
In: Proceedings of the Eight European Conference on Software Maintenance and Reengineering (CSMR),
Tampere, Finland, 24-26 March, 2004, pp. 261-269.

Tool Support for Traceable Product Evolution

P. Lago*, E. Niemelä♣, H. Van Vliet*
*Vrije Universiteit, Amsterdam, The Netherlands, [patricia | hans]@cs.vu.nl

♣VTT Technical Research Centre of Finland, Oulu, eila.niemela@vtt.fi

Abstract

In software product families, the full benefit of reuse

can only be achieved if traceability of requirements to
architecture, components and further down to source
code is supported. This requires automated tool
support for tracing from the abstract features of the
product family to a set of concrete features and source
code of family members.

We extended a commercial software tool to support
top-down as well as bottom-up traceability in product
families, from the family feature map all the way down
to implementation files. At the code level, both newly
developed and commercial-off-the-shelf components
are accommodated. The tool has been validated by
(bottom-up) filling the tool’s reuse base with features,
components, documentation files, etc. from six related
products in the Next Generation Network service
domain, and next deriving a seventh product from this
reuse base.

1 Introduction

The life cycle of software intensive systems is
continuously shortening due to the acceleration of
technology development and cutting time-to-market.
Modern software systems, most of them distributed
and embedded in our every-day operational
environment, are complex systems that require
systematic methods to develop and maintain them.
They also require tools that allow tracing design
decisions, made in early phases of development, to
their realization in final products. Especially if
products are members of a product family developed in
several places and composed from existing proprietary
and third-party components. The larger the software
systems, the more crucial their variability management
is. This is due to the increasing size and complexity of
these systems and the wish to reduce software
development costs through lengthening the use of

existing artifacts, i.e. features, architecture and
components.
Diversity in product features, resulting from the needs
of market segments and technologies used, has brought
out several problems in software development and
evolution: inability to describe product variants clearly,
to understand descriptions of product variants, and to
maintain product variations. Although several methods
are introduced for modeling variability as feature
graphs [11] [16] [10] [17] and variation points [18] [6]
[3], there is still a lack of techniques and tools for
variability management [12]. Frequent changes in
product features in particular require new methods and
techniques to handle diversity at different abstraction
levels and during the evolution of a product family and
family members. This means management of abstract
features at the product family level, variation points in
product family architecture, configuration rules for
assembling products and built-in reconfiguration
mechanisms in systems for changes required in
delivered products.
The development of a product family is time-
consuming and expensive, and repayment can happen
only if its features, architecture and components are
used several times, in the best case during the life cycle
of a family member while developing, installing and
upgrading a software system. In practice, however, it
seems to be unsolved 1) how to trace defined product
features through architecture and components to source
code, and 2) how to become convinced that a proper
set of variable features is incorporated in a product.
In order to solve the above mentioned two problems
there are several technical issues to be considered.
First, we need a method and supporting tool to
describe the features (variable and common) of a
product family in an unambiguous and manageable
way. There are applicable methods but most
commercial tools do not provide appropriate modeling
notations, management support for design and
evolution of the feature graphs. Several notations have
been introduced [11][8][9], but notation-driven tool

In: Proceedings of the Eight European Conference on Software Maintenance and Reengineering (CSMR),
Tampere, Finland, 24-26 March, 2004, pp. 261-269.

