
VRIJE UNIVERSITEIT AMSTERDAM

Auto-tuning a LOFAR radio
astronomy pipeline in JavaCL

Author
Jan Kis

Supervisors

Rob V. van Nieuwpoort Ana Lucia Varbanescu

A thesis submitted in fulfillment of
the requirements for the degree of

Master of Science

in the
Faculty of Sciences

Department of Computer Science

Amsterdam 2013

I would like to express my deepest gratitude to Ana Lucia Varbanescu and Rob V.
van Nieuwpoort for their professional supervision and sincere interest in making
this a better work. I should never forget our long discussions over a cup of tea
and ”bitterkoekjes” after which I felt both academically enlightened and high-
spirited.

Abstract

Modern radio telescopes, such as the Low Frequency Array (LOFAR) in the north
of the Netherlands, process the signal from the sky in software rather than ex-
pensive special purpose hardware, This gives the astronomers an unprecedented
flexibility to perform a vast amount of various scientific experiments. However,
designing the actual software that would give optimal performance for many dif-
ferent experiments, possibly also running on different hardware is a challenging
task. Since optimizing the software by hand to fit the various experiments and
hardware is unfeasible, we employ a technique called parameter auto-tuning to
find the optimal solution. Auto-tuning is based on a construction of a more generic
software which has the ability to explore its parameter space and choose the values
optimal for the experiment and hardware at hand. In our work we devise a system-
atic approach for auto-tuning signal processing pipelines which is not limited to
radio astronomy and can be easily extended to other fields as well. Since the com-
putations in radio astronomy are suitable candidates for parallelization, we exploit
the power of GPUs. For that purpose we use the OpenCL programming standard.
Furthermore, we combine OpenCL with Java to gain the advantages of higher
level programming language such as greater productivity and code portability.

Contents

1 Introduction 4

2 Background 8

2.1 LOFAR pipeline . 8

2.1.1 Poly-phase filter . 8

2.1.2 Beam former . 9

2.1.3 Correlator . 10

2.2 Auto-tuning . 11

3 Programming model 13

3.1 OpenCL . 13

3.2 JavaCL . 14

3.3 JavaCL vs OpenCL vs CUDA 15

4 Related work 18

4.1 Radio astronomy pipelines . 18

4.2 Auto-tuning . 19

4.3 Data layout transformation . 21

4.4 Summary . 22

1

5 Kernel auto-tuning 23

5.1 Identification of parameters . 23

5.2 Construction of tunable kernel 24

5.2.1 Generic vs specific kernel 25

5.2.2 Full tiling . 25

5.3 Exploration of parameters’ values 28

5.3.1 Cell shape . 29

5.3.2 Cell size . 30

5.3.3 Work group size . 33

5.3.4 Shared memory . 33

5.3.5 Combining several parameters 35

5.4 Conclusions . 38

6 Data layout conversion 40

6.1 Data layout introduction . 40

6.2 Transposition schemes analysis 41

6.3 Transposition schemes implementation 44

6.4 Transposition schemes comparison 50

7 Pipeline auto-tuning 53

7.1 Motivation . 53

7.2 Specific pipelines analysis . 54

7.3 Experiments setup . 56

7.4 Tuning Pipeline 1 . 56

7.5 Tuning Pipeline 2 . 61

2

7.6 Pipeline tuning on CPU . 66

7.7 Tuning time . 66

7.8 Conclusions & recommendations 68

8 Conclusions 70

8.1 Answers . 70

8.2 Future work . 72

3

Chapter 1

Introduction

The broader aim of this project is to help astronomers in their day to day work
when observing the sky and trying to answer the countless questions about our
universe. Within the wide field of astronomy we focus ourselves on radio astron-
omy which studies celestial objects through radio waves they emit. Unlike the
traditional, optical astronomy the radio astronomy is interested in wavelengths
greater than visible light, and can therefore detect and examine broad range of
celestial objects not visible by optical telescope (such as supernovas and pulsars).

The first radio telescopes emerged in the late 30s. Consisting of only a single
antenna they were quite simplistic and often experiment specific. Nowadays, the
radio telescopes consist of large arrays of antennas which form a single virtual
gigantic telescope. This allows the astronomers to perform various kinds of obser-
vations and experiments. For instance, astronomers can choose a celestial object
of their interest based on the frequency range the object emits. Additionally, one
can also choose the direction, area and resolution of the observation.

The telescope connected to our work is called Low Frequency Array (LOFAR)
[28]. It was constructed and is used by the Netherlands Institute for Radio As-
tronomy (ASTRON). In contrast to other radio telescopes, which use large and
expensive satellite dishes to receive signal from the sky, LOFAR consists of many
simple omni directional antennas (Figure 1.1). We refer to a group of these anten-
nas placed closely together as a station. Currently, LOFAR has around 40 stations,
most of them in the north of the Netherlands. However, there are few stations sit-
uated outside of the Netherlands in Germany, U.K., France and Sweden [2].

4

Figure 1.1: LOFAR antennas (single station).

Figure 1.2: A simplified overview of LOFAR processing

LOFAR, unlike other radio telescopes, uses a novel approach of processing the
signal coming from different stations in software rather than in expensive, cus-
tom made hardware. A simplified overview of the LOFAR signal processing is
depicted in Figure 1.2. Only the first part (within a single station) happens in
hardware using FPGAs. The rest of the processing is done in software.

The crucial part of the LOFAR processing happens in real-time (pink/red box in
Figure 1.2). This is due to the enormous amount of data the stations receive. Since
it is not possible to store all the data, we need to reduce it in real-time and store
it afterwards. In our work, we concentrate entirely on the real-time processing
which is fairly dynamic and can be configured according to the kind of observa-
tion astronomer wants to perform. The real-time processing consists of several
smaller computational parts called kernels. Usually a single astronomical obser-
vation requires a connection of multiple kernels referred to as pipeline. Different
observations might require connection of different kernels (pipelines). For exam-
ple, if we were interested in observing a certain area of the sky we would use a
pipeline of a band-pass filter followed by a beam former kernel.

5

Our main goal is to perform increasingly large observations. Ideally, we would
like to perform even bigger observations, than LOFAR currently supports, to lay
down a path for an important international project called the Square Kilometer
Array (SKA) [8]. Since SKA intends to be the largest and most sensitive radio
telescope ever built, we need to scale up in terms of:

• the number of stations observing the sky

• the frequency range of the signal

• the explored area of the sky during a single observation

Computation-wise performing larger observations means to process larger amounts
of data in the same amount of time which in turn stresses the importance of having
the LOFAR pipeline processing as fast as possible.

To achieve the best possible performance, currently, LOFAR uses the Blue Gene
supercomputer from IBM. However, using Blue Gene has several disadvantages:

• it is expensive to run and maintain

• it gets outdated and needs to be replaced every 4 years

• it is vendor specific

In our work we exploit many-core architectures, especially GPUs as viable and
cheaper alternatives to Blue Gene. To avoid limitation to single hardware we use
OpenCL language which allows our solution to run on broad range of architectures
ranging from multi-core CPUs through Cell Broadband Engine to GPUs.

A further important aspect of our effort to achieve the best possible performance
is a technique called auto-tuning. It allows us to explore different parameters of
our solution and pick the values most suitable for the underlying hardware. Fur-
thermore, different kinds of observations might have different optimal parameter
values and auto-tuning helps us to find them.

In this context the main question we address in this work is: How much perfor-
mance can we gain by auto-tuning the LOFAR pipeline? We split this question
into three more generic research questions:

6

• How to auto-tune a single kernel?
First of all, we need to know how to optimize each kernel in the pipeline.
The answer to this question will therefore be a systematic method for creat-
ing a kernel suitable for auto-tuning.

• How to efficiently connect kernels?
Once we have optimal kernels, we need to find out how do we connect
two kernels. This can be a challenging task; especially, when the two op-
timal kernels use data in different formats. We will explore two generic
approaches for connecting any two kernels.

• How to auto-tune an entire pipeline?
Finally, when we know how to connect the kernels, we can explore how do
we make them perform optimally together within a pipeline. The answer
should generalize from the 2 kernels problem to the N kernels as well as
evaluate the performance of the entire pipeline.

The structure of the thesis:
In the remainder of the thesis we first introduce the most important LOFAR ker-
nels and closer explain the advantages of auto-tuning (Chapter 2). In Chapter 3
we present the used programming model of our solution. We take a look at related
work in Chapter 4. We address our first research question (How to tune a single
kernel?) in Chapter 5. Then, we examine how to connect two kernels in Chap-
ter 6. Finally, in Chapter 7 we tune an entire pipeline of kernels. We conclude by
summarizing our most generic findings and presenting new ideas for future work
(Chapter 8).

7

Chapter 2

Background

In this chapter we first present necessary information on the LOFAR pipeline (Sec-
tion 2.1). Afterwards, we explain the term auto-tuning and the motivation behind
it (Section 2.2).

2.1 LOFAR pipeline

The most important kernels from the real-time LOFAR pipeline are the poly-phase
filter (PPF), the beam former and the correlator. When talking about the LOFAR
pipeline we mean the connection of the LOFAR kernels (PPF, beam former and
correlator). When mentioning a generic pipeline, we refr to a connection of sev-
eral arbitrary kernels. An introduction to the PPF, beam former and correlator
follows.

2.1.1 Poly-phase filter

The poly-phase filter is the first step in the LOFAR pipeline. Its purpose is
twofold. First, the signal is filtered by the Finite Impulse Response (FIR) filter
which adjusts each sample according to N − 1 previous samples. Each of the
N − 1 previous samples and also the filtered sample is multiplied by a real co-
efficient (weight) and the results are summed [38]. The number of the combined

8

samples (N) is referred to as the number of taps. Secondly, the signal is split into
more frequency channels at the cost of lower time resolution by the Fast Fourier
Transformation (FFT).

Since it is out of the scope of this work, we did not implement our own FFT.
Instead, we used an FFT implementation already available for the language of
our choice (JavaCL). The disadvantage of the JavaCL FFT is that it is roughly 100
times slower than the fast CUFFT library from NVIDIA [25]. As the development
efforts for an optimized FFT are too large we settle for this solution. However,
for a fast production pipeline, further effort needs to be invested in writing an
OpenCL/JavaCL FFT to get close to the performance of CUFFT.

Further on we often treat the FIR filter and FFT as two separate kernels.

2.1.2 Beam former

The beam former step of the LOFAR pipeline allows the astronomers to direct
their observations to a certain area of the sky. It combines the signal received by
different stations to create one big virtual directional antenna.

However, a straight forward signal combination without any modification is not
enough since the antennas receive the same signal with different phase shifts due
to the difference in their spatial positions. As a result, before combinig the signals
we need to adjust them. The signal adjustment is done by simply multiplying each
signal with a weight based on station’s position and observed source location.
Afterwards, a beam is formed by summing up the signals from all stations [32].

Usually we calculate several beams. To cache the access to the slow global mem-
ory and reuse the signal of a single station, when calculating different beams, we
compute a block of beams at once. The whole block of beams is loaded into regis-
ters so that when we iterate through stations we can reuse a single station for each
beam within the beam block.

9

Figure 2.1: Signal phase shift due to receive time delay.

2.1.3 Correlator

The correlator kernel extracts the relevant signal from the data coming from the
stations. It removes the noise by correlating signals from all pairs of stations
[39, 28]. Additionally, it can also reduce the data size (when the number of obser-
vations per second is larger than number of stations squared, which usually is the
case).

