and type identifiers, specified as a Name:Type

pair. Types are organized in type hierarchies supporting single as well as multiple inheritance.

A plug-in can be placed in a stub of a socket only if the plug-in and socket have matching types.

That is, the type of a plug-in must be identical to or be a subtype of the stub’s type.

Plug-in matching. Three kinds of plug-ins are recognized:

5

A refinement containing a firewall plug-in:

DoNothing:PlugInBoundary

Snd:Sender

FW:PlugInBoundary

Rcv:Receiver

Firewall
IN1 OUT1 IN1 OUT1 IN1 OUT1 IN1 OUT1

Pre Post
Pre Post

The result of placing the firewall refinement in the Pre-stub:

Peer1

Snd:Sender

Encryptor
MySubComp

Peer2

Rcv:Receiver
DecryptorFirewall AnotherSubComp

IN1 OUT1OUT1OUT1 IN1 IN1 IN1OUT1
Pre Post Pre Post

The result of placing the firewall refinement in the Post-stub:

Peer1

Snd:Sender

Encryptor
MySubComp

Peer2

Rcv:Receiver
Decryptor Firewall AnotherSubComp

IN1 OUT1OUT1OUT1 IN1 IN1 IN1OUT1
Pre Post Pre Post

Figure 4: Refinement basics (continued).

Mandatory. All mandatory plug-ins in a refinement must be placeable in sockets with match-

ing types.

Optional. Only if a socket is provided for an optional plug-in, the plug-in will be placed in the

socket, otherwise it is discarded.

Extension. In contrast to an optional plug-in, no socket needs to be provided, i.e., an extension

is never discarded.

Having optional and extension plug-ins allows us to capture broadly applicable design patterns

in quite general UCM refinements that can next be applied in a variety of circumstances. The

plug-in kind is specified syntactically as Name:Type (Plug-in kind)optional. If no plug-in kind

is specified, the plug-in is qualified as mandatory.

Boundary matching. All plug-ins enclosed in a plug-in boundary must be placed in one component.

Structure matching. If a UCM path (indicated by a straight or curved line) connects two compo-

nents, that means that those components communicate with each other, in some way or another.

There then exists a structural relationship between those components. There are two ways to

specify further details about this relationship: the communication may be one-to-one or one-

6

Element Meaning

Socket and Stubs A socket is a placeholder that provides at most two (UCM) stubs
in which a (UCM) plug-in can be placed. One stub is called Pre,
the other one Post. The intention is that the Pre-stub provides
the ability for pre-processing. Likewise, the Post-stub offers the
possibility for post-processing. Stubs are depicted as diamonds.

Plug-In A plug-in can be placed in either the Pre-stub or the Post-stub of a
socket. It may itself contain a Pre-stub and Post-stub, thereby cre-
ating the opportunity to recursively plug in plug-ins. If a plug-in
is placed in the Pre-stub, the Post-stub of the plug-in is discarded,
and vice-versa for Post-stub placement.

Plug-In-Boundary A plug-in-boundary encloses a set of plug-ins that should be
placed in a single component. It is used as a mechanism to ensure
that plug-ins that belong together are not scattered over a num-
ber of components. A plug-in boundary is depicted as a rectangle
surrounding its plug-ins.

Refinement A refinement is a combination of plug-ins enclosed in one or more
plug-in boundaries that can be placed in stubs provided by sock-
ets.

Table 1: The meaning of UCM refinement elements.

to-many, and the communication may be direct or indirect. Since components reside within

plug-in boundaries, we may also say that these relationships exist between plug-in boundaries.

The structural relations between plug-in boundaries in a refinement must correspond with the

structural relations provided by sockets.

A path to a stack of components denotes a one-to-many relation. For instance, in the Observer

design pattern, a stack of observers may be connected to a single subject. A structural one-to-

many relation in a refinement matches a one-to-one relation in the target UCM, but not vice

versa.

A distinction is further made between indirectly and directly connected plug-ins in a refinement.

In case of indirectly connected plug-ins (as indicated by a UCM end symbol attached to a start

symbol), the corresponding sockets need not necessarily have a direct connection. All that

is required is that there is a UCM path from one socket to the other one, i.e., the path may go

through an arbitrary number of intermediate components and sockets. The latter is not permitted

for direct connections.

To illustrate the finer details of the refinement process, consider again the example of peer to peer

communication. In the example in Figure 3 and 4, we have abstracted away from how the peers

communicate. One way of realizing this is by deploying the Observer design pattern, which can be

7

captured in a UCM refinement as shown in Figure 5.

Subject:PlugInBoundary

Subscribers (Team)

Subscribe:SetUpConnection (Extension) Unsubscribe:BreakConnection (Extension)

Publisher:Sender

GoOn:Continuation (Optional)

Observer:PlugInBoundary

Subscriber:Receiver

IN1

OUT1

OUT1

IN1

subscribe

IN1

OUT1

IN1

OUT1

unsubscribe

IN1

OUT1 IN1 OUT1

OUT1IN1IN1 OUT1
IN1

getSubscribers
OUT1

IN1

OUT1

Pre Post PrePost

Pre

Pre Post

Post (*) PostPre

Figure 5: Observer design pattern captured in a UCM refinement.