support is almost non-existent, so that design and
updates of feature graphs is not supported.
Secondly, an appropriate set of features for a product
should be retrievable from the family feature graph.
This means an ability to select the set of appropriate
features from the family feature graph, reorganize
them and, in most cases, add new features that are
needed for a particular product and might also be
imported to the family feature graph. However, the
new features should be added to the product without
changes to the features already taken from the family
feature graph; otherwise, the product does not conform
to the family feature graph anymore.
Thirdly, product variants may have different
architectural styles, e.g. two or three tier client-server
architecture or the peer-to-peer architecture style for
deployment. Therefore, architectural styles are selected
for a single product and the selected features should be
mapped on components and on the role these
components play in the architectural style.
Fourthly, the selected set of features is mapped to
components that realize the required functionality and
quality properties. There are concept models and
clustering techniques appropriate to organize features
to groups [16]. A concept model describes semantic
relationships between domain terms. Features are
atomic terms that can be clustered within a concept or
shared by different concepts. Clustering reduces the
number of combinations and guides the component
development. However, not all features can be mapped
directly to components. Some of them are cross-cutting
features that disperse to several components, interfaces
and classes, data and methods inside a component. The
tracing of cross-cutting features is not possible
manually, and existing tools do not provide a solution
for that.
Lastly, an increasing number of third party
components is used in product families and, therefore,
there is a need to add the features of new components
to the product features. The assumption is that, in
practice, a new off-the-shelf or commercial-off-the-
shelf (COTS) component is first evaluated by using it
in a single product and after checking the compliance
of the component with other product features, it is
added in the family feature graph. From the business
point of view, the manageable use of third party
components can improve multiple factors, which
influences the achievement of fast, efficient,
predictable, low-cost, high-quality production and
maintenance. Examples of these factors include: the
ability to take advantage of new products and new
technology faster; the significant decrease of time-to-
market because off-the-shelf components and COTS
components are ready to use; higher employee

productivity, with the emphasis not on coding but on
(re)using and integrating.
In order to provide a tool that supports all aspects
mentioned above, a new tool can be constructed or an
existing one has to be adopted and extended with the
required capabilities. Our approach is the latter, which
is more practical in industrial settings. However, there
are some requirements for the tool that is used to trace
dependencies between features, architectural patterns,
components and source code. The tool must be
adaptable and open; existing properties of the tool have
to be changed and new ones are to be added. The tool
we selected for our experiment was Together®
ControlCenter™, which provides extension
mechanisms such as configuration files and integration
of Java implementation modules. Starting with
Together® ControlCenter™, we developed a tool that
supports top-down as well as bottom-up traceability,
from the product family feature graph all the way
down to implementation files.

2 Product Family Representation
The representation of a family of software products has
been organized on three abstraction levels (see Figure
1). The product family (PF) is modeled at the PF
Level, by means of a PF Feature Map1 (PF FM).
Decisions taken at design time are captured by this
FM, which includes all the features (both internal and
acquired from third parties) and the variation points in
the application domain.
Individual family products are represented at the
Product level. Each product is described in terms of
the subset of features it supports. The Product FM
captures these features. This set of features is then
translated into the design decisions captured by the
Product Component Map (CM). With the separation of
the Product Level from the PF level, we can make
explicit the decisions taken for individual family
members at deployment/configuration time, or at
runtime.
Finally, the Product Level is on top of the
Implementation Level, which represents the set of
reusable implementation assets belonging to the
product family. It includes, for each product, the
implementation of each concrete feature and any
associated documentation (e.g. user manuals, test
material).

1 Term map is defined as the representation of the whole or a part of
an area. Representing features the application domain (or part of it),
we use term feature map instead of feature graph to underline its role
in providing traceability, navigation support and domain coverage.

In: Proceedings of the Eight European Conference on Software Maintenance and Reengineering (CSMR),
Tampere, Finland, 24-26 March, 2004, pp. 261-269.

In our approach, top-down and bottom-up
traceability is possible by following the relationships
across abstraction levels and product-related maps:

• Traceability between PF and Product features.
Traceability is possible by following the
NavigationLink between FMs (the PF FM and
the Product FMs). The NavigationLink is
provided by association Supports defined
between PF features and the Product features
that are fulfilled by some product. Figure 1 also
depicts the associations internal to the
abstraction levels, and that are used to browse
inside a FM. For instance, the PF features are
organized in a decomposition hierarchy
provided by association ComposedOf (also
specifying the type of variability), and
dependencies across features are modeled by
associations Requires and Excludes. At the
Product Level, the features are organized in a
decomposition hierarchy in which variability has
been solved through variants selection.

