overview

simply typed lambda-calculus
Curry–Howard–De Bruijn isomorphism: dynamics

prop1

prop1 and Coq

<table>
<thead>
<tr>
<th>connective</th>
<th>prop1 rules</th>
<th>Coq tactics</th>
</tr>
</thead>
<tbody>
<tr>
<td>→</td>
<td>$I[x] \to$</td>
<td>intro x</td>
</tr>
<tr>
<td></td>
<td>$E \to$</td>
<td>apply</td>
</tr>
<tr>
<td>\bot</td>
<td>$E \bot$</td>
<td>elimtype False</td>
</tr>
<tr>
<td>\land</td>
<td>$I \land$</td>
<td>split</td>
</tr>
<tr>
<td></td>
<td>$E \land$</td>
<td>elim x</td>
</tr>
<tr>
<td>\lor</td>
<td>$I \lor$</td>
<td>left right</td>
</tr>
<tr>
<td></td>
<td>$E \lor$</td>
<td>elim x</td>
</tr>
</tbody>
</table>
classical logic

start with intuitionistic logic
add a classical axiom

from intuitionistic to classical logic

• add the law of excluded middle
 \(A \lor \neg A \)

• add the double negation rule
 \(\neg \neg A \to A \)

• add Peirce’s law
 \(((A \to B) \to A) \to A \)

classical logic: examples of tautologies

assume the law of excluded middle

• double negation
 \(\neg \neg A \to A \)

• Peirce’s Law
 \(((A \to B) \to A) \to A \)

constructive versus classical logic

constructive point of view:
main issue: provability
does the formula have a proof?

classical point of view:
main issue: truth
is the formula true?
constructive point of view (background)

Brouwer–Heyting–Kolmogorov interpretation

- proof of $A \rightarrow B$ \sim function that maps proofs of A to proofs of B
- proof of $A \land B$ \sim pair of a proof of A and a proof of B
- proof of $A \lor B$ \sim either a proof of A or a proof of B
- proof of \bot does not exist

overview: propositional logic

- minimal logic (ML)
 $$(((A \rightarrow B) \rightarrow A) \rightarrow B) \rightarrow B)$$
- ML + \bot
 $$(A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$$
- intuitionistic logic
 $$A \lor B \rightarrow (A \rightarrow C) \rightarrow (B \rightarrow C) \rightarrow C$$
- classical logic
 $$A \lor \neg A$$

decidability

is a given proposition A a tautology?

- decidable for intuitionistic prop1 using Heyting algebras
- decidable for classical prop1 using truth tables

what is the complexity of the decision procedures?

- using Heyting algebras: 2^{2^n} for formula of length n
- Statman: can be done in polynomial space
- using truth tables: 2^n with n the number of propositional variables

simply typed λ-calculus: statics

- grammar for simple types
- grammar for terms (depends on grammar for types)
- typing system for deriving $\Gamma \vdash M : A$
 (in environment Γ the term M lives in type A)
- this corresponds to minimal prop1
Type Checking Problem (TCP) or typability problem
\[\Gamma \vdash M : A \]

Type Synthesis Problem (TSP)
\[\Gamma \vdash M : ? \]

Type Inhabitation Problem (TIP)
\[\Gamma \vdash ? : A \]

for \(\lambda \rightarrow \) all decidable

for more difficult logics TIP becomes undecidable

term normalization: \(\beta \)-reduction

A \(\lambda \)-term may be reduced or rewritten or evaluated

type derivation: some lemmas

- **uniqueness of types**
 If \(\Gamma \vdash M : A \) and \(\Gamma \vdash M : B \), then \(A = B \)
 (NB: not for Curry style)

- **substitution property**
 If \(\Gamma, x : A, \Gamma' \vdash M : B \) and \(\Gamma \vdash P : A \), then \(\Gamma, \Gamma' \vdash M[x := P] : B \)

- **thinning or weakening**
 If \(\Gamma \vdash M : A \) and \(\Gamma \subseteq \Gamma' \), then \(\Gamma' \vdash M : A \)