Figure 6 shows how the Observer refinement can be plugged in the peer to peer UCM with encryp-

tion/decryption and firewall components. Firstly, notice that the types specify where plug-ins are

placed. The plug-in of type Sender fits into Peer1, while the plug-in of type Receiver fits into Peer2.

Both these plug-ins are mandatory. There is an optional continuation plug-in in the Observer design

pattern depicted in Figure 5 for which no socket is provided, so that one is discarded in the refinement.

There are two extension plug-ins which are placed into Peer1 (because they are contained within the

plug-in boundary that also contains the Publisher:Sender plug-in), which now contains functionality

for subscribing and unsubscribing. The structural relationship between the two plug-in boundaries

of the Observer refinement are one-to-many and indirect, so it fits the one-to-one direct relationship

between the two peers in Figure 3 and 4.

A few remarks are in order here. Firstly, by using a specific solution captured in a UCM refinement,

more and more details are added to the basic UCM we started with in the first place. We call this

process abstraction lowering, which is discussed further in the next section. Conversely, the Observer

design pattern is captured in a general UCM refinement that can be used in a variety of circumstances.

Secondly, a flexible refinement mechanism is provided in the form of Pre-stubs and Post-stubs. In

this particular case, the multicast to interested observers can be positioned either before or after the

encryption component (in Figure 6, we have chosen to place it before the Encryptor).

8

Peer1

Subscribe:SetUpConnection

Snd:Sender

EncryptorMySubComp

Unsubscribe:BreakConnection

Subscribers (Team)
Peer2

Rcv:Receiver

Firewall Decryptor

AnotherSubComp

IN1 OUT1
IN1 OUT1

getSubscribers

IN1

OUT1

OUT1
IN1

OUT1

OUT1

subscribe

IN1

unsubscribe

IN1

OUT1
OUT1

IN1 IN1

Pre
Post

Pre Post PrePost

Pre Post

Figure 6: Lowering the abstraction level by deploying the Observer pattern.

4 Abstraction lowering and Refinement

By starting at the top-level system structure, each refinement in the form of plug-in placement lowers

the abstraction level. An example was given in the previous section in which the Observer pattern

refinement resulted in the extension of the peer to peer system with subscription management. In our

approach, the architectural knowledge of these refinements and the quality concerns they address are

captured in a Feature-Solution (FS) graph.

As an example, consider again peer to peer communication. A FS graph that details how the basic

peer to peer UCM can be refined is given in Figure 7. Two spaces are recognized in the FS graph.

The Feature (F) space contains the requirements, whereas the Solution (S) space contains solutions

addressing these requirements in the form of plug-ins that can be placed in the basic peer to peer

UCM. Features as well as solutions are decomposed in AND-(EX)OR decomposition trees. An AND

decomposition of a node in either the feature or the solution space means that all its constituents

must be available, an OR requires an arbitrary (≥ 0) number of constituents, and an EXOR requires

precisely one constituent. The key idea is that a feature in the F-space may select a solution in the

S-space as defined by directed selection links between nodes (indicated by a solid line). It is also

possible to explicitly rule out a particular solution. This is done by connecting a feature to a solution

with anegativeselection link (indicated by a dashed line).

In the example, we focus on non-functional requirements, in particular flexibility, security and perfor-

mance requirements. If a high flexibility level is desired, the FS graph dictates that we should use the

Observer design pattern, because of its properties of reducing the coupling between peers and support-

ing multiple observers. On the other hand, if we want high performance, the FS graph selects a direct

invocation style in the form of (remote) procedure calls. It is interesting to observe that a high level of

flexibility and a high level of performance cannot be obtained simultaneously since these requirements

select solutions that rule out each other, as implied by the EXOR decomposition of the communica-

tion node. Thus, a FS graph contains trade-off information as well. Typically, several design process

9

Requirements

Functional Non-Functional

Flexibility

Performance

AND

AND

Low Medium high

Low Medium high

EXOR

EXOR

...

Peer to Peer
Architecture (UCM)

Security Communication

AND

(R)PC (UCM)

EXOR

Observer Design
Pattern (UCM)

Firewall (UCM) Encryption/
Decryption (UCM)

OR

Permanent (UCM) Message (UCM)

EXOR

Security

Low Medium high

EXOR

Feature
Space

Solution
Space

Figure 7: Feature-Solution graph for peer to peer communication.

cycles are required to arrive at an architectural design that satisfies all non-functional requirements.

This quality-driven, iterative approach to architecture generation and evaluation is described in more

detail in (de Bruin and van Vliet, 2001).

As discussed before, the abstraction level is lowered each time a refinement step is performed, which

generally requires that more and more detail must be added to the general solution we started with.