• Traceability between Product FM and CM. A
Product FM is associated with the Product CM
realizing it (see NavigationLink between
Product FM and CM). The NavigationLink is
provided by association Realizes defined
between each Product feature and the design
decisions captured by the Product CM and that
can be components, classes or interfaces.

• Traceability between Product CM and
implementation. Elements in a Product CM are
associated with their implementation (see the
NavigationLink between Product CM and
Implementation). The NavigationLink is
provided by association Implements defined
between each design decision and the
implementation assets solving it (e.g.
executables like COTS components, source code
modules, and associated documentation files).

The tool and underlying approach has been applied to
a family of products in the next generation networks
(NGNs) service domain. NGNs integrate hybrid
telecommunication networks (like fixed telephony,
packet switched and wireless networks) via
middleware platforms, which hide network details and
expose basic communication services to applications.
In this way, applications can realize communication
and multimedia services (examples are wired-wireless
gaming, e-learning, virtual office environments, GIS,
etc.) independently from the underlying network
technologies, so that ubiquitous communication is
achieved in an easy way.
This domain is particularly interesting as NGN service
components implement a complex network of
interactions, which involve many different
technologies. Further, each product integrates hybrid
technologies usually provided by third parties or

Product
feature

Design
decision

Implem.
asset

Component

Class

Interface

COTS

Module

Document.

Supports

Realizes
Implements

ComposedOf

*

*

PF
feature

ComposedOf

*

*

*

*

Requires/
Excludes

Product
Level

Implementation
Level

PF
Level

NavigationLink

PF
FM

Product
FM

Product
CM

Implem.

*

* *

*

*

**

*

**

Figure 1. Simplified representation model

In: Proceedings of the Eight European Conference on Software Maintenance and Reengineering (CSMR),
Tampere, Finland, 24-26 March, 2004, pp. 261-269.

acquired as open source or COTS components. Hence,
features are either reused or internally developed.
Our product family [13] consists of six products that
have been recovered by following a bottom-up
approach. Next, a seventh product has been derived
following a top-down approach.
As an example, Figure 2 shows a fragment of a
Product FM at the Product Level. It shows the features
supported by a family member: each feature is visually
represented by a white box organized in two areas
showing the name of the feature, and the list of
variants providing a solution to that feature. The
variants are organized in a Component Map (depicted
in Figure 3) at the Product Level. Traceability is made
explicit by the link between each Product FM feature
and its variants in the CM.
For example, in Figure 2 feature Communication
Handling is decomposed into a list of refined features
including Multi-Party and User Policy Evaluation.
Feature Multi-Party is realized by two variants, object
CH-Manager and interface GURU-itf-Communication
(exported by component GURU). Feature User Policy
Evaluation is realized by object CH-Manager too, and
by interface PIPPO-itf-Communication (exported by
component PIPPO). This means that object CH-
Manager supplies two features in communication
handling (namely communication between multiple
parties, and evaluation of user policies).
In the tool, it is possible to browse the link to each
variant associated to a feature: by selecting one of the

variants, the user is led to the Product CM, and the
mouse focus is set to the CM element (object, interface
or component) modeling that variant.

Figure 3 shows the CM associated to the Product FM
above: for instance, from feature Multi-Party, we can
navigate the variant CH-Manager that leads in the CM
to the associated object inside component CH (right
hand side of Figure 3). In the same way we can
navigate the variant GURU-itf-Communication that
leads in the CM to the associated interface in
component GURU (right upper corner of Figure 3).
In summary, traceability from features to variants is
achieved by linking features in FMs with the variants
in the CMs. In a similar way, traceability towards
implementation is achieved by linking elements in the
Product CM with their implementation assets (e.g.
source code files, configuration files, interface
descriptions, etc.).