From computational aspect, correlating signals from two stations means multi-
plying the signal of the first station with a complex conjugate of the other station
signal. We call a correlated pair of two stations a baseline (Figure 2.2). When
calculating the baseline for a pair of stations (a, b) it is enough to calculate just
one pair. In other words, the baseline of (b, a) can be easily deduced from (a, b);
hence, the triangle instead of a square in Figure 5.3. Similarly as with the beam
former, to exploit the speed of registers, we group the stations in cells. We load all
stations within a single cell into registers and calculate all the baselines formed by
the loaded stations; thus, we reuse the stations and reduce the access to the global
memory.

10

01234567

7

6

5

4

3

2

1

0

stations

sta
tio

n
s

cells of size
2x2

Figure 2.2: Triangel with calculated baselines divided to cells

2.2 Auto-tuning

To explain auto-tuning, we need to define manual tuning. Manual tuning, in
our perception, means exploring the values of different application parameters by
hand. For example, if we have a numeric parameter, we perform several runs with
different values and choose the best performing value. We can also have more
complex parameters than just numeric ones, which can require the construction
of multiple versions of a kernel, and running each kernel to find the best perform-
ing one. For instance, the correlator’s cell size and shape is such a parameter
(Section 5.2.1).

In contrast to manual tuning, the automatic tuning (auto-tuning) is a mechanism
operating upon the application which searches through parameter values (ideally
all possible values) automatically and chooses the best one. There are multiple
advantages to auto-tuning:

• Auto-tuning brings performance portability. We can tune an application on
any hardware it is intended to run at, and thus obtain the optimal parameter
values for many different architectures.

11

• Auto-tuning can easily explore large ranges of values which would be te-
dious or even impossible to explore by hand.

• In the context of our work, auto-tuning allows us to find optimal parameter
values for different astronomical observations. The observations can differ
for example in number of used stations or in the kernels connected in the
pipeline.

The trade-off for performing auto-tuning is the need to implement a generic kernel
which is capable of exploring all parameters’ values. Nevertheless, we still be-
lieve that implementing auto-tuning is faster than manual tuning and yields more
generic, better extendable code.

12

Chapter 3

Programming model

LOFAR currently runs its pipeline on the Blue Gene supercomputer. Blue Gene
is very expensive, vendor specific and compared to GPUs also power consuming.
Therefore, we experiment with parallelizing the kernels on many-core architec-
tures, mainly GPUs. To utilize the power of GPUs, we use technology called
OpenCL (Section 3.1). We combine OpenCL with Java, through a library called
JavaCL (Section 3.2), mainly because of the easier development process. Finally,
in Section 3.3 we compare the performance of JavaCL to OpenCL and CUDA to
see whether we are loosing any performance due to our choice of Java.

3.1 OpenCL

To get the best performance out of our pipeline, we mainly explore the paralleliza-
tion of the pipeline on GPUs. To achieve code portability and be able to run the
pipeline on several different GPUs or even multi-core CPUs, we use OpenCL.
OpenCL is a general purpose programming standard, implemented by different
hardware vendors as a C library, suitable especially for high performance parallel
computing [7].

OpenCL gives us a code portability across a broad range of architectures. When
not choosing OpenCL, we might need at least one implementation for CPUs, one
for NVIDIA GPUs and another one for ATI GPUs.

13

The programming model of OpenCL language closely maps the hierarchical com-
puting and memory models of GPUs [23]. In OpenCL one writes a single piece
of code (kernel) which is run by a large number of threads (work items). All the
work items can access the GPU’s global memory. Furthermore, the work items are
grouped in work groups where the items from a single group can access a shared
memory (in OpenCL called local memory). The shared memory is often used as
cache as it is faster than the global memory.

OpenCL distinguishes between the code run on device (usually GPU) and the code
run on host (usually CPU). Nevertheless, if there is no GPU the device and host
usually refer to the same CPU.

3.2 JavaCL

For our implementation we decided to combine OpenCL with Java to get the ad-
vantages of a higher level programming language. Although C or C++ would be
a more natural choice since OpenCL is a C library, we chose Java for its sim-
plicity and increased productivity. What is more, this enables our future plans to
distribute the computation across several hosts with the IBIS/IPL Java library [3].

There are multiple Java/OpenCL libraries that wrap the OpenCL methods and
allow the programmer to call OpenCL from Java. First, we looked at open source
library supported by AMD called Aparapi [1]. In Aparapi the programmer writes
the OpenCL kernels in Java by extending a simple Kernel interface. This approach
not only very nicely supports Java’s Object model but it also allows transparent (to
the programmer) data copying to and from the GPU. On the minus side of Aparapi
is the fact that the programmer looses the fine control over the kernel and can
not use some aspects of OpenCL such as shared memory for example. Another
library we considered is called JOCL [5]. However, the outdated documentation
and failure to install it rendered this library useless. Finally, we examined and
decided to use JavaCL open-source library [4]. JavaCL incorporates the OpenCL
nicely into the Java Object model. It allows calling the kernels written in plain
OpenCL, and thus the programmer does not loose the fine control in contrast to
Aparapi. What is more, it has a solid user base and active forum (unlike JOCL).

14

Optimization CUDA OpenCL
cells (registers) yes yes
shared memory yes no
vector operations n.a. yes

Table 3.1: Comparison of the optimizations present in the reference implementa-
tions (n.a. stands for not available)

3.3 JavaCL vs OpenCL vs CUDA

In this section we verify how does JavaCL perform in comparison with plain
OpenCL and CUDA. CUDA is a language specific for NVIDIA GPUs with a
programming model very similar to OpenCL. All the experiments are performed
on the correlator kernel. Since our computation runs almost entirely on device,
we compare only the kernel execution times.

Our JavaCL implementation originated from two reference implementations: One
written in CUDA and used in [39] and another one written in OpenCL. The com-
parison of the different optimizations available in the two implementations is pre-
sented in Table 3.1. The CUDA implementation achieves better performance than
the OpenCL mainly because of the possibility of using the shared memory. Both
versions can calculate cells of fixed size only.

Having the two reference implementations, we developed the JavaCL version of
the correlator in two steps. First of all, we ported the existing OpenCL version to
JavaCL. This was done by rewriting the existent C host code into Java. Since both
implementations (C and Java) use the same kernel and also the same OpenCL
compiler, we expect the performance to be almost identical. The performance
comparison presented in Figure 3.1 proves that JavaCL imposes no overhead over
OpenCL.

Secondly, inspired by the CUDA reference implementation, we optimized the ker-
nel by adding shared memory. To verify how the JavaCL optimized kernel com-
petes with CUDA, we compared the two versions in Figure 3.2. The comparison
shows that our optimized JavaCL version can even slightly outperform the CUDA
reference implementation.

All in all, we confirmed that our choice of calling OpenCL from Java is no slower
than using plain OpenCL. As a result, we can enjoy the ease of programming in a
higher level language (Java).

15

1x1 1x2 2x2 2x3 3x3 3x4 4x4 4x5 5x5 5x6 6x6 6x7 7x7
Cell size & shape

0

20

40

60

80

100

120

140

Pe
rfo

rm
an

ce
 (G

Fl
op

/s
)

JavaCL

OpenCL

Figure 3.1: JavaCL vs OpenCL comparison on GTX 480 without shared memory
(higher is better)

16

192 256 320 384 448 512
Work group size

250

300

350

400

450

500

550
Pe

rfo
rm

an
ce

 (G
Fl

op
/s

)

JavaCL

Cuda

(a) Cell size 1x4

192 256 320 384 448 512
Work group size

300

350

400

450

500

550

Pe
rfo

rm
an

ce
 (G

Fl
op

/s
)

JavaCL

Cuda

(b) Cell size 1x6

Figure 3.2: JavaCL vs CUDA comparison GTX 480 with shared memory (higher
is better)

17

Chapter 4

Related work

In this chapter we discuss the related work which we divide according to the three
topics we touch upon in our work. First, we discuss the work done on radio
astronomy signal processing (Section 4.1). The core of the chapter is devoted to
auto-tuning (Section 4.2). We finish the chapter presenting previous work on data
transformation (Section 4.3).

4.1 Radio astronomy pipelines

Up until recently, radio telescopes processed the received signal in hardware. This
solution requires special purpose hardware to be designed. Producing it is not only
extremely costly but also time consuming. Furthermore, such hardware is rarely
capable of adjusting to the different kinds of observations the astronomers would
like to make.

As a consequence, software radio telescopes emerged. To our knowledge, the
first such a telescope was the Low Frequency Array (LOFAR) [16, 17] from the
Netherlands Institute for Radio Astronomy (ASTRON). LOFAR is a pathfinder for
an ambitious project to construct the largest radio telescope Square Kilometer Ar-
ray (SKA) [8] which should serve to find answers to fundamental questions about
the origin of universe. Other SKA pathfinders are the MeerKat and Askap tele-
scopes stationed in south Africa and Australia respectively [15, 6]. After LOFAR,
other radio telescopes started to migrate from hardware to software solutions. For

18

example, the Giant Metrewave Radio Telescope (GMRT) [29]. The U.S. National
Radio Astronomy Observatory (NRAO) is also researching the potential of soft-
ware solutions [18]. The results of these instruments prove that using software in
modern radio telescopes is a viable solution.

In our work we concentrate on the LOFAR real-time software pipeline [28]. We
are specifically interested in using many-core hardware architectures which should
replace the currently used Blue Gene super-computer. The previous work on the
specific kernels (poly-phase filter [38], beam former [32] and correlator [39])
within the LOFAR pipeline already suggest that many-core hardware and espe-
cially GPUs have the potential to replace Blue Gene. Our work further extends
the studies on poly-phase filter, beam former and correlator. Exploiting auto-
tuning we perform a thorough analysis on the performance which can be gained
by connectint the kernel is one pipeline.

4.2 Auto-tuning

The need for auto-tuning and its importance in high performance computing have
been advocated in several studies, for example in analysis on parallel computing
from Berkeley [11]. We characterize these studies according to different criteria:

• Time of tuning
Auto-tuning can happen either online or offline. Offline tuning happens
before the actual run in which we want to achieve the best possible per-
formance. Offline tuning is appropriate when we want to perform a lot of
experiments with the same setup on the same hardware. Most of the exist-
ing work focuses on offline tuners. Online (or run-time) tuning optimizes
the application during each run. As [10] suggests, this type of auto-tuning is
suitable for cloud computing services with heterogeneous environments. A
different, but still interesting idea is incorporating the auto-tuning into the
operating system and tune every running application at the OS level [36].

• Object of tuning
Many studies in auto-tuning deal with compiler tuning [9, 37]. This kind
of work mainly addresses the exploration of various loop transformations
for C and Fortran compilers. At the opposite side of the spectrum are what
we call the application tuners. These have broader scope and explore the
problem, the implementation and also the technology parameters rather than
focusing solely on low level loop optimizations (for example [27, 41]).

19

• Tuning approach
Choosing the optimal parameters’ values is not trivial since there are usu-
ally many possible combinations. Based on how does the tuner choose the
optimal parameter values, we can divide them into model based and search
based. The model based tuners try to avoid search by using a model closest
to the underlying hardware [14, 43]. The search based tuners can be further
divided by the method they use to explore the search space:

– exhaustive search
– hill climbing
– random sampling
– dynamic programming
– evolutionary algorithms
– machine learning

From the search based tuners, the modst interesting is the SPIRAL frame-
work [27] which implements and compares multiple of the above mentioned
search techniques.