For example, in the case of the application of the Observer design pattern, details must be filled in

as to when and how to subscribe and unsubscribe observers. As can be deduced from Figure 7, the

FS graph also contains information about when and where to apply abstraction lowering. Suppose

we have opted for a high flexibility solution, which resulted in selecting the Observer design pattern.

The Observer design pattern node in the FS graph is EXOR decomposed in a Permanent and a Mes-

sage solution, which stands for setting up a connection permanently or setting up and breaking down

a connection for each message, respectively. In case of high performance requirements, a perma-

nent connection is selected, whereas for high security a connection is established on a message basis.

Notice that if a medium level of security is chosen, a negative selection link rules out a permanent con-

nection explicitly, and because of the EXOR decomposition relation, this implies the selection of the

message solution. In many cases, especially when the required flexibility, security and performance

levels are set to low, no particular solution is favored. To put it differently, the FS graph contains

degrees of freedom that can be used to explore design alternatives in an iterative design process.

The result of abstraction lowering for a permanent connection is shown in Figure 8. The plug-

in for setting up a permanent connection has two plug-in boundaries. One matches the Sub-

10

scribe:SetUpConnection socket of Peer1, the other matches the Subscriber:Receiver socket of Peer2.

Setting up a permanent connection requires some initialization, which is modeled as an extension in

the plug-in. When applying the refinement, this extension is added to the result. Once the connection

is established, no additional functionality is needed for the actual communication. This is modeled as

an ‘empty’ plug-in of type Subscriber:Receiver. This empty plug-in is needed to determine where the

plug-in is to be applied. When applied, it leaves the existing structure intact.

A plug-in for setting up a permanent connection:

Subject:PlugInBoundary

Subscribe:SetUpConnection

Observer:PlugInBoundary

Subscriber:Receiver

Initialize:SetUp (Extension)

IN1OUT1

IN1 OUT1

OUT1Pre
IN1

Post
IN1 OUT1

Pre

Post

The result of applying the plug-in:

Peer1

Subscribe:SetUpConnection

Snd:Sender

EncryptorMySubComp

Unsubscribe:BreakConnection

Subscribers (Team)

Peer2

Rcv:Receiver

Firewall Decryptor

AnotherSubComp

Initialize:SetUp

IN1 OUT1
IN1 OUT1

getSubscribers

IN1

OUT1

OUT1
IN1

OUT1

OUT1

subscribe

IN1

unsubscribe

IN1

OUT1
OUT1

IN1
IN1

Pre
Post

Pre Post PrePost

Pre Post

IN1OUT1

IN1
Post

OUT1

Pre

Figure 8: Filling in the details for a permanent connection.

In conclusion, the solution part of the FS-graph contains a collection of UCM plug-ins. These plug-ins

are used to iteratively refine an architectural solution, guided by the quality requirements as expressed

in the feature part of that same graph. Each time we apply such a refinement, the abstraction level of

the architecture is lowered.

11

5 Crosscutting Concerns

By means of a larger example, we now show that a FS graph cannot only be used to refine a particular

solution locally, but also globally, at the system level. That is, we can handle aspects, such as perfor-

mance and security, that in general require the adaptation of many components rather than one or a

few. This type of refinement may be called Aspect-Oriented Programming (AOP) at the architectural

level.

The example we use to illustrate this type of global refinement is about clients ordering goods by a

retailer. A typical but simplified scenario for ordering is as follows. First, a client fills in a form and

sends this form electronically to the retailer. Next, the retailer checks its database to see whether the

goods are in stock. Finally, it sends a report to the client stating the price and when the goods are

expected to be shipped.

Now assume this basic scenario is extended with a brokering facility. If certain goods are not supported

by the retailer, he tries to obtain them from wholesalers. Since it may take some time to get answers

from wholesalers (especially if they do not provide on-line services), a client-driven approach as in

the basic ordering scenario is no longer applicable. Instead, the retailer takes the initiative to inform

the client about the status of an order after all outstanding requests to wholesalers have been collected.

Thus, the communication between a client and a retailer has changed from client-driven to a mixture

of client-driven and retailer-driven communication.

A frequently used architecture for systems like the ordering system is a Client-Server (CS) architec-

ture. In figure 9, a reference architecture is shown in which the basic scenario of ordering goods is

contained. Both the client and the server component provide sockets for further refinement.

Client

In:Input

Out:Output

Server

DoIt:Process

DBMS

IN1 OUT1 OUT1 IN1

OUT1

IN1

OUT1IN1OUT1OUT1

Pre Post
IN1

Pre

PostPrePost
IN1

Figure 9: Client-Server reference architecture.

The next step is to extend the system with broker functionality. This is shown in Figure 10. The

functionality that is expressed in the brokering UCM is that, first, the database is consulted. If certain

12

goods cannot be delivered by the retailer (i.e., the server), the broker sends a request to a number

of wholesalers. Simultaneously, the broker sends a message to the client to inform that brokering is

in progress. After all brokering requests have been collected, the database is updated and, finally, a

status report is sent to the client. Whereas the basic scenario of ordering goods without brokering is

client-driven, the reverse holds for sending a status report after the results of the brokering process

have been sorted out. In the latter case, the system takes the initiative. As a consequence, the client

has to be adapted to support this system driven approach. For instance, the client can be equipped

with an E-mail component or, alternatively, it may contain some kind of message broker. The socket

Notify:Messenger contained in the client component acts as a placeholder for system-driven message

delivery.