3 Related work
Much seminal work in the area of traceability concerns
requirements traceability, especially the traceability
between requirements and later products such as
designs and implementations [7]. Supporting
traceability in product families is a relatively new area
of research. Current approaches to traceability in
product families generally define a model representing

Figure 2. A Product FM fragment with linked CM variants

In: Proceedings of the Eight European Conference on Software Maintenance and Reengineering (CSMR),
Tampere, Finland, 24-26 March, 2004, pp. 261-269.

traces, and provide an articulated coverage of both
product and organizational issues. These mostly do not
cover any tool support. In contrast, we do focus on tool
support, but limit ourselves to product issues only.
This restriction helps us in verifying the usefulness of
our model and in identifying the needs for additional
aspects.
For example, [14] defines an approach to model-based
requirements engineering in which a product family PF
and its products are represented in a document model,
a requirements model, and a system model. Model
elements (e.g. product requirements or functional
decomposition of architecture) can be linked together
by using a link “causes” that supports tracing the
decomposition of requirements, and a link “derived”
that allows tracing which PF requirements are fulfilled
by which products. This work is in some sense broader
than ours, in that it provides a very detailed description
of the models and sub-models representing a product
family and its products, as well as organization-related
issues like support for parallel working groups. It also
defines the link “is in version” associating a
requirement with the product versions it is valid for.
Rather, we focus on two simple models, the FM and
the CM, and add a pragmatic definition of the complex
net of links among these models’ elements, and with
their implementation assets. The main advantage is that
our model has been complemented with tool support,
which allows us to carry out experiments to reveal

whether the model is good enough. Also, we do not
consider the versioning problem, which adds a time
dimension to the problem of representing variability
(i.e. variability in time), but which can also be solved
by integrating the tool with some configuration
management product (further discussed in Section 5).
In the context of the SPLIT/Cloud method, [2] defines
an approach to trace requirements. The traceability
problem is split in traceability between functional and
non-functional requirements, and traceability for
derivation. The first is supported by a link “is realized
by” (expressing that a non-functional requirement is
realized by a functional requirement) and a link “is
applied on” (connecting a functional requirement with
the non-functional requirements it is constrained by).
Traceability for derivation is supported by a link
“excluded” (expressing alternative decisions) and
“included” (expressing included functional
requirements). In our work we focus on traceability for
derivation. Non-functional requirements are not
explicitly discussed, even though they can be covered
by a refinement of the FM: in this case, traceability
between functional and non-functional requirements
can be achieved by links Requires and Excludes.
In [15] Ramesh et al. define a conceptual framework to
represent traceability among various information
objects. This framework basically relates requirements
with design objects by making explicit the issues faced
and the decisions taken during development. Here

Figure 3. A Product CM fragment

In: Proceedings of the Eight European Conference on Software Maintenance and Reengineering (CSMR),
Tampere, Finland, 24-26 March, 2004, pp. 261-269.

links like “leads to” and “modifies” are defined
between requirements and decisions, whereas links
like e.g. “implies” and “creates” exist between
decisions and design objects. This work provides an
interesting solution to the problem of managing
decisions/assumptions, which again is complementary
to our work, as we focus on the relations between
features, design solutions and implementation assets.
Finally, [1] adds traceability support to the PuLSE
method by defining a two step method: first, a general
meta-model defines potential traces between model
elements; second, the meta-model is specialized for a
specific project, to express the project-specific types of
traces. The method could be used to generate our
three-level model.

4 Discussion

4.1 Technical Issues

As introduced in Section 1, in order to provide proper
support to traceability and product derivation in
product families, there are several technical issues to
be considered.

First, in the extension applied to the software tool,
we added two types of diagrams, the Feature Map and
the Component Map. Features at the PF Level and
features at the Product Level are represented in terms
of FMs, whereas solutions provided by family
members are represented in CMs. Also, we defined the
whole chain of links between PF FM, Product FM,
Product CM, and Implementation. This link chain
supports traceability in a smooth way, a requirement
put forth in [19]. In the example, e.g. we showed that
from feature Multi-Party (in Figure 2) we can identify
the list of variants and, by navigating them we can see
the associated CM (in Figure 3). This navigation is
also possible from PF features to Product features, e.g.
to identify the list of products that support a selected
feature. Furthermore, management of features is eased
by generating views focusing on the subset of
features/dependencies that are needed e.g. to add new
features to the product family.

