logical verification lecture 7
2017-05-04
program extraction and prop2
overview

program extraction

program extraction: examples

verified programs: alternative approach

formulas of prop2

terminology

proofs of prop2
Bertrand Russell shows that naive set theory (or type theory) is inconsistent:

\[\{x \mid x \not\in x\} \in \{x \mid x \not\in x\} \]
some answers: three schools

Hilbert: **formalism**, leads eventually to ZFC set theory

Russell: **logicism**, leads eventually to an early version of type theory

Brouwer, Heyting, Bishop: **intuitionism**, rejects excluded middle
Brouwer–Heyting–Kolmogorov interpretation

⊥ does not exist

\(A \rightarrow B \) maps proofs of \(A \) to proofs of \(B \)

\(A \land B \) proof of \(A \) and proof of \(B \)

\(A \lor B \) proof of \(A \) or a proof of \(B \)

\(\forall x. P(x) \) maps \(x \) to a proof of \(P(x) \)

\(\exists x. P(x) \) object \(a \) with proof of \(P(a) \)

proof of existence corresponds to constructing an example
an intuitionistic (constructive) proof

corresponds to an executable algorithm
constructive functional programming

- program specification
- constructive proof of existence
- automatically generated functional program
program specification: example

the correctness proof of the specification

\[\forall l : \text{natlist}. \exists l' : \text{natlist}. \text{permutation}(l, l') \land \text{sorted}(l') \]

yields a program (function) from natlist to natlist
program specification: general pattern

∀x : A. P(x) → ∃y : B. Q(x, y)

- A input type
- B output type
- P(x) precondition
- Q(x, y) input/output behaviour

the correctness proof yields a program from A to B
program extraction in Coq

Coq proof in type theory gives
functional program in OCaml or Haskell or Scheme
program extraction in Coq

is “almost” the identity function but

- other typing system
- information from Prop is erased
existential quantification in Prop

inductive type:

\[
\text{Inductive } \text{ex} \ (A : \text{Type}) \ (P : A \to \text{Prop}) : \text{Prop} := \\
\quad \text{ex_intro} : \forall x : A, P x \to \text{ex } P
\]

syntax:

\[
\text{exists } x : A, P x.
\]
existential quantification in Set

inductive type:

\[
\text{Inductive } \text{sig } (A : \text{Set}) \ (P : A \to \text{Prop}) : \text{Set} := \\
\text{exist} : \forall x : A, P x \to \text{sig } P
\]

syntax:

\[\{x:A \mid P \ x\}\]
for program extraction

use existential quantification in Set
successor: existence proof and extracted program

specification:

Theorem successor :
 forall n:nat, \{m:nat | m = S n\}.

extracted program:

let successor n =
 S n
Theorem predecessor :
 forall n:nat, ~(n = 0) -> {m:nat | S m = n}.

let rec predecessor = function
 | 0 -> assert false (* absurd case *)
 | S n0 -> n0
insertion sort: existence proof

Theorem Sort :
 \forall l : \text{natlist},
 \{ l' : \text{natlist} | \text{permutation} l l' \land \text{sorted} l' \}.
insertion sort: predicate permutation

Inductive permutation : natlist -> natlist -> Prop :=
 | permutation_nil : permutation nil nil
 | permutation_cons :
 forall (n : nat) (l l' l'' : natlist),
 permutation l l' ->
 inserted n l' l'' ->
 permutation (cons n l) l''.
insertion sort: predicate inserted

Inductive inserted (n : nat) :
 : natlist -> natlist -> Prop :=
 | inserted_front :
 forall l : natlist, inserted n l (cons n l)
 | inserted_cons :
 forall (m : nat) (l l’ : natlist),
 inserted n l l’ ->
 inserted n (cons m l) (cons m l’).

le: family of inductive predicates

Inductive le (n:nat) : nat -> Prop :=
| le_n : le n n
| le_S : forall m:nat , le n m -> le n (S m).

