1. Consider the definition of nat:

\[
\text{Inductive } \text{nat} : \text{Set} := \ O : \text{nat} \mid S : \text{nat} \to \text{nat}.
\]

(a) What are the constructors of nat?
(b) Describe the elements of nat.
(c) Give the type of nat_ind.

\textbf{Answer:}

The definition of nat:

\[
\text{Inductive } \text{nat} : \text{Set} := \ O : \text{nat} \mid S : \text{nat} \to \text{nat}.
\]

(a) The constructors of nat are O and S.
(b) The elements of nat are O, $(S \ 0)$, $(S \ (S \ 0))$, etcetera, and represent the natural numbers.
(c) nat_ind:
 \[
 \forall P : \text{nat} \to \text{Prop}, \quad P \ 0 \to (\forall n : \text{nat}, P \ n \to P \ (S \ n)) \to \forall n : \text{nat}, P \ n
 \]

2. Consider the following definition:

\[
\text{Inductive } \text{A} : \text{Set} := \mid a : \text{A} \to \text{A} \\
\mid b : \text{A} \to \text{A} \to \text{A}.
\]

How many elements does the set A have?

\textbf{Answer:}

The set A does not have any elements (intuitively, there is no way to start).

3. (a) Consider the definition of natlist for lists of natural numbers:

\[
\text{Inductive } \text{natlist} : \text{Set} := \mid \text{nil} : \text{natlist} \\
\mid \text{cons} : \text{nat} \to \text{natlist} \to \text{natlist}.
\]
Give the type of `natlist_ind`, which is used to give proofs by induction.

Answer:
The type of `natlist_ind`:

```
natlist_ind :
  forall P : natlist -> Prop,
  P nil ->
  (forall (n : nat) (n0 : natlist), P n0 -> P (cons n n0)) ->
  forall n : natlist, P n
```

(b) Give the definition of an inductive predicate `last_element` such that `(last_element n l)` means that `n` is the last element of `l`.

Answer:
A definition of `last_element`:

```
Inductive last_element (n:nat) : natlist -> Prop :=
|last_one : last_element n (cons n nil)
|last_more : forall h:nat, forall t:natlist,
  last_element n t -> last_element n (cons h t).
```

4. (a) Give the inductive definition of the datatype `natbintree` of binary trees with unlabeled nodes and natural numbers at the leafs.

Answer:
An inductive definition of the datatype `natbintree`:

```
Inductive natbintree : Set :=
| natleaf : nat -> natbintree
| natnode : natbintree -> natbintree -> natbintree.
```

(b) The Coq function for appending two lists is defined as follows:

```
Fixpoint append (l k : natlist) {struct l} : natlist :=
match l with
| nil => k
| cons n l' => cons n (append l' k)
end.
```

In what argument is the recursion? Why is the recursive call (intuitively) safe?

Answer:
The recursion is in the first argument.
The recursion is (intuitively) safe because `l'` is a smaller term than `l`.

(c) Give the definition of a recursive function `flatten : natbintree -> natlist` which flattens a tree into a list that contains the nodes from left to right.

You may use `append`.

Answer:
Fixpoint flatten (b : natbintree) {struct b} : natlist :=
 match b with
 | natleaf n => (cons n nil)
 | natnode l r => (append (flatten l) (flatten r))
end.

(d) Give a recursive definition of a function count that takes as input a natbintree and gives as output the number of nodes of the tree.

Answer:
A definition of count:

Fixpoint count (b : natbintree) {struct b} : nat :=
 match b with
 | natleaf n => O
 | natnode l r => S (plus (count l) (count r))
end.

5. Consider the definition of an inductive predicate for even:

Inductive even : nat -> Prop :=
| even_zero : even 0
| even_greater : forall n:nat, even n -> even (S (S n)).

(a) What is the type of even 0?
Answer:
The type of even 0 is Prop.

(b) Give an inhabitant of even 0.
Answer:
An inhabitant of even 0 is even_zero.

(c) Give an inhabitant of even 2.
Answer:
An inhabitant of even 2 is (even_greater 0 even_zero).

6. (about program extraction) What is the type of the function that can be extracted from the proof of the following theorem:

forall l : natlist,
\{l' : natlist | Permutation l l' \\ Sorted l'\}.

Answer:
natlist -> natlist.