An additional extension supporting traceability is
the possibility to configure the link of Product CMs
with their implementation: the physical location of the
implementation assets can be changed without
influencing the links with CMs and FMs. This
extension is very useful in practice: a product family is
a long lasting asset, and the storage place of its
implementation is likely to change. Therefore, it must
be possible to easily maintain the chain of links down
to implementation.

Secondly, when we want to derive a new family
member, we need tool support to focus on a selected
subset of features, because during product derivation it
is often difficult to identify from the many features in a
domain, the subset of features we would like to include
in a new product. To support the architect in this
activity, it is possible to define a view focused on (1) a
defined subset of features and (2) a defined list of
relationships between features. In this way, the
architect can easily find out the existing variants for
the desired features, and their existing dependencies.
Also, when a view is generated, traceability
downwards to CM and implementation assets is
maintained in our implementation. We believe that
view generation and customization provides a
powerful means to manage complexity.

Thirdly, the separation between PF and Product
levels allows to assign to each individual product a
particular architectural style, which can be used e.g. to
drive product deployment. This assignment is
supported in our tool extension, by associating a CM
with a certain architectural style (defining
component/connector types), and then by defining in
the properties of each component the role played in the
architectural style.

Fourthly, we need a smooth representation of the
features supplied by a family member, the associated
design solution, as well as their implementation. The
introduction of the Product CM provides this necessary
bridge between the feature representation of family
members and their reusable implementation assets.
Also, the CM describes the product design (in the
solution space) associated to the product features (in
the problem space). The maintenance of the
relationships across the three abstraction levels (PF-
Product-Implementation) offers real support for
product derivation following a top-down approach.
This can be done by selecting (in the PF FM) the
features we want to use in a new product, and by
browsing (in the Product FMs and CMs) the available
solutions provided by various family members, to
judge if they are suitable to new requirements.
Suitability can be decided at the design level by
navigating the Product CM and at implementation
level by browsing the implementation artifacts along
with the associated documentation.

In our experiment, we also carried out bottom-up
recovery of six existing products. This has been done
by extracting the Product CM from the design of each
product, and by building a Product FM covering all the
features provided by all CM elements. FM definition
underwent various iterations, to harmonize feature
decomposition and feature names among different
product FMs. At last the PF FM has been defined to

In: Proceedings of the Eight European Conference on Software Maintenance and Reengineering (CSMR),
Tampere, Finland, 24-26 March, 2004, pp. 261-269.

include the features of the complete product family.
This bottom-up feature definition was done manually,
and when feature maps were completed, the links
between PF FM, Product FMs and Product CMs were
added. Automatic support for bottom-up recovery is
still missing. Also, documentation (description,
binding-time, taxonomy, etc.) of maps and map
elements (e.g. features, components) has been added to
the tool. A possible future extension includes the tool-
supported generation of such documentation
information.
Lastly, an important aspect in industrial settings is the
possibility of explicitly representing third party
components in terms of the features they provide, and
their role in specific product solutions. This aspect is
supported at both PF Level and Product Level. In the
FMs we can represent features acquired from external
sources in terms of external features – whose
definition was already provided in [9]2. In the CMs, the
components providing these features are modeled as
black box elements, and integrated with other
components at the interface level. For example, the
product modeled in Figure 2 includes SIP
communication in the supported communication
technologies (modeled as feature SIP in the left lower
side of Figure 2). This feature is offered by a
commercial SIP server (StarSIP™ by Telecom Italia
Lab) that offers a set of APIs used to implement the
CH component, as described in Figure 3.

