Dynamic Load-Balanced Multicast for Data-Intensive Applications on Clouds
Contents:

• Introduction
• Multicast on parallel distributed systems
• Multicast on P2P systems
• Multicast on clouds
• High performance multicast algorithms
• Implementation
• Performance Evaluation
• Summary
• Conclusions
The Problem

- deploy large data sets from the cloud’s storage facility to all compute nodes as fast as possible.

- the network performance within clouds is dynamic

- keeping network monitoring data and topology information up-to-date is almost impossible
Common multicast algorithms

- construct one or more spanning trees based on the network topology
- monitoring data in order to maximize available bandwidth and avoid bottleneck links.
We propose two hp multicast algorithms

Combine optimization ideas from multicast algorithms used in:

- parallel distributed systems
- P2P systems

Efficiently transfer large amounts of data stored in Amazon S3 to multiple Amazon EC2 nodes.
Contents:

• Introduction
• Multicast on parallel distributed systems
• Multicast on P2P systems
• Multicast on clouds
• High performance multicast algorithms
• Implementation
• Performance Evaluation
• Summary
• Conclusions
• collective operation algorithms in message passing systems like MPI.

• The target environment:

 1) network performance is high and stable
 2) network topology does not change
 3) available bandwidth between nodes is symmetric
- construct one or more optimized spanning trees by using network topology information and other monitoring data.

- sender-driven technique
Contents:

• Introduction
• Multicast on parallel distributed systems
• Multicast on P2P systems
• Multicast on clouds
• High performance multicast algorithms
• Implementation
• Performance Evaluation
• Summary
• Conclusions
Multicast on P2P systems 1/6

• file sharing applications
• data streaming protocols

• The target environment :

1) network performance is very dynamic
2) nodes can join and leave
3) available bandwidth between nodes can be asymmetric
New nodes joined the topology

Using network topology is not a good idea
divide data into small pieces

* receiver-driven technique -> can improve throughput

exchanged it with neighbor nodes
all nodes tell their neighbors which pieces they have and request pieces they lack
Multicast on P2P systems 5/6
Multicast on P2P systems 6/6
Example: Mob

- optimizes multicast communication between multiple homogeneous clusters connected via a WAN.

- based on BitTorrent, and takes node locality into account to reduce the number of wide-area transfers.
Each node in a mob steals an equal part of all data from peers in remote clusters
Each node in a mob distributes the stolen pieces locally
Contents:

• Introduction
• Multicast on parallel distributed systems
• Multicast on P2P systems
• Multicast on clouds
• High performance multicast algorithms
• Implementation
• Performance Evaluation
• Summary
• Conclusions
Cloud systems 1/2

- are based on large clusters in which nodes are densely connected

- storage resources provided by clouds are fully or partly virtualized.

- A multicast algorithm for clouds can therefore not assume anything about the exact physical infrastructure
Cloud systems 2/2

• The uplink and downlink of a virtual compute node can be affected by other virtual compute nodes that are running on the same physical host.

• Routing changes and load balancing will also affect network performance.

• The data to distribute is often located in the cloud’s storage service, which introduces another potential shared bottleneck.
Cloud platform used in our experiments
Amazon EC2/S3

- Amazon Elastic Compute Cloud (EC2)
- Simple Storage Service (S3)

- EC2 provides **virtualized computational resources** that can range from one to hundreds of nodes as needed.

- **virtual machines** on top of **Xen** are called **instances**

- Xen hypervisor- open source standard for virtualization
Amazon EC2/S3

• **S3** stores files as **objects** in a **unique name space**, called a **bucket**.

• Buckets have to be created before putting objects into S3. They have a location and an arbitrary but globally unique name.