A plug-in for brokering:

Client:PlugInBoundary

Notify:Messenger (Extension)

Server:PlugInBoundary

DoIt:Process

DBMS

Broker

Wholesalers

IN1 OUT1

IN1OUT1

OUT1OUT1 IN1 IN1

Pre

Post

PrePost

The resulting Client-Server system:

Client

Notify:Messenger

Out:Output

In:Input

Server

DoIt:Process

DBMS

Broker

Wholesalers

IN1 OUT1

IN1
OUT1

OUT1OUT1 IN1 IN1

IN1 OUT1 IN1 OUT1

IN1OUT1IN1OUT1

Pre

Post

PrePost

Pre Post

PrePost

Figure 10: Extending the Client-Server system with broker functionality.

The point is that, because we extend the server with broker functionality, we have to extend the client

as well. So the effect of this extension is not localized. Rather, the extension has a system-wide

13

impact. This we may call AOP at the architectural level. The knowledge of how and where the system

has to be extended or adapted can again be captured in a FS graph, as is illustrated in Figure 11.

Observe the effect of requiring broker functionality. The selection links stemming from the brokering

functional requirement not only select the broker component to be placed in the server, but also a

message delivery component for placement in the client. Effectively, the knowledge captured in the

FS graph ensures that all refinements and extensions needed to satisfy a particular requirement are

effectuated.

Requirements

Non-Functional Functional

... Use cases Traits

Ordering... ... Brokering

AND

AND

OROR

Client-Server
Architecture (UCM)

Client

... Message
Delivery

E-mailer (UCM) Message
Broker (UCM)

OR

EXOR

Server

Broker (UCM)...

AND

OR

Solution
Space

Feature
Space

Figure 11: Feature-Solution graph for the Client-Server system.

6 Functionality Extensions

The examples given in the previous sections all used a reference architecture that contains basic func-

tionality and variability points in order to offer the possibility for refinement to satisfy non-functional

requirements. This approach is restricted in the sense that we can only refine a given functionality

as expressed in the reference architecture. Obviously, this restriction is too tight. In reality, systems

evolve over time; obsolete functionality will be replaced and new functionality will be added. We

therefore need to support the concept of functionality extension.

Consider again the example of ordering goods by a retailer. Rather than starting with a reference

architecture in which a database is consulted, we start with a Client-Server (CS) architecture that

does nothing at all, but is gradually extended with new functionality. For instance, ordering and

broker functionality can be added first, in much the same way as in the example given before. Next,

functionality can be added to deal with, for instance, payment of the goods.

In figure 12, the CS architecture is captured in a UCM that has been stripped down to its absolute

minimum. It consists of small pieces of functionality in the form of UCM paths that can be connected

14

to form larger pieces of functionality. Such UCM paths may start and end with named start and end

points (specified as Name:Type). The idea is that a named end point can be connected to a named

start point if they have identical types (see Table 2 for the meaning of the UCM elements that are used

to express extensions). A UCM path can be cloned in order to add new functionality. This is done

by marking that path in a refinement with the keyword “Clone”. When a refinement is applied to a

target UCM, the UCM paths marked as cloned are not only used in the actual substitution of plug-ins

in stubs, but a copy (clone) thereof is retained in the result as well. This latter path can later be used

to add further functionality.

Client

Server

DoIt:Process

In:Input

Out:Output

Out1:In2Proc In1:In2Proc

In2:Proc2Out Out2:Proc2Out

IN1

IN1

OUT1
OUT1IN1

OUT1 IN1 OUT1

OUT1 IN1

OUT1

IN1
Pre Post

Post Pre

Post

Pre

Figure 12: Stripped CS system.

Element Meaning

Start and End Points Start and end points are used to delimit UCM paths that represent
a small piece of functionality. The idea is that a larger piece of
functionality can be composed out of such small pieces. Start
and end points are depicted as UCM start and end points, but are
enclosed in a rectangle.
A start and/or end point may be marked as “Clone” in a refine-
ment to indicate that the corresponding UCM path in a target
UCM is cloned first before substitution takes place.

Table 2: The meaning of UCM extension elements.

To illustrate functionality extension, the CS architecture is first transformed to support the scenario

of ordering goods without brokering (see Figure 13). Observe that all three paths in the DBMS

refinement are marked as “Clone”. This means that in the resulting UCM, clones of these UCM paths

appear that serve as placeholders to cater again for supporting functionality extension. In this way, the

functionality is not fixed beforehand. We keep the option to add new functionality to the system over

and over again.