le_ind
: forall (n : nat) (P : nat -> Prop),
P n ->
 (forall m : nat, le n m -> P m -> P (S m)) ->
forall n0 : nat, le n n0 -> P n0
le: examples

le_n 0 : le 0 0 : Prop
le_n 7 : le 7 7 : Prop
le_S 0 0 (le_n 0) : le 0 1 : Prop
le_S 0 1 (le_S 0 0 (le_n 0)) : le 0 2 : Prop
Inductive sorted : natlist -> Prop :=
 | sorted0 : sorted nil
 | sorted1 : forall n:nat , sorted (cons n nil)
 | sorted2 : forall n h:nat , forall t:natlist,
 le n h ->
 sorted (cons h t) ->
 sorted (cons n (cons h t)).
Leibniz equality

two terms are equal if they have the same properties

Inductive eq (A : Type) (x : A) : A -> Prop :=
 refl_equal : x = x

eq_ind
 : forall (A : Type) (x : A) (P : A -> Prop),
 P x -> forall y : A, x = y -> P y
verified programs: two approaches

• correctness proofs
 from program to proof

• program extraction
 from proof to program
correctness proofs: Hoare logic

imperative program
\[\Rightarrow\]
annotated imperative program
\[\Rightarrow\]
proof obligations
define a function mirror
and prove its correctness:

Theorem Mirrored_mirror :
forall t : bintree,
Mirrored t (mirror t).
mirror: program extraction

prove the specification correct
and extract a program from it

Theorem Mirror : forall t : bintree,
 {t’ : bintree | Mirrored t t’}.

summarizing the two approaches

- **specification**
 Inductive Mirrored

- **approach 1: implementation**
 Fixpoint mirror

- **approach 1: correctness**
 Theorem Mirrored mirror

- **approach 2: program extracted from existence proof**
 Theorem Mirror
logics and type theory

1st-order minimal propositional logic \leftrightarrow simple type theory

1st-order minimal predicate logic \leftrightarrow dependent type theory

2nd-order minimal propositional logic \leftrightarrow polymorphic type theory
formulas of prop1 (already seen)

\[a \ b \ c \ p \ q\]

\[A \rightarrow B\]

\[\perp\]

\[\top\]

\[A \land B\]

\[A \lor B\]
formulas of pred1 (already seen)

(using terms)

\[a(\ldots) \quad b(\ldots) \quad c(\ldots) \quad p(\ldots) \quad q(\ldots) \]
\[A \rightarrow B \]
\[\forall x. A \]
\[\bot \]
\[\top \]
\[A \land B \]
\[A \lor B \]
\[\exists x. A \]
formulas of prop2 (new)

\[a \ b \ c \ p \ q \]
\[A \rightarrow B \]
\[\forall a. A \]
\[\bot \]
\[\top \]
\[A \land B \]
\[A \lor B \]
\[\exists a. A \]
examples

in prop1:
\[a \rightarrow a \]

in pred1:
\[\forall x. a(x) \rightarrow a(x) \]

in prop2:
\[\forall a. a \rightarrow a \]

for every proposition, that proposition implies itself
higher-order

first order:
object

second order:
set of first-order objects
predicate on objects
function from objects to objects

third order:
set of second-order objects
predicate on predicates on objects
functions from second order objects
higher-order logic

first-order:
quantification over variables of order 1
\[a \rightarrow a \]
\[\forall x. a(x) \rightarrow a(x) \]

second-order:
quantification over variables of order 2
\[\forall a. a \rightarrow a \]
\[\forall a. \forall x. a(x) \rightarrow a(x) \]
\[\forall f. \forall x. a(f(x)) \rightarrow a(f(x)) \]

third-order:
quantification over variables of order 3
\[\forall b. \forall f. b(f) \rightarrow \forall x. a(f(x)) \]

quantify over predicates gives pred2
same without terms gives prop2
second-order predicate logic: example

induction principle for natural numbers

\[\forall a. a(0) \rightarrow (\forall m. a(m) \rightarrow a(S(m))) \rightarrow \forall n. a(n) \]