- **strengthening**
 If \(\Gamma, x : B \vdash M : A \) and \(x \) is not free in \(M \), then \(\Gamma \vdash M : A \)

\(\beta \)-reduction: definitions

- **\(\beta \)-reduction rule:**
 \[(\lambda x : A. M) N \rightarrow_\beta M[x := N] \]

- **\(\beta \)-reduction step:**
 Application of the rule in a context (a bigger term)

- **\(\beta \)-reduction**
 A sequence of \(\beta \)-reduction steps
\[(\lambda p : \text{nat} \to \text{bool} \lambda x : \text{nat}. p x) \text{ even } 3 \to_\beta ? \]
\[(\lambda f : \text{nat} \to \text{nat} \, 2) (\lambda x : \text{nat}. x) \to_\beta ? \]
\[(\lambda x : \text{nat}. f x x) \, 2 \to_\beta ? \]
\[(\lambda x : \text{nat}. 2) \, 3 \to_\beta ? \]

β-reduction: some theorems

subject reduction
- types are preserved under computation
 - if \(\Gamma \vdash M : A \) and \(M \to_\beta M' \), then \(\Gamma \vdash M' : A \)

unique normal forms
- result of a computation is unique
 - if \(M \to_\beta^* P_1 \) and \(M \to_\beta^* P_2 \) with \(P_1 \) and \(P_2 \) normal forms, then \(P_1 \equiv P_2 \)

termination
- all computations terminate
 - there is no infinite \(\beta \)-reduction sequence

Curry–Howard–De Bruijn isomorphism: statics

| ML | \(\to \)
| formula | type
| propositional variable | type variable
| connective | type constructor | \(\to \)

| proof | term
| assumption | term variable
| implication introduction | abstraction
| implication elimination | application
what about the dynamic part?

is term normalization related to proof normalization?

yes: and this is the dynamic part of the Curry–Howard isomorphism

example

\[\lambda x : A. ((\lambda y : A. \lambda z : B. y) x) \]

Curry–Howard–De Bruijn isomorphism

- proof normalization \(\sim \) \(\beta \)-reduction
- detour \(\sim \) redex
- normalization step \(\sim \) reduction step
- normal proof \(\sim \) normal form

first-order predicate logic (pred1)

- predicate:
 - atomic formula is built from a predicate and zero one or more terms

- first-order:
 - no quantification over formulas or predicates
first-order predicate logic (pred1)

syntax:
- terms (new compared to prop1)
- formulas
- judgments

proof rules:
- introduction rules
- elimination rules

terms: example

domain: \(\text{nat} = \{0, 1, 2, 3, \ldots\} \)

functions: addition, division

terms: 3, 5, 3 + 5

terms: definition

- a variable is a term
 \(x \) in Terms

- applying a function symbol to the right number of terms yields a term
 if \(M_1, \ldots, M_n \) in Terms then
 \(f(M_1, \ldots, M_n) \) in Terms

this is singly-sorted; we could work in a multi-sorted setting

predicates: example

- \(P(n) \) meaning \(n \) is a prime number
- \(E(n) \) meaning \(n \) is even
- \(Q(n, m) \) meaning \(n \) divides \(m \)
formulas: definition for prop1 (already seen)

\[a \, b \, c \, p \, q \]
\[A \rightarrow B \]
\[\bot \]
\[\top \]
\[A \land B \]
\[A \lor B \]

formulas: definition for pred1

\[a(\ldots) \, b(\ldots) \, c(\ldots) \, p(\ldots) \, q(\ldots) \]
\[A \rightarrow B \]
\[\forall x. B \]
\[\bot \]
\[\top \]
\[A \land B \]
\[A \lor B \]
\[\exists x. A \]

terminology: first-order

first order:
object

second order:
set of first-order objects
predicate on objects

first-order logic:
quantification over variables of order 1
\[a \rightarrow a \]
\[\forall x. a(x) \rightarrow a(x) \]

formulas: examples

in prop1:
\[a \rightarrow a \]
in pred1:
\[\forall x. a(x) \rightarrow a(x) \]