4.2 Experience report

Validation: The tool has been validated in two steps.
First a family of six related products in the Next
Generation Network service domain has been
recovered. The objective was to observe if notational
and methodological support was sufficient to grasp all
information needed to model the existing family. In
this perspective validation was successful: we first
defined a service classification based on service
categories and properties; then we translated it into a
PF FM so that the features supplied by the family
products could be mapped on the domain features
modeled in the PF FM. More precisely we may say
that indirectly also our service classification proved to
be suitable for domain modeling. All family products
could be modeled: the notation is expressive enough to
include all existing elements and dependencies at both

2 Our definition of external feature is broader than the one given by
Gurp et al. [9]. They consider an external feature as provided by the
platform (i.e. external environment). In our case, we can cover
platform features too, by considering them as black box entities from
the perspective of the current development.

the feature and component levels; also, all
documentation belonging to the different products
could be either translated into maps or associated with
diagrams or diagrammatic elements belonging to the
representation model of Figure 1.
Afterwards, when the product family was inserted in
our tool, a seventh product from this family has been
derived. In this second step we aimed at validating the
support provided by the tool and by the method in
communicating the knowledge represented. Even
though validation objectives were rather informal, we
can report some important lessons learned and issues
needing further work:

• Traceability support is a fundamental factor in
successful knowledge communication about
reusable assets.

• Mechanisms to govern complexity are needed at
all abstraction levels: in feature maps we need
filtering and viewpoint generation to focus on
the features and the dependencies we are
investigating. Modularization of views needs
careful investigation to be able e.g. to maintain
their internal and external consistence.

• In product derivation, we desperately need some
automated support for initial composition of
reusable assets (at both the feature level and the
structural component level). When we identify a
list of desired features that we want to have in a
new product, we also want to know if these
features are compatible, and/or which are the
constraints that we inherit by composing them.
Further, when we choose for each of them a
certain design/implementation solution, we have
to answer the same question again.
Dependencies provide a first insight in this
respect: e.g. we can identify whether two
components rely on incompatible programming
languages, or whether their interfaces are
inconsistent. Nonetheless, richer semantics
needs to be associated with such dependencies.
Further investigation is needed to state more
formally how dependencies must be specified
and how tool support can help in this respect.

Scalability: The product family used in our
experiment could be claimed to be small (seven
products, 20,000 SLOC/product). On the other hand, it
demonstrated to be complex enough (especially in
terms of types and number of cross-dependencies) to
raise some interesting research questions. Industrial
product families count thousands of products, each
made of several millions SLOC. Of course we have not
demonstrated that our approach is scalable to these
numbers. Nonetheless, the lessons learned discussed

In: Proceedings of the Eight European Conference on Software Maintenance and Reengineering (CSMR),
Tampere, Finland, 24-26 March, 2004, pp. 261-269.

above provide a first step in this direction. The state of
the practice in managing large industrial product
families often relies on informal models and
inadequate tool support; the natural next step is to
investigate how our approach together with tool
support can improve the state of the practice.
Unambiguous representation of features: An
important aspect in traceability is the ability to identify
a desired feature and its possible solutions in an
unambiguous way. This is naturally supported by our
approach: by separating the PF level and the Product
level, we maintain a generic feature model of the
domain (in the problem space) and an explicit feature
map for each product (in the solution space).
Moreover, each feature at the PF level is associated
with all the products that provide a solution to that
feature, so that we can identify any solution
unambiguously.
Generation of traceability information: In product
derivation it is customary to start by selecting the
desired features that we want to include in the new
product, and then add new features or modify existing
solutions to already supported features. This gives
raise to the problem of (1) including (or not) the new
features in the PF FM (cf. the problem of augmenting
the borders of the product family) and (2) updating the
PF FM to trace the solutions devised in the new
product. When we include existing features, tool
support automatically includes all traces associated
with such features. In particular, when we reuse one of
the available feature solutions (modeled by association
Supports between the PF level and the Product level in
Figure 1), we select the chosen Product feature that we
want to reuse, and we automatically get all the traces to
its design (from the Product CM) and implementation.
When instead we add new features or modify an
existing solution, we currently need to manually
define/update all traces. The complexity of
automatically supporting evolving features is that (1)
to include a new feature in the PF FM we need to
decide the feature category and its position in the FM;
(2) to update the PF FM to trace product-specific
feature solutions is just an implementation matter;
instead, to trace the role played by the new feature in
the associated Product CM, is again a semantic
problem. E.g. we need to know whether a feature is
implemented by a new component or by an interface
only. In this context, tool support can provide guidance
to drive traceability maintenance, by identifying
inconsistencies and highlighting them to the
stakeholder.
Architectural styles and patterns: As discussed in
Section 4, the tool supports the application of styles
and patterns by assigning component/connector types