• Tuner applicability
Based on the type of problems for which we can use the auto-tuner, we can
distinguish three groups of tuners. The first group consists of problem spe-
cific tuners which can handle only one type of problem [20, 41, 14]. The
second group includes domain specific tuners which can handle a range of
problems from the same domain - for example, linear algebra matrix oper-
ations and stencil calculations [12, 40, 22]. Although being problem and
domain specific, and not closely related to our work, these two groups can
still have an inspirational value by showing successful auto-tuning method-
ologies. For instance, in [41] the authors introduce the Roofline model [42]
to rank the optimizations to be applied and only choose those that have the
potential to bring actual performance improvement. The third group repre-
sents generic tuning frameworks which can be used for arbitrary problems.
We found the FLAMINGO auto-tuning framework [33] (actively employed
in a broader project OP2) [21] especially interesting. FLAMINGO is writ-
ten in Python and it tunes the application by exploring the values of applica-
tion’s command line arguments. It is generic enough to specify the metric
which we want to maximize or minimize. Another generic tuning frame-
work we briefly studied is called Atune-IL [31]. It is based on pragmas
in the source code which identify the parameters to be tuned. In each run
Atune-IL replaces the pragmas with specific parameter values that should
be explored.

20

In the light of the above classification, we designed and build a custom made, of-
fline, application tuner performing exhaustive search. Since the hardware for LO-
FAR rarely changes and there is only a limited number of different observations,
which we need to tune for, an offline tuner is enough for us. Furthermore, for the
ease of implementation we use the exhaustive search. In the end we were able
to prune it significantly by hand. Finally, we decided to implement our custom
tuner instead of using one of the generic tuners because of their lack of flexibility
in generating sequences of parameter values (like integer sequences or permuta-
tions).

4.3 Data layout transformation

The topic of data reshuffling or data layout transformation is a fairly new topic in
many-core programming. However, especially in the case of GPUs, layout trans-
formation is of a key importance as the layout has critical performance impact.

The significance of the data layout in two dimensional matrices is introduced in
[30] together with a solution for a fast out-of-place transposition. An API for
data layout transposition called Dymaxion [13] takes it a bit further and offers
transformations to several layouts. However, it still discusses two dimensional
matrices only.

A considerable step forward has been taken at the University of Illinois in studies
on general data lyout transformations. In [35] a data layout formalism capable of
expressing any number of dimensions is introduced. The work not only considers
a dimensions permutation as layout transformation but it also discusses dimension
splitting. The optimal layout is chosen based on a suitable hardware model. In
[34] transformation from any layout to a common, custom made layout called
array of structure of tiled arrays (ASTA) is discussed. The work considers an in-
place transposition based on finding cycles among new indices. Unfortunatelly,
this approach can lead to a poor performance on GPUs due to the fairly random
memory access pattern of single threads.

Our work uses a generic data layout which is similar to the formalism in [35].
We focus ourselves only on dimensions permutation and skip dimension split-
ting. Additionally, due to the low number of dimensions, we explore all possible
layouts. In contrast to [34], we use a fast out-of-place transformation.

21

4.4 Summary

Overall, the previous studies presented in this chapter explore either the auto-
tuning of a single kernel or data layout conversions or software radio astronomy
pipelines but none of the studies brings these three topics together. Consequently,
our work can be considered unique in employing the notion of auto-tuning (espe-
cially data layout tuning) within the context of an entire pipeline of kernels.

22

Chapter 5

Kernel auto-tuning

Although the OpenCL code (and also the JavaCL code) is portable across several
architectures, its performance is not. A traditional approach is to hand-tune the
kernel for every architecture the kernel is expected to run at. However, it would
take considerable amount of time, it would require to study each of the hardware
architecture in great detail and in the end the solution would be most probably not
portable (performance-wise) to new architectures. On the other hand, one can use
automatic kernel tuning (auto-tuning) to find the optimal set of parameters’ values
and optimizations for any architecture. We believe that auto-tuning is less costly
in terms of development time and the knowledge required about all the potential
hardware.

In this chapter we show a systematic approach for tuning a single kernel. We
focus ourselves on the computationally most complex kernel of our pipeline, the
correlator kernel. We first identify the parameters which we would like to tune
(Section 5.1). Afterwards, in Section 5.2 we discuss the challenges of construct-
ing a tunable kernel. Then, we perform the actual tuning in several experiments
(Section 5.3). Finally, we conclude by stating our findings in Section 5.4.

5.1 Identification of parameters

In order to successfully employ auto-tuning one first needs to identify the param-
eters with the greatest performance impact. These parameters will be later on
tuned. We identified and categorized the parameters as follows:

23

• Technology specific
These parameters pertain to the language and technology used. In our case,
these are OpenCL specific parameters:

– Work group size

– Number of work groups

• Problem specific
These parameters are specific to the problem at hand. In our case, these are
parameters characteristic for correlating radio astronomy signals:

– Number of stations

– Number of channels

– Number of time samples

Although, the number of stations and channels is specified by user (it is not
something a programmer can choose freely), it does make sense to include
them in the auto-tuning. For instance, it helps us to answer a question of
how do the optimal parameter values differ for different number of stations.
Furthermore, it can give indications on which numbers are favorable, offer-
ing choices for the astronomers in setting up their experiments.

• Implementation specific
These parameters are specific to the particular implementation. In our case,
these are parameters specific to our implementation of the correlator kernel:

– Cell shape

– Cell size

– Use of shared memory

5.2 Construction of tunable kernel

After identifying the parameters, it is essential to make the kernel tunable by al-
lowing exploration of each parameter value space. For example, in the case of
the correlator kernel we need to be able to explore the space of cell sizes (Section
5.2.1). Ideally, we would like to explore the space in a continuous fashion (be
able to explore every possible value). Once we are able to explore the different
cell sizes we need full tiling (different cell division scheme) for large cells to im-
prove the reliability of our measurements 5.2.2. Implementing these requirements
means making the code flexible. This is often not trivial and time consuming.

24

5.2.1 Generic vs specific kernel

To auto-tune the correlator kernel we have to be able to run the kernel on cells of
arbitrary size. To accommodate for cells of any width and height we implemented
dynamic kernel generation. A specific kernel is generated for a given cell width
and height.

Another way to calculate cells of any size is to have a single generic parametrized
kernel that loads samples to array and iterates through it. Arrays are usually ac-
cessed in for loops which causes that they need to be stored in global memory
rather than in registers. Consequently, one tries to avoid the use of small arrays
which can possibly fit into registers. Nevertheless, we implemented a generic
kernel and compared it to the generated specific kernel (see Figures 5.1, 5.2). Sur-
prisingly, the performance of the generic kernel (using the arrays) was in most
cases comparable to the specific kernel. A further inspection of the NVIDIA’s
pseudo assembly code (PTX) generated by the compiler revealed that the two ker-
nels have the same amount of loads and stores from global memory. Judging from
these observations we assume that the compiler is able to unroll the for loop ac-
cessing the array; hence, it can use registers instead of global memory. The only
case when the generic kernel performs significantly slower than the specific one
occurs when using cells of size N x 1 where N denotes cell width and has value
greater than 2. The analysis of the PTX code shows lower register usage and
higher number of loops. In another words, the NVIDIA compiler fails to unroll
the loop and consequently also fails to allocate the array in registers.

Having proved that the generic kernel can compete with the specific kernel the
further correlator experiments will use the generic kernel unless stated otherwise.

5.2.2 Full tiling

In this section we use word tiling to refer to the division of baselines to cells. In
our solution we calculate only those baselines which are part of the tiling (i.e.
they lie within a cell). We call the baselines which lie within a cell and also
within the calculated triangle regular baselines. The baselines which lie within the
calculated triangle but outside of the tiling we call missing baselines. Finally, the
baselines which are outside of the calculated triangle we call unwanted baselines.
The three kinds of baselines are illustrated in Figure 5.3. Note that when the tiling
covers the entire triangle or exceeds it we have 0 missing baselines.

25

1x
2

2x
1

1x
4

4x
1

2x
2

1x
6

6x
1

2x
3

1x
8

8x
1

2x
4

Cell size & shape

0

100

200

300

400

500

600
Pe

rfo
rm

an
ce

 (G
Fl

op
/s

)
GTX480 generic

GTX480 specific

Figure 5.1: Generic vs specific kernel comparison on GTX 480 (higher is better)

1x
4

2x
2

1x
16 2x
8

4x
4

1x
36

2x
18

3x
12 4x
9

6x
6

1x
64

2x
32

4x
16 8x
8

Cell size & shape

0

10

20

30

40

50

60

70

80

Pe
rfo

rm
an

ce
 (G

Fl
op

/s
)

xeon generic

xeon specific

Figure 5.2: Generic vs specific kernel comparison on Intel Xeon (higher is better)

26

01234567

7

6

5

4

3

2

1

0

stations

sta
tio

n
s

missing
baselines

regular
baselines

cells of size
2x2

unwanted
baselines

Figure 5.3: Categorization of baselines

In most of the experiments we use a simple single cell size tiling which does not
cover all the baselines. This is acceptable when using small cells which cover
most of the triangle and leave only small number of missing baselines. Since the
number of missing baselines is small, we expect the difference in performance
between calculating all the baselines and calculating only the regular baselines to
be negligible.

However, with large cell sizes we get a large number of missing baselines and the
performance difference can not be neglected any more. In very few cases where
the underlying architecture prefers very large cell sizes, we use full tiling which
covers all the baselines. Normally, the presented experiments do not use full tiling.
If they do, it is explicitly stated.

We identified three different possibilities to implement the full tiling. The first
option (which we initially implemented) is to calculate the regular baselines first
and then in the second step recursively create cells of different sizes as large as
possible (Figure 5.4). To handle the second step one has two alternatives. The first
one is to issue as many kernel calls as there are cell sizes. This is not efficient since
each kernel call would have only very few cells to calculate, which would lead to
a poor device utilization. The second alternative (which was also implemented)
is to create a flexible kernel that can calculate in a single call cells of different
sizes. Nevertheless, the flexibility of the kernel to calculate cells of different sizes
caused that the compiler was not able to take advantage of the cells and store them
in the registers, which resulted in a low performance.

27

01234567

7

6

5

4

3

2

1

0
Cells:

 1 .. 4x4 ..
 2 .. 2x2 ..
12 .. 1x1 ..

(a) Option 1

01234567

7

6

5

4

3

2

1

0
Cells:

1 .. 4x4 ..
6 .. 2x2 ..

(b) Option 2

01234567

7

6

5

4

3

2

1

0
Cells:

10 .. 2x2 ..

(c) Option 3

Figure 5.4: Different options for calculating missing baselines

Our second attempt to implement the full tiling creates an initial non full tiling first
and then in second step creates complementary tiling for the missing baselines
which can exceed the calculated triangle (Figure 5.4). The complementary tiling
uses cells of the same size which can be different from the cells for the regular
baselines. Unlike in the previous option we do not have to create a super flexible
kernel. We simply run our kernel for arbitrary cell size twice. As a result, the
performance of full tiling is acceptable (see Figure 5.8).

Third option to implement full tiling is to calculate all baselines in one step. All
the cells would be of one size and in order to cover all the baselines the tiling
would exceed the calculated triangle. However, with large cells we would calcu-
late many unwanted baselines (Figure 5.4) resulting in large overhead. Since we
needed a solution for large cells, we did not implement this option.

5.3 Exploration of parameters’ values

After constructing a tunable kernel we can proceed to perform the actual tuning.
We tune the kernel in two steps. First, we explore the parameters separately to get
a feel of how they individually influence the performance. We also hope to use
this separate tuning to find out border values beyond which the performance drops
dramatically. Afterwards, we perform combined parameter tuning on parameters
that correlate.