In Figure 14, a refinement is shown for brokering. This plug-in should be contrasted with the broker

15

DBMS refinement:

Client:PlugInBoundary

InComponent:Input

OutComponent:Output

Server:PlugInBoundary

Core:Process

DBMS
Out1:In2Proc In1:In2Proc

In2:Proc2Out Out2:Proc2Out

IN1 OUT1

IN1OUT1

OUT1
Clone Clone

IN1
Clone

Clone

Pre

Post

OUT1
Pre

IN1
Post

IN1

OUT1
PrePost

IN1OUT1

Result:
Client

In:Input

Out:Output

InComponent:Input

OutComponent:Output

Server

DoIt:ProcessCore:Process

DBMS

Out1:In2Proc In1:In2Proc

In2:Proc2Out Out2:Proc2Out

IN1

IN1

OUT1

OUT1IN1

OUT1 IN1 OUT1

OUT1 IN1

OUT1

IN1

OUT1 IN1 OUT1

IN1OUT1

Pre Post

Post Pre

Post

PrePre

Post

OUT1
Pre

IN1
Post

IN1

OUT1 IN1
Post Pre

OUT1 IN1

Figure 13: DBMS functionality extension.

plug-in shown in Figure 10. The two plug-ins are identical except for the way a new Messenger socket

is introduced. In the case of functionality extension, the Messenger:Output plug-in is substituted in

the Out:Output socket in the CS architecture, but only after the Out:Output socket has been cloned.

Again, by cloning a UCM path we keep the option for functionality extension. Notice that the broker

refinement can be seen as both a refinement and an extension. The actual brokering process refines the

core functionality of the server, whereas the messenger plug-in extends the functionality of the client.

The functionality of the CS can be further extended with, for instance, facilities for credit-card pay-

ment. The client can decide to accept the offer by sending back an acknowledgement to the retailer

along with his credit-card information. The retailer then checks the validity of the credit-card infor-

mation, and if all went well, the retailer confirms shipping the goods, otherwise the transaction is

cancelled. This functionality can be defined along the same lines as discussed before.

To summarize, the concept of functionality extension provides a mechanism to add new functionality

16

Broker refinement:

Client:PlugInBoundary

Messenger:Output

Server:PlugInBoundary

Core:Process

Broker

DBMS
In2:Proc2Out Wholesalers

IN1 OUT1

OUT1 IN1

IN1IN1OUT1 OUT1 Clone

Pre

Post

Post Pre

Result:

Client

Messenger:Output

OutComponent:Output

InComponent:Input

Server

DoIt2:Process

Core:Process

DBMS

Broker

Wholesalers

In:Input

Out:Output

Out1:In2Proc In1:In2Proc

In2:Proc2Out Out2:Proc2Out

IN1 OUT1

IN1
OUT1

OUT1OUT1 IN1 IN1

IN1 OUT1 Pre

Post

PrePost

OUT1

IN1

OUT1

OUT1

IN1

OUT1
Pre

IN1
Post

IN1

Pre

Post
IN1

Post
OUT1

Pre
IN1OUT1

IN1

Pre
OUT1

Post
IN1

Post
OUT1

Pre
OUT1 IN1

Figure 14: Broker plug-in.

to the system at any one time. New functionality can then be refined using the refinement principles

described before in order to address non-functional requirements. These techniques allow us to extend

and refine a basic reference architecture indefinitely.

7 Formalizing the Composition Model

The refinement rules presented so far are syntatic rules. They are used to ensure that a refinement con-

sisting of a set of plug-ins are compatible with a set of stubs as far as type and structure is concerned.

This is a necessary condition, but it is not sufficient for ensuring that the refined composition meets its

initial behavioral specification. Thus, besides syntatic subtyping rules we need a stronger mechanism

17

that captures the concept of behavioral subtyping.

Formalizing behavioral refinement is difficult to achieve with UCM’s alone. In particular, responsi-

bility points are not defined formally and neither can we give precise component interaction spec-

ifications. This should not be seen as an omission of UCM. UCM simply serves another purpose,

namely to illustrate the big picture. To overcome the lack of formality, we have extended UCM with

BCOOPL interface descriptions to formalize the external behavior of a component. A BCOOPL in-

terface describes the operations that a component should support. It is specified as an augmented

regular expression over operations, not only specifying the signature of the operation, but also de-

tailing when and by whom a specific operation may be invoked (de Bruin, 2000a). Together with

internal behavior descriptions in the form of UCMs, the behavior of a component is formally captured

at a high level of abstraction (de Bruin, 1999). In (de Bruin, 2000b), we describe how components

described by BCOOPL’s interfaces and UCMs can be translated into BCOOPL code and how the re-

sulting specification can then be subjected to a formal analysis. Effectively, BCOOPL interfaces and

UCMs establish cause-effect relations not only inside a component, but on the system level as well.

The temporal orderings between events (e.g., sending and receiving messages) can be analyzed. For

instance, we have shown how architectural mismatch can be detected, that is, components that work

perfectly well in isolation may fail when they are brought together (Garlan et al., 1995).

BCOOPL interfaces can be refined following co- and contra-variance rules. With this, we arrive at

additional matching rules to include behavioral subtyping:

• The external behavior of a component specified as a BCOOPL interface may be refined using

BCOOPL’s subtyping rules.