and component roles. Nonetheless more advanced
support is needed. For example, the ability to generate
one (or multiple) structural views according to the
chosen architectural style(s), or the static verification
of the properties envisaged by the style(s) or pattern(s)
would provide much help during product design. The
Product CM is the natural base on which such tool
support can be constructed: as CMs are at the Product
level, they can help tracing the decisions about the
architectural styles and patterns adopted by the
product.

5 Conclusions and Future Work
We defined a product-oriented model to represent
features and design decisions as well as
implementation assets at both the PF Level and the
Product Level. Our model supports cross-level
traceability, and has been used to extend a commercial
software tool, Together® ControlCenter™, with the
following capabilities:

• It allows us to describe features of a
product family in an unambiguous and
manageable way.

• It allows us to select a set of appropriate
features, reorganize them and add new
features to develop a specific product.

• It allows us to apply different architectural
styles to different product variants.

• It allows us to trace cross-cutting features.
• It allows us to model both newly

developed and COTS components.
The tool has been validated by recovering the

family of six related products in the Next Generation
Network service domain, and next deriving a seventh
product from this family. Though related work
enabling traceability exists, our model especially
addresses the problem of representing product-specific
information, and provides a pragmatic solution
implemented by tool support.

Future work includes some shortcomings of the
tool: it does not yet provide support to generate code,
or to generate a (tentative) product component map by
combining variants of different products (i.e. of
different product component maps). Also, we will
consider porting our implementation on the Eclipse
open platform [4].

Ongoing work is studying how to integrate the tool
with Ménage, an environment aimed at providing
versioning and configuration management for product
families. As Ménage focuses on design and
implementation and it does not support the early
development phases, this integration will guide the full
life cycle.

In: Proceedings of the Eight European Conference on Software Maintenance and Reengineering (CSMR),
Tampere, Finland, 24-26 March, 2004, pp. 261-269.

An important research issue in traceability concerns
the representation of assumptions. In developing a new
product we decide for a certain design solution (e.g.
client-server instead of three-tiered) or for a list of
quality characteristics (e.g. portability and modularity).
In doing this, we implicitly assume that certain
conditions will hold. For example, we suppose that the
product will be modified to accommodate a certain
(expected) evolution, and that the product will be
designed to reflect the structure of the development
team. In summary, we implicitly make assumptions
that impact our solution but that we do not formalize in
any documentation (i.e. that remain implicit). The
drawback is that when reusing a solution we also reuse
its implicit assumptions, and when we apply
modifications we might introduce conflicts that will be
discovered later on.
The natural next research step is to investigate how
implicit assumptions can augment the PF architectural
knowledge, and how they can be traced to support
reuse better.

References
[1] J. Bayer, T. Widen, “Introducing Traceability to

Product Lines”, Proceedings of the fourth Workshop
on Product Family Engineering (PFE-4), LNCS
2290, F. van der Linden (Ed.), Springer Verlag,
2002, pp. 409-416.

[2] M. Coriat, J. Jourdan, F. Boisbourdin, “The SPLIT
Method”, Proceedings of the First Software Product
Lines Conference (SPLC1), Denver, Colorado,
USA, Aug. 28-31, 2000, pp. 147-166.

