An architecture for space sharing HPC and commodity workloads in the cloud

Jack Lange
Assistant Professor
University of Pittsburgh
HPC in the cloud

• Palacios VMM
 – HPC oriented VMM
 – Specifically targeting supercomputing environments

• Current state of supercomputing OSes
 – Linux appears to be the future
 • Not necessarily a good thing

• Palacios and Linux
 – Lightweight environments on heavyweight OSes
Palacios VMM

- OS-independent embeddable virtual machine monitor
- Open source and freely available
 - 1000s of unique downloads
- Users:
 - Kitten: Lightweight supercomputing OS from Sandia National Labs
 - MINIX 3
 - Linux

- Ideally suited to lightweight supercomputing OSes
- Successfully used on supercomputers, clusters (Infiniband and Ethernet), and servers

Palacios
An OS Independent Embeddable VMM
http://www.v3vee.org/palacios
A brief Sandia OS history

• **SUNMOS** (Sandia/UNM Operating System)
 – In response to Paragon issues
 – Library OS
 – Single task, no demand paging

• **PUMA/Cougar/Catamount**
 – Multitasking
 – Portals: High performance message passing API

• **Kitten**
 – Lightweight kernel based on Linux ABI
 – Built from the ground up
 • Ported selected features from Linux

• **CNL** (Compute Node Linux)
 – Cray
 – Modified version of Linux
Palacios as an HPC VMM

• Minimalist interface
 – Follows the “lightweight OS” philosophy

• Compile and runtime configurability
 – Create a VMM tailored to specific environments

• Low noise

• Contiguous memory allocations

• Passthrough resources and resource partitioning
HPC Virtualization

• Virtualization is very useful for HPC, but...
 Only if it doesn’t hurt performance

• Virtualized RedStorm with Palacios and Kitten
 – Evaluated with HPC system benchmarks

 Cray XT4
 204,200 cores
 284 TFlops
 2.5 MegaWatts
Scalability at Large Scale (Weak Scaling)

Catamount Guest OS

Within 3%

Scalable

CTH: multi-material, large deformation, strong shockwave simulation
Supercomputing and Linux

• Lightweight kernels are great for application performance
 – But their days seem to be numbered
 – Probably not operational OS of choice for new supercomputers
• Linux seems to be taking over
 – Compute Node Linux (CNL), ZeptoOS, etc

• For some of us, this is not necessarily a “good thing”
 – Linux introduces significantly more overhead
 – Subset of applications are hurt (e.g. SAGE ~17% slowdown on CNL)
 – Ironically Linux is the more closed environment

• Challenge
 – Can we provide a lightweight environment on a heavyweight OS?
 – If we can do this on a supercomputer why not in the cloud?
HPC in the cloud

• Are supercomputers converging with the cloud?
 • No (at least not yet)
 – Noise issues
 – Consolidation
 – Non reserved resources
 – Uncontrolled topology

• Very bad for tightly coupled parallel apps
 – Can virtualization provide a solution?
Why not other VMMs?

• Virtualization is considered an “Enterprise” tool
 – Not for HPC

• Example: KVM design issues
 – Userspace handlers
 – Loose CPU affinities
 – Complicated memory management
 – HW resets on context switch
Palacios and Linux

• Palacios provides a lightweight environment
 – Internally manages node resources
 – Does not bother with “enterprise features”

• Claim: Palacios can provide a scalable HPC environment on commodity platforms
 – Turn a commodity cloud node into a supercomputer node
Palacios on Linux

• Bypass Linux management layers

• Palacios selectively takes over resource management
 – Memory, devices, CPUs
 – Repurpose existing mechanisms
 • Allocate large chunks of resources and manage them internally

• Kernel module
 – Does not require kernel modifications
 – Implements lightweight interface
 – Compatible with Fedora 15 kernel

Available in Palacios 1.3 (Nov. 2011)
Palacios and Linux

Hardware

Hadoop Processes KVM VM HPC VM

Linux/KVM Palacios VMM

Resource Manager

Direct User Feedback

Application Performance Measurements
Palacios and Linux memory

- Linux disables selected memory blocks
 - Internally (via memory hotplug)
 - Large contiguous blocks (128MB / block)
 - Memory is still accessible!

- Palacios assumes responsibility of disabled blocks
 - Uses internal memory allocator

- Palacios and Linux coexist without interference
 - User chooses physical memory regions to assign
Palacios memory hierarchy

- HPC VM Application
- Guest Page Tables
- LWK allocator
- Palacios VM Memory
- Palacios Memory Manager
- Palacios Assigned Memory
- Linux Assigned Memory
- Linux SL*B allocator
- OS Memory manager
- Physical RAM
- Page Tables
- Linux Application

- Physical RAM
- OS Memory manager
- Page Tables
- Linux Application
- Linux Assigned Memory
- Linux SL*B allocator
Results

• Evaluations are currently underway
 – Have collected preliminary results

• HPC Benchmark (hpccg), run time (secs)
 – 1 VM, 4 cores

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Mean</th>
<th>Stddev</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host Kitten</td>
<td>15.15</td>
<td>0.02</td>
</tr>
<tr>
<td>Kitten guest (Palacios)</td>
<td>15.28</td>
<td>0.06</td>
</tr>
<tr>
<td>Kitten guest (KVM)</td>
<td>18.28</td>
<td>2.96</td>
</tr>
<tr>
<td>Host Linux</td>
<td>15.93</td>
<td>2.68</td>
</tr>
</tbody>
</table>

High standard deviation implies poor scalability
Open issues with I/O

• IOMMU’s and SRIOV are now prevalent
 – Direct access to network hardware
 – Palacios can provide high performance I/O

• Two issues
 – VM placement (possibly random topology)
 – Traffic contention

• These should be solvable
 – Intelligent placement and scheduling
 – Specialized network architectures
 • Optical networks, reservable networks, others
Infiniband on Commodity Linux

(Linux guest on IB cluster)

![Graph showing bandwidth measurement for Native and Virtualized systems vs message size.](image)

2 node Infiniband Ping Pong bandwidth measurement
Conclusion

• **Clouds are not supercomputers**
 – Despite their claims to the contrary
 – Virtualization can bring them closer to convergence

• Virtualization can bypass host OS overheads

• Palacios and Linux
 – Lightweight environments on heavyweight OS
Thank you

- **Jack Lange**
 - jacklange@cs.pitt.edu
 - http://www.cs.pitt.edu/~jacklange

- **V3Vee Project**
 - http://www.v3vee.org