• The scenarios as manifested by UCM paths may be extended with new ones, but the existing

scenarios may not be changed.

These rules ensure that the basic functionality remains the same as far as the external behavior of

components is concerned. That is, a refined component still reacts to the same events and still emits

the same events, but the set of events may have been extended with new ones. For instance, the

refinement of using the Observer pattern results in an extension of the component’s interfaces (to deal

with notifications and subscription management) and in the extensions of UCM paths (to subscribe

and unsubscribe). However, the basic functionality is not changed.

UCM components do not have a formal notion of state. (BCOOPL interfaces, however, do introduce

an abstract state in the sense that it describes when and by whom operations may be invoked.) UCM’s

responsibility points provide the means to address this issue. There are no principal reasons fornot

formalizing responsibility points, and one way to do this is by using a language akin to UML’s Object

18

Constraint Language (OCL). In this way, we can give precise semantics of operations by means of

pre- and post-conditions, and hence we can state additional criteria for refinement. It also provides a

road to executable specifications, that is, the application of a sequence of refinement steps ultimately

leading to executable code.

8 Related Work

Architecture-Based Architectural Styles (ABASs) are proposed in (Klein et al., 1999) as a means

to capture structural and behavioral aspects of (partial) design solutions together with their quality

properties. An ABAS combines an architectural style with certain quality attributes. We do essen-

tially the same in our FS-graph, but we have a stronger focus on a construction/generation-oriented

representation of the architectural knowledge.

A Design Rationale (DR) (Buckingham Shum and Hammond, 1994; Moran and Carroll, 1994) is a

representation of the reasoning behind the design of an artefact. It is concerned with capturing why

designers have made the decisions they have made. A well-known approach to representing DR is

Design Space Analysis, whose notation is called QOC (Questions, Options and Criteria) (MacLean

et al., 1991). Questions in QOC are key design issues, and Options are possible answers to the

Questions. The solution part of our FS-graph contains both Questions and Options. Criteria in QOC

are used to choose between Options, and thus resemble the requirements as captured in the feature

part of the FS-graph. DR is most often used as a tool in the design process, especially the user-

interface design process, to augment design reasoning, and to help in formulating and communicating

arguments.

In feature-oriented domain analysis (FODA) (Kang et al., 1990) and variants thereof, a family or

product line is represented in a feature tree. Features can be mandatory, alternative, or optional. A

specific product is then composed by choosing a set of alternative and optional features; these express

variabilities within the product line. The feature tree thus resembles the feature part of our FS-graph.

Usually though, features of a product line are units of functionality rather than solutions to different

quality concerns.

In goal-oriented requirements engineering, the relation between goals and requirements is represented

explicitly (Lamsweerde, 2000; Mylopoulos et al., 2001). A natural continuation of this line of thought

is to connect requirements with high-level design (i.e., architecture). This is done in GRL-UCM

(Liu and Yu, 2001). The work on Goal-Oriented Language (GRL) in combination with UCM (GRL-

UCM) has a lot of similarities with the concepts presented in this paper. As in our approach, a link is

established between requirements (AND-OR decomposition, soft goals, and tasks) and design solution

in the form of UCM scenarios. Also a notion of refinement with UCM stubs and plug-ins is supported.

19

Our approach differs in the following respects:

• The explicit distinction between feature and solution space and the connections between them.

This opens the way to recursively apply this idea. For instance, we can establish linkages

between requirements (F-space) and software architecture (S-space). By the same token, we

can establish linkages between architecture and detailed design solutions. But now, the software

architecture level is the F-space w.r.t. to the detailed design level (S-space). The detailed design

space in its turn can act as a F-space for the implementation (S-space).

• The S-space may contain nodes that are not connected to nodes in the F-space. This can be seen

as degrees of freedom with which design alternatives can be explored.

• The idea of refinement can be applied recursively (i.e., plug-ins provide stubs). The GRL-UCM

supports, on the other hand, one level of refinement only.

• We support a more advanced refinement mechanism in the form of multiple variability points.

This allows us to use refine patterns that are not necessarily restricted to one, local point. The

Observer pattern is a typical example to support this point.

The concept of refinement has been applied for many years, especially in the field of formal speci-

fications, e.g., VDM and Z. A well-known approach to refinement in a component-oriented context

is Catalysis (D’Souza and Wills, 1998). The main idea in Catalysis is the concept of collaboration,

which is a set of related actions involving multiple objects and resulting in a goal. A collaboration can

be seen as a formalization of a use case. It is specified formally in terms of pre- and post-condition,

and invariants using UML’s Object Constraint Language (OCL). A collaboration is first described at

a high level of abstraction. This description serves as a formal specification to be refined in sub-

sequent steps. Although refinement is a key concept in Catalysis, it does not support the notion of

variability points. That is, no clues are given whatsoever on where and how to refine. In our approach,

refinement is done automatically on the basis of type and structure matching and the content of the

FS graph. Also, no attention is paid to non-functional quality attributes, like flexibility, security and

performance. The main emphasis in Catalysis is on behavioral refinement.