To reliably measure the performance of different parameter values, we chose
GFLOP/s as our unit of measure. Simply measuring time could be highly im-
precise as cell size and shape parameters influence the number of operations exe-

28

1x
2

2x
1

1x
4

4x
1

2x
2

1x
6

6x
1

2x
3

Cell size & shape

0

100

200

300

400

500

Pe
rfo

rm
an

ce
 (G

Fl
op

/s
)

GTX480 specific kernel

Figure 5.5: Cell shape tuning on GTX 480 (higher is better)

cuted. In the case of the full tiling we calculate also unwanted baselines Therefore
it is questionable which operations should be included when calculating the per-
formance. We can either include the operations of the unwanted baselines or we
can leave them out including only the operations of the baselines within the tri-
angle. As the purpose of the correlator is to calculate only the baselines within
the triangle, we are more interested in the performance of those baselines than
the performance of all calculated baselines. As a consequence, when mentioning
the performance of full tiling we only include operations required to calculate the
regular baselines.

5.3.1 Cell shape

The cell size and shape are parameters with great performance impact. The larger
the cell is the more stations can be stored in registers and the less accesses to global
memory occur. However, with too large cells there is register spilling which often
leads to a significant performance drop.

The impact of the cell shape is best seen in Figure 5.5 which shows that GTX
480 prefers a cell to be a vertical line. We attribute this behavior to a convenient
memory access pattern in which each thread has to load only one new station. On
the other hand, with the horizontal or square cells each thread must read multiple
new stations.

29

1x
4

2x
2

1x
16 2x
8

4x
4

1x
36

2x
18

3x
12 4x
9

6x
6

1x
64

2x
32

4x
16 8x
8

Cell size & shape

0

10

20

30

40

50

60

70

80
Pe

rfo
rm

an
ce

 (G
Fl

op
/s

)
Xeon generic kernel

Figure 5.6: Cell shape tuning on Xeon (higher is better)

Contradictory to GTX 480, Intel Xeon performs better with square cells (see Fig-
ure 5.6). There are two factors which we believe make square cells most suitable
for Xeon. First of all, CPUs can take advantage of their larger and better caches
which makes them less sensitive to memory access patterns [26]. Secondly, the
use of registers is better with square cells than with any other shape. For example,
the cell 1x4 loads 5 stations into registers while the cell 2x2 needs to load only 4
stations.

5.3.2 Cell size

Using the best shape inferred in the previous section, we examine the impact of
the cell size on the correlator performance.

As Figure 5.7 suggests, the GTX 480 is quite sensitive to the used cell size. We
can see that for larger tile sizes (from 1x7) the performance drops dramatically
due to register spilling. One can also notice that the optimal cell size for 32 and
64 stations is different. 32 stations have only a small number of cells; for instance,
for the cell size of 1x2 we have only 256 cells. Given that one work item calculates
one cell, and that for the experiment in Figure 5.7, we used work group size of
256 we need at least 256 cells to fully utilize the device. To get so many cells we

30

1x
2

1x
3

1x
4

1x
5

1x
6

1x
7

1x
8

Cell size

50

100

150

200

250

300

350

400

450

500
Pe

rfo
rm

an
ce

 (G
Fl

op
/s

)

GTX 480 32 stations

GTX 480 64 stations

Figure 5.7: Cell size tuning on GTX 480 with work group size 256 (higher is
better)

need the single cell to be of size 1x2 or smaller. Any larger cell would result in
the number of cells smaller than 256 (e.g. 1x3 results in 165 cells); thus, we get a
large number of stalled threads which are not doing any work.

The AMD Magny-cours, behaves quite contradictory to GTX 480. Judging from
Figure 5.8, the Magny-cours is much less sensitive to the cell size, and it even
performs better when using larger cells. However, with larger cells we also get
fewer cells. More specifically, when correlating 64 stations, we get only one cell
of size 32x32 resulting in 1056 missing baselines from a total of 2080. Hence,
in order to safely proclaim that Magny-cours performs best under larger cells it is
necessary to perform the experiment with full tiling scheme (Figure 5.8) which in
the end proves that the Magny-cours performs better with larger cells. We suppose
that this is happening due to two large L3 caches with a total size of 12 MB.

An experiment run on the Intel Xeon (Figure 5.9), confirms the theory that CPUs
are less sensitive to cell size. The Xeon performs best with cells of size 2x2. The
larger cells give comparable performance which is (with a few exceptions) almost
constant. As it is outside of the scope of this thesis, we did not investigate the
nature of the exceptions.

31

2x
2

4x
4

6x
6

8x
8

10
x1

0
12

x1
2

14
x1

4
16

x1
6

18
x1

8
20

x2
0

22
x2

2
24

x2
4

26
x2

6
28

x2
8

30
x3

0
32

x3
2

Cell size

40

60

80

100

120

140

160

180
Pe

rfo
rm

an
ce

 (G
Fl

op
/s

)
Magny incomplete tiling

Magny full tiling

Figure 5.8: Cell size tuning on Magny-cours with 64 stations and work group size
50 (higher is better)

2x
2

4x
4

6x
6

8x
8

10
x1

0
12

x1
2

14
x1

4
16

x1
6

18
x1

8
20

x2
0

22
x2

2
24

x2
4

26
x2

6
28

x2
8

30
x3

0
32

x3
2

Cell size

50

55

60

65

70

75

Pe
rfo

rm
an

ce
 (G

Fl
op

/s
)

Initial tiling

Full tiling

Figure 5.9: Cell size tuning on Intel Xeon with 64 stations and work group size
50 (higher is better)

32

64 12
8

19
2

25
6

32
0

38
4

44
8

51
2

Work group size

150

200

250

300

350

400

450

500
Pe

rfo
rm

an
ce

 (G
Fl

op
/s

)

32 stations 1x2

64 stations 1x5

Figure 5.10: Work group size tuning on GTX 480 (higher is better)

5.3.3 Work group size

In this section we take the best cell size and shape found in the previous two
sections, and tune the work group size.

Again, the GTX 480 is quite sensitive to the chosen work group size. As Figure
5.10 illustrates, with given cell size and shape, it achieves its peak at 265 work
items per work group. The Intel Xeon is again much less sensitive than the GTX
480 and achieves almost constant performance (plus or minus 2 GFLOP/s) no
matter whether the work group size is 16 or 512. AMD Magny-cours behaves
similarly. We attribute this behavior to OpenCL thread mapping on CPUs, where
it does not really matter whether we have 256 work items per work group and 16
work groups, or 16 work items per work group and 256 work groups.

5.3.4 Shared memory

When running a kernel on a GPU, enabling the shared memory is not really an
auto-tuning parameter. It is an optimization which in some cases brings perfor-
mance improvement. Furthermore, it forces the programmer to think about data

33

16 32 48 64 80 96 112 128 144 160 176
Work group size

40

60

80

100

120

140

160
Pe

rfo
rm

an
ce

 (G
Fl

op
/s

)
with shared memory

without shared memory

Figure 5.11: Shared memory tuning on AMD Magny-cours with cell size 8x8
(higher is better)

locality through which one can achieve better caching behavior. However, on
CPUs it is less clear whether to enable the shared memory or not. Usually, the
compiler stores the shared memory in global memory. Therefore, enabling the
shared memory results in redundant memory copying. However, sometimes the
compiler tries to store the shared memory in registers rather than in global mem-
ory; hence, improving the performance. For example, on the Magny-cours, the
use of shared memory in combination with a smaller work group size yields better
results than omitting the shared memory (see Figure 5.11). Unfortunately, when
using the shared memory, we can only run the kernel on cells of sizes up to 12x12
(when correlating 64 stations). When calculating larger cells, the kernel crashes,
most probably due to an inability to allocate all the necessary resources. On the
Intel Xeon the use of shared memory always decreases the performance (Fig-
ure 5.12), probably because the compiler allocates the shared memory in global
memory space.

34

16 32 48 64 80 96 112 128 144 160 176
Work group size

0

10

20

30

40

50

60

70

80
Pe

rfo
rm

an
ce

 (G
Fl

op
/s

)

with shared memory

without shared memory

Figure 5.12: Shared memory tuning on Intel Xeon with cell size 2x2 (higher is
better)

5.3.5 Combining several parameters

For the correlator kernel, it is essential to combine the auto-tuning of the cell size
and the work group size. The cell size influences how many cells we have and
the work group is responsible for calculating those cells. Ideally, we would like
to have the work group divisible by the number of cells, so that each work item
from a work group calculates one or more cells. That means that we would like to
avoid the situation where half of the work group calculates two cells and the other
half only one cell which leads to divergent and stalled threads. Since the optimal
work group size is also hardware and kernel dependent, it is not enough to simply
set the work group size to the number of cells. Thus, the combined auto-tuning is
inevitable.

In order to shorten the time of the auto-tuning we limit the search space using the
knowledge gained through separate parameter tuning in previous sections. For
example, we limit the size of the cell on GPU to a maximum of 1x7, and we do
not explore larger cells.

35

1x1
1x2

1x3
1x4

1x5
1x6

1x7

Cell size 6496128160192224256288320 Work group size

 150
 200
 250
 300
 350
 400
 450
 500

GFlop/s

 100
 150
 200
 250
 300
 350
 400
 450
 500

Figure 5.13: Cell size and work group size tuning on GTX 480 for 32 stations
(higher is better)

So far the best achieved performance on the GTX 480 for 32 stations is 416
GFLOP/s and uses a cell of size 1x2 and 256 as the work group size. For 64
stations the best performance, 496 GFLOP/s, is with a cell of size 1x5 and 256 as
work group size (see Figure 5.10).

However, as depicted in Figures 5.13 and 5.14, tuning the the cell size together
with the work group size on GTX 480 gives for 32 stations 485 GFLOP/s with 96
work items per work group and cell of size 1x5. For 64 stations it is 545 GFLOP/s
with 320 work items per work group and a cell of size 1x6.

Tuning the cell size together with the work group size on the Intel Xeon gives no
new results and confirms the result from Section 5.3.3 that the Xeon is indifferent
to work group size. Consequently, the Intel Xeon achieves the best performance
of around 70 GFLOP/s for a cell size of 2x2 (Figure 5.9).

36

1x1
1x2

1x3
1x4

1x5
1x6

1x7

Cell size
 128 192 256 320 384 448 512

Work group size

 150
 200
 250
 300
 350
 400
 450
 500
 550
 600

GFlop/s

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550

Figure 5.14: Cell size and work group size tuning on GTX 480 for 64 stations
(higher is better)

On the AMD Magny-cours it does make sense to tune the cell size together with
the work group size as long as the shared memory is turned on (without the shared
memory the work group size has only subtle influence on performance). As Fig-
ure 5.15 illustrates, we achieve the best performance, little above 190 GFLOP/s,
with the cell of size 12x12 and 10 work items per work group. This result is
slightly better than the previous result of tuning the cell size alone with fixed
work group size and no shared memory (Figure 5.11).

Multiple experiments in this section reveal that when using the shared memory,
the optimal work group size is equal or a little higher than the number of cells.
For CPUs the best value of the work group size is the number of cells. In case
of GPUs the optimal work group size is equal or little higher than the number of
cells and divisible by 32 (the number 32 was chosen according to the suggestions
in [24]).

All in all, this section proves that the tuning of combinations of parameters can
give better results than tuning each parameter separately.

