1. Consider the definition of nat:

\[
\text{Inductive nat : Set := O : nat | S : nat \rightarrow nat.}
\]

(a) What are the constructors of nat?

(b) Describe the elements of nat.

(c) Give the type of nat_ind.

2. Consider the following definition:

\[
\text{Inductive A : Set :=} \\
\quad | \ a : A \rightarrow A \\
\quad | \ b : A \rightarrow A \rightarrow A.
\]

How many elements does the set A have?

3. (a) Consider the definition of natlist for lists of natural numbers:

\[
\text{Inductive natlist : Set :=} \\
\quad | \ nil : natlist \\
\quad | \ cons : nat \rightarrow natlist \rightarrow natlist.
\]

Give the type of natlist_ind, which is used to give proofs by induction.

(b) Give the definition of an inductive predicate last_element such that $(\text{last_element } n \ l)$ means that n is the last element of l.

4. (a) Give the inductive definition of the datatype natbintree of binary trees with unlabeled nodes and natural numbers at the leafs.

(b) The Coq function for appending two lists is defined as follows:

\[
\text{Fixpoint append (l k : natlist) {struct l} : natlist :=} \\
\text{match l with} \\
\quad \text{nil \Rightarrow k} \\
\quad | \ \text{cons } n \ l' \Rightarrow \text{cons } n \ (\text{append } l' \ k)
\text{end.}
\]

In what argument is the recursion? Why is the recursive call (intuitively) safe?
(c) Give the definition of a recursive function `flatten : natbintree -> natlist` which flattens a tree into a list that contains the nodes from left to right.
You may use `append`.

(d) Give a recursive definition of a function `count` that takes as input a `natbintree` and gives as output the number of nodes of the tree.

5. Consider the definition of an inductive predicate for even:

```coq
Inductive even : nat -> Prop :=
| even_zero : even 0
| even_greater : forall n:nat, even n -> even (S (S n)).
```

(a) What is the type of `even 0`?
(b) Give an inhabitant of `even 0`.
(c) Give an inhabitant of `even 2`.

6. (about program extraction) What is the type of the function that can be extracted from the proof of the following theorem:

```coq
forall l : natlist,
\{l' : natlist | Permutation l l' /\ Sorted l'\}.
```

7. This exercise is concerned with dependent types. We use the following definition in Coq:

```coq
Inductive natlist_dep : nat -> Set :=
| nil_dep : natlist_dep 0
| cons_dep : forall n : nat,
          nat -> natlist_dep n -> natlist_dep (S n).
```

(a) What is the type of `natlist_dep`?
(b) What is the type of `natlist_dep 2`?
(c) Describe the elements of `natlist_dep 2`.

(b) Suppose we want to define a function `nth` that takes as input a list and gives back the `n`th element of that list. How can dependent lists be used to avoid errors?

8. Give the type of `append_dep`, the function that appends two dependent lists. We use the following definition:
Fixpoint append_dep
 (n1:nat) (n2:nat)
 (l1:natlist_dep n1) (l2:natlist_dep n2)
 {struct l1} : natlist_dep (n1 + n2) :=
match l1 in (natlist_dep n1) return (natlist_dep (n1 + n2)) with
| nil_dep => l
| cons_dep p h t => cons_dep (p + n2) h (append_dep p t n2 l)
end.

9. Give the type of reverse_dep, the function that reverses a dependent list.
We use the following definition:

Fixpoint reverse_dep
 (n:nat) (l:natlist_dep n) {struct l} :
 natlist_dep n :=
match l in (natlist_dep n) return (natlist_dep n) with
| nil_dep => nil_dep
| cons_dep p h t =>
 eq_rec (plus p 1) (fun n => natlist_dep n)
 (append_dep p (reverse_dep p t) 1 (cons_dep 0 h nil_dep))
 (S p) (P p)
end.

where

P : forall p : nat, p + 1 = S p

so P is a proof that p + 1 equals S p for all p.

10. Consider the following two terms:

reverse_dep (plus n1 n2) (append_dep n1 n2 l1 l2)
append_dep n2 n1 (reverse_dep n2 l2) (reverse_dep n1 l1)

(Here n1 and n2 have type nat, the term l1 has type natlist_dep n1,
the term l2 has type natlist_dep n2.)

What are the types of the above terms?
Are the types convertible?