Surprisingly, refinement is not a main issue in most Architectural Description Languages (ADL) (see

(Medvidovic and Taylor, 2000) for a classification framework and a survey of ADLs). Most ADLs

favor bottom-up composition in the sense that components are treated as black-box, building blocks.

SADL (Moriconi et al., 1995) and Rapide (Luckhalm and Vera, 1995) are noticeable exceptions.

SADL supports a method for stepwise refinement of an abstract architecture into a lower level archi-

tecture. A refinement pattern is applied in each refinement step and maps the architectural style (e.g.,

dataflow, pipes and filters, implicit invocation) of the abstract architecture to the architectural style of

20

the refined architecture. These refinement patterns are defined and proved correct independent of a

particular architecture. SADL mappings have a rather global nature, whereas in our approach we can

handle local as well as global refinements guided by the FS graph.

Rapide is a concurrent event-based simulation language for defining and simulating the behavior of

architectures. The underlying semantical model of Rapide is based on partially ordered event sets

(posets). An abstract and a refined architecture can be related by mapping concrete events to abstract

events. These mappings provide the means for comparative simulations of architectures at different

abstraction levels to check whether a refined architecture is in conformance with the abstract architec-

ture. It could be interesting to explore this idea in our approach, after all, UCMs do imply ordering of

events too. However, this is a subject that has currently not our focus of attention.

The idea of Pre- and Post-stubs has been derived from the notion of composition filters as used in

the programming language SINA (Aksit et al., 1996). The composition filter model consists of input

and output filters that surround an object and affect the messages sent to and received by that object.

Composition filters can be seen as objects in the role of proxies that perform additional pre- and

post-processing.

9 Concluding Remarks

We have discussed an approach for the top-down composition of software architectures. It is centered

around a Feature-Solution (FS) graph in which requirements are linked to design solutions and al-

ternatives. The design solutions are expressed in UCM, which provides an intuitive way of showing

how things work globally. UCM is not a necessary prerequisite for our approach, though. The idea of

supporting multiple variability points and plug-ins in combination with a FS graph can also be used

with modeling techniques like UML, or even with a text-based specification language.

Our FS-graph serves two purposes. Firstly, it contains knowledge for solving problems in a particular

domain. Thus viewed, the graph can be used to guide an iterative, quality-driven process to software

architecture generation. In this iterative process, the abstraction level is successively lowered because

of refinements made. Secondly, the FS graph can be used to make system-wide adaptations. This en-

sures a consistent, system-wide application of refinements. These system-wide refinements resemble

aspect-oriented programming, albeit applied at a much higher level of abstraction.

We are currently using the FS-graph to codify the architectural knowledge from various real-life ar-

chitecture projects. Our experiences indicate some promising areas of further research:

• The version of the FS-graph discussed in this paper only contains product knowledge. We are

currently investigating the incorporation of process knowledge in the FS-graph as well. When

21

selected, such process nodes then guide the the architect in finding appropriate design solutions.

The process steps encoded in process nodes can be based on heuristics, for instance, in the form

of production rules (if�a particular situation X is encountered� then�select solution Y�).

Alternatively, process nodes may alert the designer that certain design choices have to be made.

These small process steps can be embedded in the larger process cycles defined in a quality-

driven, iterative approach. This leads to a content-driven refinement process.

• The relationships currently captured in the FS-graph are rather strong: ”when high flexibility is

required, select the Observer pattern”. Actual relationships between requirements and solution

chunks are often of a much weaker kind: ”when high flexibility is required, we suggest to apply

the Observer pattern”. To represent these weaker links, the FS-graph will have to be enriched

with additional kinds of relationships which, in turn, require additional resolution mechanisms

to get from (quality) requirements to acceptable architectural solutions.

Finally, we have started the QUASAR project, which stands for QUAlity-driven Software ARchi-

tecture. The goal is to generate software architectures and implementations using the techniques

described in this paper. The starting point is the FS-graph in which domain and application spe-

cific knowledge is captured. The FS-graph is then used to (semi-)automatically generate and evaluate

candidate architectures. Promising architectures are stepwise refined until we end with executable

specifications, that is, code.

References

Aksit, M., Tekinerdogan, B., and Bergmans, L. (1996). Achieving adaptability through seperation and com-

positin of concerns. InProceedings of ECOOP Workshop on Adaptability in Object-Oriented Software

Development, pages 12–23, Linz, Austria.

Bosch, J. (2000).Design and Use of Software Architectures: Adopting and Evolving a Product-Line Approach.

Addison-Wesley.

Buckingham Shum, S. and Hammond, N. (1994). Argumentation-based design rationale: What use at what

cost? International Journal of Man-Machine Studies, 40(4):603–652.

Buhr, R. (1998). Use Case Maps as architecture entities for complex systems.IEEE Transactions on Software

Engineering, 24(12):1131–1155.