37

8x8

10x10

12x12

Cell size 10 15 20 25 30 Work group size

 40
 60
 80

 100
 120
 140
 160
 180
 200

GFlop/s

 0
 20
 40
 60
 80
 100
 120
 140
 160
 180
 200

Figure 5.15: Cell size and work group size tuning on AMD Magny-cours (higher
is better)

5.4 Conclusions

By employing auto-tuning, we successfully found optimal parameters’ values for
three different architectures, and we can easily apply our approach to other archi-
tectures as well.

In the best case scenario we were able to achieve the same performance as the
hand-tuned kernel. In suboptimal scenarios our auto-tuned kernel even exceeds
the performance of the hand-tuned one. This is shown in Figure 3.2 from chapter
on programming model (Section 3.3) which compares our auto-tuned OpenCL
implementation to a hand-tuned CUDA implementation.

Additionally, judging from our observations and experiments, we can conclude
the following about auto-tuning:

• Auto-tuning matters
Since GPUs are very sensitive to memory access, occupancy and divergent
threads, a subtle change in parameter values can result in a substantially
large change in performance. Consequently, the ability to explore differ-
ent parameter values is essential. On the other hand, CPUs are much less

38

sensitive as a small change in the parameter value often results in a negli-
gible performance change. Nevertheless, the optimal values for a CPU are
still very different from those for a GPU; thus, auto-tuning is still desirable.
Even more so if we take into account the fact that the performance of dif-
ferent OpenCL optimizations such as use of shared memory is much less
predictable than for GPUs.

• Auto-tuning requires less prior knowledge
When compared to hand-tuning, auto-tuning requires less knowledge about
the used hardware. For example, we do not have to know the number of
registers or the number of compute cores to choose the correct cell size
or work group size as auto-tuning will do that. On the other hand, prior
architecture knowledge helps to prune the search space.

• Studying auto-tuning results brings more knowledge
By studying auto-tuning results, we can gain a deeper understanding of our
kernel and the hardware it is ran on (as presented in the previous sections).
For example, if we did not have a tunable kernel which would be able to
explore all cell shapes and sizes, we would never find out the preferred cell
shape of the different architectures.

• Auto-tuning does not come for free
Designing a general and flexible kernel suitable for auto-tuning takes time
and effort. Furthermore, additional time needs to be invested when perform-
ing the tuning. However, we believe that the time invested in designing a
flexible kernel is considerably shorter than hand-tuning the kernel for dif-
ferent platforms.

• Auto-tuning must be performed wisely
Exploring all the possible values and combinations is often unfeasible; hence,
it is convenient to first tune each parameter alone to find some boundaries
(i.e. those which, if crossed, always cause a significant drop in perfor-
mance). Afterwards, one can use these limits in the combined parameter
tuning to limit the search space. It is also helpful if one can identify param-
eters which do not correlate with any other parameters and are safe to be
tuned separately.

39

Chapter 6

Data layout conversion

In this chapter we first introduce the notion of data layout (Section 6.1). Since
different kernels favor different layouts, it is desirable to auto-tune the input and
output data layouts of each kernel. However, to enable the data layout tuning, we
need to have a possibility to convert from one layout to another. As a result, two
conversion schemes are analyzed in Section 6.2. Their implementation and perfor-
mance behavior is presented in Section 6.3. Finally, Section 6.4 compares the two
schemes on a real life example and chooses the better one for future experiments.

6.1 Data layout introduction

In our radio astronomy pipeline, a single input sample is a complex number rep-
resenting amplitude and phase of a signal. Each sample is further characterized
by:

• The telescope station which observed the sample.

• The frequency channel at which the sample was observed.

• The polarization of the signal.

• The time stamp (we perform several observations in the time period of 1
second).

The above sample characteristics makes the pipeline data to be an n-dimensional
array (with the following dimensions: station, channel, polarization and time).

40

s1c1p1 s1c1p2 s1c2p1 s1c2p2 s2c1p1 s2c1p2 s2c2p1 s2c2p2

s1c1p1 s1c2p1 s2c1p1 s2c2p1 s1c1p2 s1c2p2 s2c1p2 s2c2p2

station 1

station 1

station 2

station 2 station 1 station 2

polarization 1 polarization 2

channel 1 channel 1channel 2 channel 2

layout 1: station, channel, polarization

layout 2: polarization, station, channel linearized
data array

sXcYpZ stands for station X, channel Y, polarization Z

Figure 6.1: Two different layouts with dimensions: station, channel, polarization.
(In our pipeline we would have in most kernels a fourth dimension: time).

The exact order of the dimensions specifies the data layout. In the following text
we often abbreviate the layout by only stating the first letters of the dimensions.
For example, CSTP stands for channel, station, time and polarization. The differ-
ence between two layouts is illustrated in Figure 6.1. Although, logically, the data
is n-dimensional, physically, it is stored as a single one dimensional array. Since
each kernel reads and writes data, we distinguish between read and write or input
and output data layouts for each kernel.

The used data layout determines the access pattern of the kernel, and thus it has
crucial influence on the performance of the kernel. Since different kernels have
different optimal input and output data layouts, a mechanism for converting from
one layout to another is necessary. The conversion from one layout to another
can be viewed as several subsequent dimension transpositions; hence, we call this
conversion a transposition or transpose operation.

6.2 Transposition schemes analysis

Suppose two kernels, kernel K1 and kernel K2 which are connected to each such
that K1 is followed by K2. Furthermore, assume that the optimal output data lay-
out of K1 is different from the optimal input data layout of K2 (i.e. a transposition

41

K1 D K2

K1 D1 T

data in layout common
for kernel 1 and kernel 2

data in layout convenient
for kernel 1 write access

data in layout convenient
for kernel 2 read access

Common write & read

Transposition kernel

K2D2

Figure 6.2: Transposition schemes

is required). We have two basic possibilities to implement the transposition:

• Common write & read: there is a predefined layout in which K1 writes the
data and K2 reads it.

• Transposition kernel: a special transposition kernel is placed between K1
and K2 enabling K1 to write and K2 to read the data in their respective
optimal data layouts.

The two options are depicted in Figure 6.2 and compared in Table 6.1. The great-
est advantage of the transpose kernel is its usability with third party kernels whose
output layout we can not change. For example, when using a third party FFT li-
brary, we need the transposition kernel to adjust the data layout for kernels fol-
lowing the FFT kernel. The main disadvantage of the transposition kernel is due
to the 4 required accesses to the global memory instead of the 2 required accesses
of the common write & read. To illustrate the situation, we mark the transposition
kernel as T and count the reads and writes: K1 writes data, T reads and subse-
quently writes data and K2 reads data. On the other hand, the common write &
read has only 1 write (K1) and 1 read (K2).

To be able to use the flexibility of the transposition kernel, we want to find out un-
der which circumstances the transposition kernel outperforms the common write
& read. The theoretical formulas showing the execution time decomposition of

42

transposition optimal usable with memory extra
scheme read & write 3rd party kernels access memory

transposition kernel yes yes 4 yes∗

common write & read not guaranteed not guaranteed 2 no

Table 6.1: Comparison of the transposition schemes. The left side of the table
shows advantages of transposition kernel whereas the right side shows the advan-
tages of the common write & read.
∗ In case of in-place transposition the extra space is not needed. However, out-of-
place transposition is more likely to achieve better performance; hence, we count
in the extra memory.

the two options follow:

T c = T c
k1︸︷︷︸

T c
r1

+T c
e1

+T c
w1

+ T c
k2︸︷︷︸

T c
r2

+T c
e2

+T c
w2

T t = T t
k1︸︷︷︸

T t
r1

+T t
e1

+T t
w1

+ Tt + T t
k2︸︷︷︸

T t
r2

+T t
e2

+T t
w2

where

c common write & read scheme
superscript t transposition kernel scheme

subscript t the actual transpose kernel
k1 or 1 kernel K1
k2 or 2 kernel K2

r read
e execute

w write

To compare the times of the two transposition schemes we can leave out the times
which are the same for both schemes. Consequently, the formulas can be reduced
to:

T c′ = T c
w1

+ T c
r2

T t′ = T t
w1

+ Tt + T t
r2

Furthermore, the transposition kernel scheme allows the kernel K1 to write the
data in the optimal layout (Tow1) and the kernel K2 to read the data in the optimal
layout (Tor2). Thus, we can change the formula for the transposition scheme to:

T t′ = Tow1 + Tt + Tor2

43

It follows that the transposition kernel scheme outperforms the common write &
read if the following formula is satisfied:

Tt < (T c
w1
− Tow1)︸ ︷︷ ︸

K1 write overhead

+(T c
r2
− Tor2)︸ ︷︷ ︸

K2 read overhead

(6.1)

Since it is hard to measure the read and write times alone, we compare the total
kernel times:

Tt < (T c
k1
− Tk1ow)︸ ︷︷ ︸

K1 write overhead

+(T c
k2
− Tk2or)︸ ︷︷ ︸

K2 read overhead

(6.2)

where Tk1ow is the total time of K1 with optimal write and Tk2or is the total time
of K2 with optimal read. Expecting that the K1 execution and read times are the
same for both transposition schemes (T c

r1
+ T c

e1
= T t

r1
+ T t

e1
) and analogically the

K2 execution and write times are the same (T c
e2
+T c

w2
= T t

e2
+T t

w2
), the conditions

6.1 and 6.2 are the same.

In conclusion, translating Formula 6.2 to words, there are two requirements for
the transposition kernel to outperform the common write & read:

• The optimal common K1 write and K2 read layout must result in positive
K1 write or K2 read overhead.

• The transposition kernel must outperform the overhead.

Further on, in Section 6.4 we show that it is possible to satisfy Formula 6.2.

6.3 Transposition schemes implementation

In order to implement the common write & read scheme, we need a mechanism
which would allow each kernel to read and write from the global memory in any
layout. To achieve this we use the OpenCL feature of run time compilation. First,
we specify for each kernel its read and write layout in the form of program pa-
rameters. Then, during runtime, based on the given read and write layout of the
kernel, we generate the specific OpenCL code for obtaining input and output data
indices. An OpenCL fragment for reading layout CTS and writing layout STC is
presented in Algorithm 1.

To be able to compare the common write & read to the transposition kernel, we
have implemented the transpose kernel. Our implementation assigns one thread

44

Algorithm 1 Generated OpenCL read and write index calculations
1: // Input index calculation for layout channel, time, station
2: #define INPUT IDX(channel, time, station)
3: (channel * TIMES + time) * STATIONS + station
4:
5: // Output index calculation for layout station, time, channel
6: #define OUTPUT IDX(channel, time, station)
7: (station * TIMES + time) * CHANNELS + channel

to convert one sample; hence, we create as many threads as there are samples.
The basic idea which illustrates how the transpose kernel converts one index to
another is illustrated in Algorithm 2. Lines 3 - 9 are just a generic form of index
calculations present in Algorithm 1. The function getIndices() is the reverse cal-
culation which extracts from the global index and dimension sizes the dimension
indices. For a better explanation of the transpose kernel, let us suppose that we
want to convert between layouts CTS and STC (present in Algorithm 1). Then
the variables used by the transpose kernel (dimensionIndices, dimensionSizes and
permutation) would contain the following values:

dimensionIndices [channel, time, station] - calculated from global thread ID
dimensionSizes [CHANNELS, TIMES, STATIONS]

permutation [3, 2, 1] -

Algorithm 2 Simplified version of the transpose kernel
1: int inIdx = getGlobalId(0)
2: int[] dimensionIndices = getIndices(inIdx, dimensionSizes)
3: int outIdx = dimensionIndices[permutation[0]]
4: for i from 1 to DIMENSIONS do
5: outIdx = outIdx *
6: dimensionSizes[permutation[i]] +
7: dimensionIndices[permutation[i]];
8: end for
9: output[outIdx] = input[indIdx]

The read access pattern of the transpose kernel is coalesced: each consecutive
thread reads next sample from the input array. However, the write access pattern
depends on the layout to which we are converting. We assume that the greater
the difference between the two layouts is, the worse the write access pattern of

45

the transpose kernel is. To measure the difference between two layouts, we in-
troduce a property called distance. Having two different layouts containing the
same dimensions, the distance is calculated as sum of position difference of each
dimension. For example, the distance between CTS and STC is 4 since both C
and S are 2 positions away from their position in other layout.