- \(m \) 1st order variable
- \(n \) 1st order variable
- \(0 \) 1st order constant
- \(a \) 2nd order variable
- \(S \) 2nd order constant (or 1st order function)
there exists a sorting function

$$\exists f : \text{natlist} \rightarrow \text{natlist}. \forall l : \text{natlist}. \text{sorted}(f(l)) \land \text{permutation}(l, f(l))$$

- f: 2nd order variable
- l: 1st order variable
- sorted: 2nd order constant (or 1st order function)
- permutation: 2nd order constant (or 1st order function)
<table>
<thead>
<tr>
<th>prop2</th>
<th>pred2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\forall a. a \rightarrow a$</td>
<td>$\forall p. \forall x. p(x) \rightarrow p(x)$</td>
</tr>
<tr>
<td>prop1</td>
<td>pred1</td>
</tr>
<tr>
<td>$a \rightarrow a$</td>
<td>$\forall x. p(x) \rightarrow p(x)$</td>
</tr>
</tbody>
</table>
proof rules for prop2

\begin{align*}
\text{introduction rules} & \quad \text{elimination rules} \\
I \top & \quad E \bot \\
I[x] \rightarrow & \quad E \rightarrow \\
I \land & \quad EI \land, Er \land \\
I \lor, Ir \lor & \quad E \lor \\
I \forall & \quad E \forall \\
I \exists & \quad E \exists
\end{align*}
universal quantification for prop2

∀ introduction:

\[
\begin{align*}
A & \quad \text{I}\\
\forall a. A & \quad \text{I}\forall
\end{align*}
\]

variable condition: \(a \) not free in any open assumption
check: variable does not occur in any of the available assumptions

∀ elimination:

\[
\begin{align*}
\forall a. A & \quad E\forall\\
A[a := B] & \quad E\forall
\end{align*}
\]
existential quantification for prop2

∃ introduction:

\[
\frac{A[a := B]}{∃a. A} \quad I∃
\]

∃ elimination:

\[
\frac{∃a. A \quad ∀a. A \rightarrow B}{B} \quad E∃
\]

variable condition: \(a \) not free in \(B \)
check: variable does not occur in the conclusion
examples of tautologies

- $\forall b. b \rightarrow a$
- $a \rightarrow \forall b. (b \rightarrow a)$
- $a \rightarrow \forall b. ((a \rightarrow b) \rightarrow b)$
- $\exists b. a \rightarrow a$
- $\exists b. ((a \rightarrow b) \lor (b \rightarrow a))$
examples of non-tautological formulas

• $a \rightarrow (\forall a. a)$

• $p(x) \rightarrow (\forall x. p(x))$

• $(\exists a. a) \rightarrow a$

• $\forall a. \forall b. (a \rightarrow b) \lor (b \rightarrow a)$
 (classical logic needed)
minimal prop2: detour

introduction rule for a connective

immediately followed by an

elimination rule for the same connective
elimination of an implication detour (as in prop1)

\[\frac{\cdot}{\bar{B}} \]
\[\frac{A \rightarrow B}{B} \]
\[\text{I}[x] \rightarrow \]
\[\frac{\cdot}{\bar{A}} \]
\[E \rightarrow \]

is replaced by

\[\cdot \]
\[\frac{\cdot}{\bar{B}} \]

where every occurrence of the assumption A^x is replaced by the proof

\[\cdot \]
\[\frac{\cdot}{\bar{A}} \]
elimination of an universal quantification detour

(similar to pred1)

\[
\frac{B}{\forall a. B} \quad \forall \forall
\]

\[
\frac{}{B[a := A]} \quad E\forall
\]

\[
\rightarrow \quad B[a := A]
\]

everywhere \(a\) is replaced by \(A\)