• The size of objects in a bucket can currently range from 1 byte to 5 gigabytes.
Multicast on clouds

Requirements that multicast operations on clouds should fulfill:

• maximized utilization of available aggregate download throughput from cloud storage

• minimization of multicast completion time of each node

• non-dependence on monitoring network throughput nor estimation of network topology
Contents:

• Introduction
• Multicast on parallel distributed systems
• Multicast on P2P systems
• Multicast on clouds
• High performance multicast algorithms
• Implementation
• Performance Evaluation
• Summary
• Conclusions
High performance multicast algorithms

Features of our algorithms:

• construct an overlay network on clouds without network topology information;

• optimize the total throughput dynamically;

• increase the download throughput by letting nodes cooperate with each other.
How they work?

- divide the data to download from the cloud storage service over all nodes
- exchanges the data via a mesh overlay network
- the first ‘non-steal’ algorithm lets each node download an equal share of all data
- the second ‘steal’ algorithm uses work stealing to counter the effect of heterogeneous download bandwidth.
Van de Geijn ‘non-steal’ algorithm

Scatter phase: the root node divides the data to be multicast into blocks of equal size depending on the number of nodes. Blocks are then sent to each corresponding node using a binomial tree.

Allgather phase: the missing blocks are exchanged and collected by using the recursive doubling technique.
Once a node finishes downloading the assigned range of pieces, it waits until all the other nodes have finished too and then exchanges information with its neighbors in the mesh.
When a node has finished downloading its pieces, it asks other nodes if they have any work remaining. The amount of work download is proportional to download bandwidth.
Contents:

• Introduction
• Multicast on parallel distributed systems
• Multicast on P2P systems
• Multicast on clouds
• High performance multicast algorithms
• Implementation
• Performance Evaluation
• Summary
• Conclusions
Implementation

- On top of Ibis, a Java-based grid programming environment.

- Each node is notified of the identity of new nodes that join the Ibis network, as well as its unique rank assigned by Ibis.

- The steal and non-steal algorithms are implemented as an extension to the S3MulticastChannel object.

- S3MulticastChannel manages an S3Connection object and a number of PeerConnection objects.

- The S3Connection object downloads pieces from S3, while the PeerConnection objects send and receive messages to and from other nodes.
Contents:

• Introduction
• Multicast on parallel distributed systems
• Multicast on P2P systems
• Multicast on clouds
• High performance multicast algorithms
• Implementation
• Performance Evaluation
• Summary
• Conclusions
PERFORMANCE EVALUATION 1/3

• We compared the multicast performance of the flat tree, nonsteal and steal algorithms on Amazon EC2/S3.

• We only use EC2/S3 sites located in Europe, with a small EC2 instance type.

• piece size = 32KB
The best completion time is similar across all algorithms: about 100 s

The slowest completion time:
* at least one node in the flat tree takes approximately 200s
* but none of the nodes in either the non-steal or steal algorithms takes more than 140s

Fig. 8. completion time with non-steal algorithm (1GB, 8 nodes)

Fig. 2. download completion time with flat tree algorithm (8 nodes, 1GB)

Fig. 9. completion time with steal algorithm (1GB, 8 nodes)
-> number of nodes increases
-> the time spent in phase 1 decreases
-> time spent in phase 2 increases
-> total time spent in phase 1 and phase 2 remains nearly constant

-> 32 nodes take slightly much time than 16 nodes.
Contents:

• Introduction
• Multicast on parallel distributed systems
• Multicast on P2P systems
• Multicast on clouds
• High performance multicast algorithms
• Implementation
• Performance Evaluation
• Summary
• Conclusions
Summary

• different multicast algorithms for distributed parallel and P2P systems.

• we have presented two high performance multicast algorithms.

• we have focused on Amazon EC2/S3
Contents:

• Introduction
• Multicast on parallel distributed systems
• Multicast on P2P systems
• Multicast on clouds
• High performance multicast algorithms
• Implementation
• Performance Evaluation
• Summary
• Conclusions
CONCLUSIONS

We evaluate our algorithms on EC2/S3, and show that they are scalable and consistently achieve high throughput.

As a result, all nodes can download files from S3 quickly, even when the network performance changes while the algorithm is running.
Take home message

As a best practice:

Use **High performance multicast algorithms** because the nodes cooperate with each other for getting the data from the cloud storage and the performance is increased.
Thank you !