Figures 6.3 and 6.4 illustrate the relation between the transpose kernel perfor-
mance and the layouts distance. While the experiment in Figure 6.3 was per-
formed on a GPU, the experiment in Figure 6.4 was performed on a standard
CPU. We can see that both CPU and GPU exhibit the same overall behaviour.
The difference is just in CPU being less sensitive to the distance, most probably
due to better caching. The blue average line suggests that layouts of lower dis-
tance are likely to perform better than layouts of larger distence but it does not
prove it.

46

TC
SP

CT
SP

TC
PS

TS
CP

CT
PS

TS
PC

TP
CS

TP
SC

SC
TP

CS
TP

ST
CP

CP
TS

PT
CS

PC
TS

ST
PC

SC
PT

CS
PT

PC
ST

CP
ST

PT
SC

SP
CT

SP
TC

PS
CT

PS
TC

Input data layout

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
Ti

m
e

(s
)

D0 D2 D4 D6 D8

transpose to TCSP
distance average

(a) Transpose time (lower is better)

TC
SP

CT
SP

TC
PS

TS
CP

CT
PS

TS
PC

TP
CS

TP
SC

SC
TP

CS
TP

ST
CP

CP
TS

PT
CS

PC
TS

ST
PC

SC
PT

CS
PT

PC
ST

CP
ST

PT
SC

SP
CT

SP
TC

PS
CT

PS
TC

Input data layout

0

10

20

30

40

50

60

70

Ba
nd

w
id

th
 (G

B/
s)

D0 D2 D4 D6 D8

transpose to TCSP
distance average

(b) Transpose bandwidth (higher is better)

Figure 6.3: Transposition from all possible layouts to TCSP measured on GTX
480. The gray vertical lines divide the distances 0, 2, 4, 6 and 8. The experiment
uses 64 stations, 300 channels, 768 time samples and 2 polarizations.47

TC
SP

CT
SP

TS
CP

TC
PS

CT
PS

TS
PC

TP
SC

TP
CS

CS
TP

SC
TP

ST
CP

ST
PC

CP
TS

PC
ST

PC
TS

PT
CS

SC
PT

CS
PT

CP
ST

PT
SC

PS
CT

SP
CT

SP
TC

PS
TC

Input data layout

0

2

4

6

8

10

12

14

16
Ti

m
e

(s
)

D0 D2 D4 D6 D8

transpose to TCSP
distance average

(a) Transpose time (lower is better)

TC
SP

CT
SP

TS
CP

TC
PS

CT
PS

TS
PC

TP
SC

TP
CS

CS
TP

SC
TP

ST
CP

ST
PC

CP
TS

PC
ST

PC
TS

PT
CS

SC
PT

CS
PT

CP
ST

PT
SC

PS
CT

SP
CT

SP
TC

PS
TC

Input data layout

0

1

2

3

4

5

6

Ba
nd

w
id

th
 (G

B/
s)

D0 D2 D4 D6 D8

transpose to TCSP
distance average

(b) Transpose bandwidth (higher is better)

Figure 6.4: Transposition from all possible layouts to TCSP measured on Intel
Xeon. The gray vertical lines divide the distances 0, 2, 4, 6 and 8. The experiment
uses 64 stations, 300 channels, 768 time samples and 2 polarizations.48

low high |Slow| |Sall| Plow

2 4 20 21 0.95
4 6 52 63 0.83
6 8 21 36 0.58

Table 6.2: Likelihood of a lower distance (low) outperforming a larger distance
(high) according to Formula 6.3 and Figure 6.3 (GTX 480).

We can measure the likelihood of a lower distance performing better than a larger
distance exactly with the following formula:

Plow =
|Slow|
|Sall|

(6.3)

Sall = {∀(Tlow, Thigh)}

Slow =
{
∀(Tlow, Thigh)Tlow<Thigh

}
where Tlow stands for performance (measured in time) of any lower distance lay-
out and Thigh represents performance of any larger distance layout (values of low
and high are fixed). The set (Tlow, Thigh) represents all possible performance pairs
of lower and larger distance. If we choose arbitrarily two layouts of different but
fixed distance, then Formula 6.3 expresses the probability of the lower distance
layout outperforming the larger distance layout. When we take the values from
Figures 6.3 and 6.4 and substitute them to Formula 6.3, we always get a result
greater than 0.5 (for any two combinations of low and high). Specific values
for interesting combinations of low and high are presented in Table 6.2. Conse-
quently, the statement that a lower distance layout is likely to perform better than
a larger distance layout is justified. This finding will be used in next section (6.4)
to improve the overall performance of our specific pipeline scenario.

The search for an optimal transpose kernel, possibly also using shared memory
and doing in place transposition[19], is a complex topic on its own, and as such
should be investigated further in a future work. Nevertheless, any kind of rea-
sonably fast transpose kernel (such as that of ours) is an indispensable tool as it
allows us to perform flexible data layout tuning.

49

6.4 Transposition schemes comparison

We will compare the performance of the two transposition schemes in a pipeline
consisting of the FIR filter followed by the correlator 1. To get the best perfor-
mance of common write & read we need to find the minimum of (FIR write + cor-
relator read) over all possible common data layouts. To get the best performance
of the transpose kernel we need to find the minimum of (FIR write + transpose +
correlator read) over all possible FIR write layouts and all possible correlator read
layouts. To limit the search space we restrict ourselves to the best correlator read
layout. The results of both searches are illustrated in Figure 6.5. The best per-
formance of common write & read is 3.73s while the transpose kernel performs
better and reaches 3.57s.

Having the actual times gathered in Figure 6.5, we can now relate to Formula 6.2.
Since the first search displayed in Figure 6.5 contains all possible correlator read
layouts, it also contains the optimal layout. Furthermore, since the second search
uses the best correlator read layout from the first search, the correlator read over-
head is 0 (T c

k2
− Tk2or = 0). As a result Formula 6.2 reduces to:

Tt < (T c
k1
− Tk1ow)︸ ︷︷ ︸

FIR write overhead

(6.4)

The time T c
k1

can be inferred from the first search (Figure 6.5a). It is the FIR time
for the layout which gives the lowest FIR time + correlator time (1.481s).

The time Tk1ow can be inferred from the second search (Figure 6.5b) as the best
FIR time. There are several very good FIR times which are around 0.42s. If
we choose exactly the best time (0.412s for layout PTSC or PSTC), we get the
following time restriction on the transpose kernel:

Tt < (1.481− 0.412)︸ ︷︷ ︸
1.069

However, since the FIR write layouts PTSC and PSTC are both distant from cor-
relator read layout TCSP (distance 6 and 8), our transpose kernel performs poorly
and takes more than 2s (see Figure 6.3). In order to satisfy Formula 6.4, we need
a suboptimal layout which still gives a good FIR write time and which is closer

1In the real life pipeline there is always an FFT right after the FIR filter. However, since we
use a third party FFT library, we can not transpose the data between the FFT and the correlator
with the common write & read transposition scheme. Consequently, we leave out the FFT step in
this particular experiment.

50

TS
CP

TC
SP

ST
CP

SC
TP

CT
SP

CS
TP

FIR write and correlator read layout

0

2

4

6

8

10
Ti

m
e

(s
)

correlator

FIR filter

(a) Common write & read scheme.

TP
SC

TP
CS

TS
PC

TS
CP

TC
PS

TC
SP

PT
SC

PT
CS

PS
TC

PS
CT

PC
TS

PC
ST

ST
PC

ST
CP

SP
TC

SP
CT

SC
TP

SC
PT

CT
PS

CT
SP

CP
TS

CP
ST

CS
TP

CS
PT

FIR write layout

0

2

4

6

8

10

Ti
m

e
(s

)

correlator
transpose

FIR filtrer
common write & read

(b) Transposition kernel scheme. The correlator read layout is fixed at time,
channel, station and polarization. The blue crosses display a projection of
Figure a.

Figure 6.5: Comparison of transposition schemes on GTX 480 (lower is better).
The experiment was performed with 64 stations, 300 channels and 768 time sam-
ples. The FIR filter kernel uses 8 taps and 96 batches. The correlator kernel does
not use shared memory. 51

to TCSP. For instance, the layout TSCP causes the FIR time to be 0.434s and it
results in the transpose kernel time of 0.895s. Put together we get a condition:

Tt︸︷︷︸
0.895

< (1.481− 0.434)︸ ︷︷ ︸
1.047

which holds and thus proves that the theoretical Formula 6.2 can be satisfied in
practice.

In conclusion, we showed that the transposition kernel scheme, in spite of dou-
bling the number of global memory accesses, can outperform the common write
& read. As a result, in the chapters that follow we will use the transposition kernel
as it allows greater flexibility.

52

Chapter 7

Pipeline auto-tuning

In Chapter 5 we showed how to auto-tune a single kernel (the correlator). In this
chapter we discuss the auto-tuning of the entire pipeline. By pipeline we mean
a linear connection of multiple kernels. For example, the connection of the FIR
filter, FFT and correlator kernels forms a pipeline.

To successfully tune a pipeline we first need to identify parameters which influ-
ence two or more kernels. In any kind of pipeline, one of the most important
things influencing multiple kernels is the data that the kernels pass from one to
another. Therefore, in this chapter we focus on the data layout tuning across our
radio astronomy pipeline.

We start the chapter by stating where are we expecting performance improvements
(Section 7.1). Afterward, Section 7.2 introduces the two specific pipelines that we
tune and Section 7.3 lists the exact values of used parameters. Sections 7.4 and 7.5
are devoted to the actual tuning of our two pipelines during which we try to prune
the search space as much as possible. We report shortly the pitfalls and results of
a pipeline tuning on CPU in Section 7.6. Afterward, we study the efficiency of the
search space pruning in Section 7.7. Finally, Section 7.8 concludes with the more
general knowledge gained in this chapter.

7.1 Motivation

The main three kernels considered in this work (poly-phase filter, beam former
and correlator) have all been extensively, one by one, manually tuned in previous

53

work [38, 39, 32]. Consequently, we consider them to be optimized for the data
layouts they have when used separately. However, when used within a pipeline,
conversions from one layout to another (transpositions) are sometimes inevitable.
Hence, a layout optimal for a single kernel is not guaranteed to stay optimal within
a pipeline where transposition is required.

By auto-tuning the data layout we expect to improve the overall performance of
the pipeline by finding a layout that is suboptimal for its kernel but is optimal
within the pipeline. Such layouts can exist between two kernels where transpo-
sition is required. In particular, we are looking for layouts that might slightly
increase the kernel time but decrease the transposition time. A side effect of our
search cane be that we find a layout better performing than the default one. By
default layout we mean the original LOFAR data layout used in [38, 39, 32].