Buhr, R. and Casselman, R. (1996).Use CASE Maps for Object-Oriented Systems. Prentice Hall, Upper Saddle

River, New Jersey.

de Bruin, H. (1999). A grey-box approach to component composition. In Czarnecki, K. and Eisenecker, U. W.,

editors,Proceedings of the First Symposium on Generative and Component-Based Software Engineering

22

(GCSE’99), Erfurt, Germany, volume 1799 ofLecture Notes in Computer Science (LNCS), pages 195–209,

Berlin, Germany. Springer-Verlag.

de Bruin, H. (2000a). BCOOPL: Basic Concurrent Object-Oriented Programming Language.Software Practice

& Experience, 30(8):849–894.

de Bruin, H. (2000b). Scenario-based analysis of component compositions. In Butler, G. and Jarzabek, S.,

editors,Proceedings of the Second Symposium on Generative and Component-Based Software Engineering

(GCSE’2000), Erfurt, Germany, volume 2177 ofLecture Notes in Computer Science (LNCS), pages 1–18,

Berlin, Germany. Springer-Verlag.

de Bruin, H. and van Vliet, H. (2001). Scenario-based generation and evaluation of software architectures.

In Bosch, J., editor,Proceedings of the Third Symposium on Generative and Component-Based Software

Engineering (GCSE’2001), Erfurt, Germany, volume 2186 ofLecture Notes in Computer Science (LNCS),

pages 128–139, Berlin, Germany. Springer-Verlag.

D’Souza, D. F. and Wills, A. C. (1998).Objects, Components, and Frameworks with UML: The Catalysis

Approach. Object Technology Series. Addison-Wesley, Reading, Massachusetts.

Garlan, D., Allen, R., and Ockerbloom, J. (1995). Architectural mismatch: Why reuse is so hard.IEEE

Software, 12(6):17–26. Carnegie Mellon University.

Kang, K., Cohen, S., Hess, J., Novak, W., and Peterson, S. (1990). Feature-Oriented Domain Analysis (FODA)

Feasibility Study. Technical report, Software Engineering Institute.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C. V., Loingtier, J.-M., and Irwin, J. (1997).

Aspect-oriented programming. In Askit, M. and Matsuoka, M., editors,Proceedings of 11th European Con-

ference on Object-Oriented Programming (ECOOP’97), Finland, volume 1241 ofLecture Notes in Computer

Science (LNCS), pages 220–242, Berlin, Germany. Springer-Verlag.

Klein, M., Kazman, R., Bass, L., Carriere, J., Barbacci, M., and Lipson, H. (1999). Attribute-based architectural

styles. In Donohue, P., editor,Software Architecture, pages 225–244. Kluwer Academic Publishers.

Lamsweerde, A. v. (2000). Requirements engineering in the year 00: A research perspective. InConference

Proceedings ICSE’00, pages 5–19, Limerick, Ireland. ACM.

Liu, L. and Yu, E. (2001). From requirements to architectural design: Using goals and scenarios. InICSE’2001

Workshop 9, From Software Requirements to Architectures (STRAW’2001), pages 22–30, Toronto, Ontario,

Canada. ACM.

Luckhalm, D. and Vera, J. (1995). An event-based architectural description language.IEEE Transactions on

Software Engineering, 21(9):717–734.

MacLean, A., Young, R. M., Bellotti, V. M., and Moran, T. P. (1991). Questions, options and criteria: Elements

of design space analysis.Human-Computer Interaction, 6(3 & 4):201–250.

23

Medvidovic, N. and Taylor, R. N. (2000). A classification and comparison framework for software architecture

description languages.IEEE Transactions on Software Engineering, 26(1):70–93.

Moran, T. and Carroll, J., editors (1994).Design Rationale: Concepts, Techniques, and Use. Lawrence Erlbaum

Associates, Hillsdale, New Jersey.

Moriconi, M., Qian, X., and Riemenschneider, R. (1995). Correct architecture refinement.IEEE Transactions

on Software Engineering, 21(4):356–372.

Mylopoulos, J., Chung, L., Liao, S., Wang, H., and Yu, E. (2001). Exploring alternatives during requirements

analysis.IEEE Software, 18(1):92–96.

24

Biographies

Hans de Bruin is a lecturer and a researcher at the Vrije Universiteit. He recived his masters degree

from the Technical University of Delft in 1987 and his PhD from the Erasmus University Rotterdam in

1995. Before returning to the university in 1998, he worked as a software engineer and consultant in

the industry. Currently, he teaches software engineering at the Vrije Universiteit. His research interests

include software engineering, in particular software architecture and component-based development,

and programming language design.

Hans van Vliet is a Professor in Software Engineering at the Vrije Universiteit. His research interests

include software architecture and software measurement. Before joining the Vrije Universiteit, he

worked as a researcher at the Centrum voor Wiskunde en Informatica (Amsterdam) and he spent a

year as a visiting researcher at the IBM Almaden Research Center in San Jose, California. Hans has

an M.Sc. in Computer Science from the Vrije Universiteit and a Ph.D. in Computer Science form the

University of Amsterdam.

25

