A Virtual Cloud Computing Provider for Mobile Devices

Gonzalo Huerta-Canepa, Dongman Lee
1st ACM Workshop on Mobile Cloud Computing & Services

Presented by: Daniel Ogleja
Vrije Universiteit Amsterdam
Faculty of Sciences
March 21.03.2012
Problem

• Smart phones
 – are still resource constrained
 – are becoming pervasive
 – battery life still a problem

• Applications
 – demand more resources

• Cloud computing platforms
 – access is not guaranteed
 – could be too expensive
Outline

• Solutions
 – Existing cloud computing platforms
 – New framework
• Related work
• Mobile Devices - a virtual cloud computing provider
 – Motivation & Scenario
 – Design consideration
 – Architecture
• Implementation
• Evaluation
• Conclusions
One way...

• Cloud computing platforms
 – Amazon EC2, Microsoft Azure, Google Appengine

• Mobile device
 – Client or/and resource provider
 – Need a coordinator to manage the mobile devices and jobs

• Problem
 – Connection to the cloud
The other way...

- A framework to create virtual mobile cloud computing providers
- Detect nearby nodes
 - Stable nodes
- Create on the fly connection
 - Avoid a connection to infrastructure-based cloud
 - Maintain the main benefits of offloading
Motivation - on economic basis

• 2 costs for cloud computing providers
 – Networking cost
 • More than 200 USD for 1 GB downloaded
 • 3G connection consumes battery
 • 3G slower than Wi-Fi
 – Providers resources cost
 • 5 USD/month for small on-demand server for 2 hours/day
Motivation - on technical basis

• Benefits:
 – preserve conventional offloading benefits
 – increase performance by increasing the level of parallelism
 – communication overhead must not affect the overall performance
 – save energy
Scenario

• A group of people visiting South Korea
• Jim need to translate a text on a sign or from a museum
• Take a picture with the text
 1) Connect to internet – roaming costs
 2) Find other users interested in that text
 3) Create an ad-hoc network and process the images
Design – features

– Resource monitoring and management
 – Ex. A task can be executed locally?
– Seamless integration with the existing cloud APIs
 – mimic the same API on top of the ad hoc mobile P2P cloud
– A partition and offloading scheme suitable for mobile devices
 – Job splitting
– Activity detection to find users of the same or similar goals
 – Minimize potential disconnections
– Spontaneous interaction network support
 – discovery and selection of mobile devices
– A memory cache scheme to save intermediate results
– Lightweight and resource friendly architecture
Architecture

• The process for the creation and usage of a virtual cloud provider:

 – User must be at a stable place
 – Need more resources for a task
 – The system listens for nodes in vicinity
 – If available, the system intercepts the application loading and modifies the application in order to use the virtual cloud
Architecture – 5 main feature

- Application Manager
- Resource Manager
- Context Manager
- P2P Component
- Offloading Manager
Application Manager

• Launching and intercepting an application at loading time

• Modify the application to add features required for offloading
 • Proxy creation, RPC support

• modifying the reference to that provider with a reference to the virtual provider
Resource Manager

• In charge of application profiling and resource monitoring on a local device

• Creates a profile
 – Number of remote devices
 – Sensibility to privacy
 – Amount of resources needed for the migration
Context manager

- wields and synchronizes contextual information from context widgets

- Subcomponents
 - context widgets
 - context manager
 - social manager
P2P Component

• it sends events to the context manager in case a new device enters the space
• Ad hoc discovery mechanism
• groups the nodes using a P2P scheme
Offloading manager

• in charge of sending and managing jobs
• receiving and processing jobs
• in charge of detecting failures in the execution and to re-emit them
General architecture for the ad hoc mobile cloud

24/3/2012

A Virtual Cloud Computing Provider for Mobile Devices
Current Implementation

- Two sub-implimentations:
 - Cloud computing provider client
 - Ad Hoc mobile cloud framework
- Retroweaver – port Hadoop client to Java 1.4
- PhoneME, Mysafu, JamVM
- the map/reduce framework calls were replaced to RPC methods implemented using the Jabber RPC
Current Implementation

• Communication
 – Extensible Messaging and Presence Protocol (XMPP)

• Modified Yaja! (java XMPP client)
 – Serverless Messaging
 – Jabber RPC9
 – discovery and messaging among devices
Evaluation settings

• Input data - less than 100kb
• mobile devices with PhoneME and Mysaifu
 – lack of needed APIs
• jailbroken Ipod Touch with JamVM as the Java VM
• Hadoop 1.8 – four servers (OpenJDK VM 6)
• Communication - Ad Hoc WIFI, Access Point
• Korean OCR – for tests
Results

• Execution of tasks – slower (less 1%)
• offloading preparation and waiting time
 – 44% of the execution time
• Processing time
 – is approx. 56%
• Good performance with small files
• Saving processing time = saving energy
Problems

• Hadoop
 – low performance small files
 – mapred.job.reuse.jvm.num.tasks – modified (infinite number of reuse)
 – 2-3% improvement
 – Concatanation of input files
 • Not always possible – pictures
Performance of Mobile Offloading compared to local execution. Results are normalized to local execution (value 1).
Conclusion

- Mobile devices can be a virtual cloud computing provider