7.2 Specific pipelines analysis

We chose two specific pipelines for the auto-tuning. The first one (Pipeline 1)
consists of the FIR filter, FFT filter and beam former (BF). It was chosen because
it is one of the most frequently used pipelines in LOFAR. The second pipeline
we chose (Pipeline 2) consists of the FIR, FFT, beam former (BF) and correlator
(CR) kernels (we added the correlator kernel to Pipeline 1). Although Pipeline 2
represents a valid connection of astronomical kernels, it is hardly used and there-
fore is of a more theoretical nature. However, tuning Pipeline 2 is still very useful
as it shows how a larger pipeline can potentially be decomposed into two smaller
ones which can be tuned separately. Pipelines 1 and 2 are depicted in Figure 7.1.

The samples which form the input of the kernels are characterized by the follow-
ing numbers: channels, stations, time samples, polarizations and beams (generally
called dimensions). The data layout is defined by the order in which these dimen-
sions appear in the code. In the text that follows, we use 4 letters layout abbrevi-
ations such as TCSP which refers to the layout time samples, channels, stations
and polarizations. For further information see Data layout chapter - Section 6.1.

By analyzing the data layouts in our two pipelines (Figure 7.1), we can make the
following observations:

• While the transposition kernels T1 and T3 are optional, the transposition
kernel T2 is necessary since the FFT write layout always ends with channel
and the beam former read layout always ends with polarization.

54

FIR FFT BFT1 T2FIRout

xyzw
24

FFTin

xyzC
6

FFTout

xyzC
1

BFin

xyzP
6

=A
B

A ... possible data layouts

B ... number of different data layouts

x,y,z,w ... variables that stand for one of the following
 Channel C, Station T, Time T, Polarization P
 (x ≠ y ≠ z ≠ w)

Any data layout that ends
with Polarization. There are
in total 6 different layouts.

data in FIR
output layout transposition kernel

(a) Pipeline 1: FIR, FFT and beam former.

BF CRT3BFout CRin

xyzP
6

xyzP
6

NEW PART

OLD PART

FIR FFTT1 T2FIRout FFTin FFTout BFin

(pipeline 1)

(b) Pipeline 2: FIR, FFT, beam former and correlator.

Figure 7.1: The two explored pipelines together with all possible data layouts.

55

• Because we use a 3rd party FFT implementation, the read and write layouts
are the same. Therefore, for a given FFT read layout there is always only
one FFT write layout.

• There are all together 24×6×1×6 = 864 different data layout combinations
in Pipeline 1 and 24× 6× 1× 6× 6× 6 = 31104 combinations in Pipeline
2.

7.3 Experiments setup

In most of the experiments in this chapter we use the following pipeline configu-
ration:

stations 64
channels 256

time samples 512
polarizations 2

iterations 100

While the number of stations, channels and polarizations reflect the typical LO-
FAR setup, the number of time samples is decreased from the usual 768 to 512 in
order to have a power of two which is required by our FFT filter. Iterations refer
to the number of times we repeat each kernel execution. We do this to artificially
increase the kernel time to at least hundreds of milliseconds to get more valid time
measurements. Furthermore, we use the following kernel configurations:

• FIR filter: 8 taps and 8 bit samples.

• Beam former: 100 beams and beam block size of 10 beams.

• Correlator: Cell size of 1x6.

All the experiments were performed on the GTX 480.

7.4 Tuning Pipeline 1

To get a better understanding of Pipeline 1 and consequently be able to prune
the search space, we first tuned the FIR write layout, FFT layout and beam for-
mer read layout separately (Figure 7.2). Furthermore, to understand how much

56

time we can save by doing a better transposition we also recorded the fastest and
slowest transposition execution times which were 0.412 and 1.441 seconds, re-
spectively.

From the kernel layout tuning we made the following observations:

1. From 24 FIR write layouts there are 8 layouts which are considerably better
(from 4 to 7 times) than the remaining layouts. Out of these 8 layouts the
best 6 layouts end with channel.

2. All 6 FFT layouts have the same performance.

3. The difference between the best and worst transposition kernel layout is 1
second (i.e. by performing a better transposition, we can not save more than
a second). For a better illustration, one second is 28% of the entire Pipeline
1 run (when excluding the slow FFT).

4. From 6 beam former read layouts there are 2 which are at least 3 times better
(faster by more than 3.5 seconds) than the rest.

5. The 6 best FIR write layouts are very close in terms of performance. The
same can be said about the 2 best beam former read layouts.

Based on observations 1 and 2, we can leave out the transposition kernel between
FIR and FFT and reduce the combination of 24 FIR write layouts and 6 FFT lay-
outs to only the 6 FIR write layouts which end with channel. Furthermore, using
observations 3 and 4 we reduce the 6 beam former read layouts to only 2. As a
result, the original 864 possibilities are now reduced to 6 × 2 = 12. To find the
optimal layouts we would normally run the pipeline with all 12 layout combina-
tions. However, observation 5 suggests that the performance of the 12 different
layout combinations will only differ in the transposition kernel. Consequently, it
is sufficient to find out from which one of the 6 available FIR write layouts we
can perform the fastest transposition to one of the 2 available beam former read
layouts. Figure 7.3 shows that the optimal pipeline should use STPC, SPTC or
TSPC for FIR write layout and SCTP for beam former read layout.

To see how much time we saved by performing the auto-tuning we compared the
tuned pipeline to the pipeline with default layouts. The first comparison (Fig-
ure 7.4a) hardly shows any performance improvement. This is caused by the very
slow and inefficient 3rd party FFT implementation. Therefore, we performed a
second comparison, without the FFT (Figure 7.4b), which yields a performance

57

TP
SC

TP
CS

TS
PC

TS
CP

TC
PS

TC
SP

PT
SC

PT
CS

PS
TC

PS
CT

PC
TS

PC
ST

ST
PC

ST
CP

SP
TC

SP
CT

SC
TP

SC
PT

CT
PS

CT
SP

CP
TS

CP
ST

CS
TP

CS
PT

Output layout

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Ti
m

e
(s

)

FIR

(a) FIR write layout tuning.

TPSC TSPC PTSC PSTC STPC SPTC
Layout

0

5

10

15

20

Ti
m

e
(s

)

FFT

(b) FFT layout tuning.

CSTP CTSP SCTP STCP TCSP TSCP
Input layout

0
1
2
3
4
5
6
7
8
9

Ti
m

e
(s

)

beam former

(c) Beam former read layout tuning.

Figure 7.2: Separate kernel layout tuning for Pipeline 2

58

STPC SPTC TSPC TPSC PSTC PTSC
Input data layout

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Ti
m

e
(s

)

transpose to CSTP

transpose to SCTP

Figure 7.3: Transpose kernel layout tuning. The read layouts (x axis) are the 6
best performing write layouts from Figure 7.2a. The write layouts (series) are the
2 best performing read layouts from Figure 7.2c

comparison with FFT without FFT
pipeline default tuned default tuned

FIR 0.158 0.162 0.158 0.162
FFT 17.891 17.903 - -

transpose 1.283 0.656 1.283 0.655
beam former 2.079 2.157 2.077 2.111

total 21.411 20.878 3.518 2.928
improvement - 2.5% - 20.1%

Table 7.1: Comparison of the default and tuned Pipeline 1.

59

default tuned
Pipeline

0

5

10

15

20

25

Ti
m

e
(s

)

FFT
FIR
beam former

transpose

(a) with FFT

default tuned
Pipeline

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Ti
m

e
(s

)

FIR
beam former

transpose

(b) without FFT

Figure 7.4: Comparison of the default and tuned Pipeline 1 (the kernels are not in
the order in which they appear in the pipeline).

60

improvement of 20%. The exact times of both comparisons are presented in Ta-
ble 7.1.

In conclusion, Table 7.1 proves that by performing pipeline layout tuning we were
able to employ suboptimal layouts to save transposition time and consequently
improve the overall pipeline performance. Currently, having a slow FFT imple-
mentation the performance improvement is subtle. Nevertheless, by improving
the FFT implementation, we can increase the performance by roughly 20%.

7.5 Tuning Pipeline 2

Since Pipeline 2 is an extension of Pipeline 1 (Figure 7.1b), we used the results
from the previous section and only tuned the new part of the pipeline consisting of
the beam former and the correlator. In other words, we obtained the beam former
read layout, optimal for the old part, separately from the beam former write layout
optimal for the new part. What is more, we claim that these layouts are optimal for
entire Pipeline 2 and not just for the parts of the pipeline within which they were
discovered. This approach could potentially lead to a suboptimal solution in the
following situation. Let us assume that we tuned the old part and the new part of
the pipeline separately and obtained beam former layouts Ropt read layout optimal
for the old part and Wopt write layout optimal for the new part. Furthermore, let us
suppose that when we tuned the old part, the beam former write layout was fixed
at a layout Wopt and when we tuned the new part, the beam former read layout
was fixed at a layout Ropt. Now, there is a possibility that there is a different write
layout Walt which performs suboptimally within the new part of the pipeline, but
to which exists an read layout Ralt different from Ropt that causes the old part to
perform better than under Ropt fixed at Wopt. To show that this can not happen we
verified that for any write layout the ranking (given by performance of the kernel)
of the read layouts stays the same (Figure 7.5). We call this kernel property read-
write independence. The read-write independence allows us to tune the new part
of the pipeline separately from the old part.

Tuning only the new part of the pipeline means exploring the 6 beam former write
layouts together with the 6 correlator read layouts. We again first tuned the layouts
separately (Figure 7.6) and made the following observations:

• The beam former write layouts do not vary too much in performance (less
than 0.5 second difference). As a result, we have to use all beam former
write layouts.

61

CBTP CTBP TBCP
Output layout

0

2

4

6

8

10

Ti
m

e
(s

)

CSTP
SCTP
CTSP
STCP
TSCP

TCSP

Figure 7.5: Beam former performance under various read and write layouts.
Shows all read layouts but only three write layouts (the 1st, 3rd and 6th in terms
of performance). The other write layouts look similarly to those shown. The write
layout changes with the x axis. The read layout changes with bar colors.

62

comparison with FFT without FFT
pipeline default tuned default tuned

FIR 0.158 0.162 0.158 0.162
FFT 17.907 17.938 - -

transpose 1.283 0.656 1.283 0.655
beam former 2.079 2.28 2.075 2.252

transpose 0.643 - 0.643 -
correlator 4.394 3.29 4.396 3.288

total 26.464 24.325 8.553 6.357
improvement - 8.8% - 34.5%

Table 7.2: Comparison of the default and tuned Pipeline 2 on GPU.

• By disabling the usage of the shared memory in the correlator kernel we
were able to get a better performance than with the usage of the shared
memory. We achieved this with read layouts with better data locality where
the station is on the 3rd place in the layout. Therefore, we attribute the
performance improvement to a better cache use. We further use the kernel
without the shared memory.

• The 2 best correlator read layouts are significantly better than the rest (by
more than 6 seconds). Thus, we can limit ourselves to only these 2 layouts.

Figure 7.7 shows the tuning of the final 6×2 = 12 layout combinations within the
entire pipeline. We left out the FFT filter on purpose, so that its unreasonably long
running time does not obscure our results. The best performance is achieved with
the beam former write and correlator read layout of CTBP. That means that we
can simply remove the transposition kernel between the beam former and corre-
lator to save further time. The comparison between the tuned and default pipeline
promises a performance gain of up to 34% (Table 7.2).