[3] L. Dobrica, E. Niemelä, “Using UML Notation
Extensions to Model Variability in Product-line
Architecture”, International Workshop on Software
Variability Management, ICSE’03, Portland,
Oregon, May 3-11, 2003, pp. 8-13.

[4] The Eclipse open platform, on-line at
http://eclipse.org.

[5] A. Garg, M. Critchlow, P. Chen, C. Van der
Westhuizen, and A. van der Hoek. “An Environment
for Managing Evolving Product Line Architectures”,
International Conference on Software Maintenance,
Sep. 2003, pp.358-367.

[6] H. Gomaa, M. E. Shin “Multiple-view meta-
modeling of software product lines”, The eighth
IEEE International Conference on Engineering of
Complex Computer Systems (ICECCS 2002),
Maryland, USA, Dec. 2002.

[7] O.C.Z. Gotel, A.C.W. Finkelstein, “An Analysis of
the Requirements Traceability Problem”, First
International Conference on Requirements
Engineering, IEEE, 1994.

[8] M.L. Griss, J. Favaro, M. d’Alessandro, “Integrating
Feature Modeling with the RSEB”, Fifth

International Conference on Software Reuse. Los
Alamitos: IEEE Computer Society, 1998, pp. 76-85.

[9] J. van Gurp, J. Bosch and M. Svahnberg, “On the
notion of variability in software product lines”,
Proceedings of the Working IEEE/IFIP Conference
on Software Architecture, Amsterdam, The
Netherlands, 2001, pp. 45-54.

[10] J. Kalaoja, E. Niemelä, H. Perunka, “Feature
modeling of component-based embedded software”,
Proceeding of 8th IEEE International Workshop on
Software Technology and Engineering Practice
incorporating Computer Aided Software
Engineering, Los Alamitos, USA: IEEE Computer
Society, 1997, pp. 444-447.

[11] K.C. Kang, S.G. Cohen, J.A. Hess, W.E. Novak, A.
S. Peterson, “Feature-oriented Domain Analysis
(FODA)”, Feasibility Study, Technical Report
CMU/Sei-90-TR-21. Software Engineering Institute.
Pittsburgh, USA: CMU, 1990, 147 p.

[12] P. Knauber, S. Thiel, “Session Report on Product
Issues in Product Family Engineering”, Proceedings
of the fourth Workshop on Product Family
Engineering (PFE-4), LNCS 2290, F. van der
Linden (Ed.), Springer Verlag, 2002, pp. 3-12.

[13] P. Lago, “A Policy-based Approach to
Personalization of Communication over Converged
Networks”, IEEE International Workshop on
Policies for Distributed Systems and Networks,
Monterey, CA, USA, Jun. 2002.

[14] J. Plankl, G. Böckle, “Modeling Concepts for
Product Families”, Requirements Modeling and
Traceability, ESAPS report, Nr. Philips-WP3-0106-
01, 2001.

[15] B. Ramesh, A. Tiwana, K. Mohan, “Supporting
Information Product and Service Families with
Traceability”, Proceedings of the fourth Workshop
on Product Family Engineering (PFE-4), LNCS
2290, F. van der Linden (Ed.), Springer Verlag,
2002, pp. 353-363.

[16] M. Simos, Organization Domain Modelling (ODM),
Guide book, Version 1.0, STARS-VC-A023/011/00.
March 1995.

[17] M. Simos, J. Anthony, “Weaving the Model Web: A
Multi-Modelling Approach to Concepts and
Features in Domain Engineering”, Fifth
International conference on software reuse, Los
Alamitos, USA: IEEE Computer Society, 1998, pp.
94-102.

[18] D. Webber, H. Gomaa, “Modeling variability with
the variation point model”, Proceedings of the
International Conference on Software Reuse, LNCS
2319, C. Gacek (Ed.), Springer Verlag, 2002, pp.
109-122.

[19] T. Weiler, “Modeling Architectural Variability
for Software Product Lines”, Workshop on
Software Variability Management, Gröningen,
The Netherlands, Feb. 2003, pp. 55-63.