All in all, by applying auto-tuning we were able to significantly improve the per-
formance of Pipeline 2. The improvement was achieved by finding a better corre-
lator layout than the default one. The better layout even rendered the transposition
between beam former and correlator unnecessary and hence saved further time.

63

BCTP BTCP CBTP CTBP TBCP TCBP
Output layout

0.0

0.5

1.0

1.5

2.0

2.5
Ti

m
e

(s
)

beam former

(a) Beam former write layout tuning.

TCSP TSCP CTSP CSTP STCP SCTP
Input layout

0

5

10

15

20

Ti
m

e
(s

)

without sharedmem

with sharedmem

(b) Correlator read layout tuning.

Figure 7.6: Separate kernel layout tuning for Pipeline 2.

64

BC
TP

BT
CP

CB
TP

CT
BP

TB
CP

TC
BP

BC
TP

BT
CP

CB
TP

CT
BP

TB
CP

TC
BP

Beam former output layout

0

1

2

3

4

5

6

7

8

9

Ti
m

e
(s

)

correlator input CTBP correlator input TCBP

correlate
transpose
beam former
transpose

FIR

Figure 7.7: Pipeline 2 exploration of the remaining 12 layout combinations.

65

7.6 Pipeline tuning on CPU

For completeness, we also include the results of pipeline tuning on a CPU (Intel
Xeon E5620). The procedure is very similar to the one followed in previous two
sections (7.4, 7.5). We first tuned each kernel separately and Afterward based on
the results we pruned the search space. Since we tuned Pipeline 2, we verified and
confirmed that the read-write independence property holds for the beam former
also on CPU. Afterward, we were able to tune Pipeline 1 and the new part of
Pipeline 2 separately and combine the results. To avoid unnecessary repetition,
we only discuss the differences and final results.

Solely for this section we changed our experiment setup to better accommodate
CPU. Since the CPU is slower than GPU we only used 10 instead of 100 iterations.
Furthermore, we used a beam block of the same size as number of beams, i.e. 100.

When performing the tuning of the FIR write layout, we encountered a great vari-
ance between multiple runs. Figure 7.8 shows the variance of 100 FIR write layout
tuning experiments. Since we were not able to determine the source of the vari-
ance in a reasonable amount of time, we left it for future work and in the further
experiments we worked with the mean value (red line in Figure 7.8). We use the
mean value also with FFT where we experienced a variance of 1 second dispersed
around 5 seconds of total FFT running time. The other kernels (transpose, beam
former and correlator) were reasonably stable.

The outcome of the tuning is presented in Table 7.3 which compares the tuned
and the default pipeline. The tuned pipeline promises a performance gain of 12%.
Most of the gain comes from using CBTP beam former write layout which gives
a better beam former performance and also allows us to skip the transpose kernel
between beam former and correlator. The performance gain could be larger if we
had a better FFT implementation and CPU optimized beam former such as in [32].

7.7 Tuning time

To find out the approximate time it would take to explore all the 864 layout com-
binations from Pipeline 1 we need to choose an average performing combination.
For that purpose, we choose for each kernel a layout closest to the kernel’s aver-
age. Specifically, it is TCPS FIR write layout and CTSP beam former read layout.
We see from Table 7.4 that the total time to run the pipeline is more than 9.7 sec-
onds. That means that the 864 possibilities of Pipeline 1 would take us 2.3 hours

66

TP
SC

TP
CS

TS
PC

TS
CP

TC
PS

TC
SP

PT
SC

PT
CS

PS
TC

PS
CT

PC
TS

PC
ST

ST
PC

ST
CP

SP
TC

SP
CT

SC
TP

SC
PT

CT
PS

CT
SP

CP
TS

CP
ST

CS
TP

CS
PT

Output layout

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ti
m

e
(s

)

Figure 7.8: Fir write layout tuning performed on Intel Xeon. We performed the
experiment 100 times and experienced a great variance among the runs; hence,
the box plot representation.

pipeline default tuned
FIR 1.045 1.256
FFT 4.841 4.841

transpose 0.954 0.52
beam former 7.543 7.045

transpose 0.799 -
correlator 2.836 2.819

total 18.229 16.27
improvement - 12%

Table 7.3: Comparison of the default and tuned Pipeline 2 on CPU.

67

Pipeline 1 Pipeline 2
seconds percents seconds percents

kernel init 1.487 15.26 1.25 8.04
kernel build 0.21 2.15 0.949 6.1

kernel run 8.042 82.5 13.335 85.78
total 9.748 - 15.546 -

Table 7.4: Time of an average pipeline execution. The experiments were per-
formed without the slow and imperfect FFT filter.

to explore. 2.3 hours is too slow for experiments that need to be auto-tuned im-
mediately. However, it is acceptable for the experiments which can be auto-tuned
overnight.

Taking a look at the longer Pipeline 2, using the TCBP layout for the correlator,
we get 15.5 seconds for the entire pipeline run (Table 7.4). Multiplying that by
the 31104 layout combinations we get a tuning time of more than 5.5 days. Such
a long tuning time is under any circumstances unacceptable. As a consequence,
the search space pruning is inevitable.

To see how much time we saved by performing the search space pruning, we need
to calculate how many layout combinations did we explore. We first explored
the layout of each kernel separately. That gives us 48 layouts total (24 FIR filter
write layouts plus 6 layouts of the FFT plus 6 beam former read layouts plus
6 beam former write layouts and 6 correlator read layouts). Additionally, we
explored further 12 layout combinations in Pipeline 1 and 12 more in Pipeline 2.
This gives us 60 combinations for Pipeline 1 and 72 combinations for Pipeline 2.
For simplicity let us count the time to run one layout exploration as equal to the
previously discovered average pipeline run (9.7 seconds). Finally, the time it took
us to tune Pipeline 1 was 60 × 9.7 seconds = 9.7 minutes which is 14 times less
than the 2.3 hours it would take us to explore all combinations. The time it took
us to tune Pipeline 2 was 72×9.7 seconds = 11.6 minutes which is 682 times less
than the 5.5 days of exploring all combinations.

7.8 Conclusions & recommendations

Based on our results from the full pipeline auto-tuning, we make 3 recommenda-
tions:

68

• Spending time on tuning the entire pipeline rather than just the individual
kernels is worth the effort. In our particular case, we were able to improve
the performance of Pipeline 2 by 34%.

• It is desirable to first tune the read and write layouts of each kernel sepa-
rately to gain a better understanding of the kernel which helps us to prune
the search space. By performing separate layout tuning we were able to
cut the number of explored combinations in Pipeline 1 from 864 to 60 and
consequently speed up the tuning process 14 times.

• When performing a data layout tuning in larger pipelines an important ker-
nel property to look for is the read-write independence, which allows to
split a large pipeline into smaller pipelines and tune them separately. In our
Pipeline 2 we were able to split the original 31104 layout combinations to
only 864 + 36; thus, reducing the tuning time from 5.5 days to a little more
than 2.3 hours.

Finally, we note that the lessons learned in this chapter, and the follow up recom-
mendations, are of general nature and they apply to any pipeline with multidimen-
sional data (i.e. not just to the LOFAR pipeline).

69

Chapter 8

Conclusions

In this chapter we conclude our work with the answers to the four questions from
our introduction (at the end of Chapter 1). Additionally, we discuss ideas for
future work.

8.1 Answers

At the beginning of our work we identified the need to have the LOFAR pipeline as
fast as possible, so that we can perform larger observations. We asked ourselves:
How much performance can we gain by auto-tuning the LOFAR pipeline?
Step by step, we came to a conclusion that we can gain up to 34% (Section 7.8).
To get the answer we faced and solved the following challenges:

• How to tune a single kernel
To tune a single kernel we first identified the parameters with the greatest
performance impact. Afterwards, we constructed a tunable kernel which
allowed us to explore all possible values of the parameters. For example, in
the case of the correlator we implemented a kernel that could explore all the
different cell shapes and sizes. Once we had a tunable kernel we explored
the parameters’ values. Having several parameters and large range of values
for each parameter, we identified a need for search space pruning. First of
all, we tuned each parameter separately and discarded the values yielding
significantly low performance. Secondly, we performed a combined tuning
of all parameters that correlated in performance. In the end we were able

70

to reach the same performance as the hand-optimized kernel. Summing
up, any kernel can by auto-tuned by following three logical steps: identify
parameters to tune; design tunable kernel; explore the parameters’ values
and remember the best ones.

• How to efficiently connect kernels
We examined two possibilities to connect two kernels with different data
layouts. The first possibility is for the two kernels to agree on a common
layout to use (common write & read). This option can be used easily with
kernels that can adjust their layout. However, it is often not usable with 3rd
party kernels which can only use a fixed data layout. The second possibility
is to put a special transposition kernel between the two kernels that we want
to connect. The use of transposition kernel is a very flexible solution that
can handle even 3rd party libraries. Its disadvantage is that it doubles the
number of accesses to the generally slow global memory. Nevertheless, we
showed that there are cases in which the transposition kernel can outperform
the common write & read. To sum up, in an application consisting of two or
more kernels working upon the same multidimensional data we recommend
experimenting with transposition kernel to achieve optimal performance.

• How to tune an entire pipeline
While tuning the entire pipeline we followed a generic process similar to
the one followed when we tuned a single kernel. First of all, we identified
the data layout as the crucial parameter influencing the performance of the
pipeline. Consequently, in each of our kernels (the FIR filter, beam former
and correlator), we implemented the ability to read and write the data in
any format. Afterwards, we set up the experiments for pipeline data layout
tuning and again we recognized the need for search space pruning. There-
fore, we tuned the layout of each kernel separately and discarded values
of low performance. Furthermore, we found an important property (read-
write independence) of beam former kernel which allowed us to split the
pipeline into two pipelines and tune them separately; thus, the number of
explored combinations was reduced radically. We conclude that the data
layout tuning in a pipeline consisting of several kernels has a great poten-
tial to increase the overall application performance. However, to make the
tuning feasible, search space pruning is inevitable.

All in all, the methodology we applied to auto-tune the LOFAR pipeline helped us
to significantly improve the performance. What is more, this methodology is not
limited to the LOFAR pipeline only and can be applied to any generic pipeline.

71

8.2 Future work

As far as the auto-tuning is concerned, there are several directions in which our
work can be extended in the future:

• Apply the methodology to other pipelines.

• Automate the process of search space pruning. When tuning a combination
of parameters the tuning framework could perform separate parameter tun-
ing first and automatically discard the values of low performance based on
pre-set threshold.

• Further improve the performance of the transposition kernel. Alternatively,
also explore in-place transpositions.

Considering the overall performance of the LOFAR pipeline, further steps need
to be taken in the future to successfully replace the currently used Blue Gene
supercomputer. First of all, to match the throughput of Blue Gene a distribution
of the computation across several GPUs is required. Secondly, there is a need for
much faster FFT than the default JavaCL FFT implementation.

72

Bibliography

[1] Aparapi: Java/OpenCL library from AMD. http://code.google.
com/p/aparapi.

[2] ASTRON: stations. http://www.astron.nl/
radio-observatory/astronomers/lofar-astronomers.

[3] IBIS/IPL Java library for distributed computing. http://www.cs.vu.
nl/ibis/ipl.html.

[4] JavaCL: open-source Java/OpenCL library from Olivier Chafik. http://
code.google.com/p/javacl.

[5] JOCL: open-source Java/OpenCL library. http://www.jocl.org.

[6] MeerKAT. http://www.ska.ac.za/meerkat.

[7] OpenCL standard. http://en.wikipedia.org/wiki/OpenCL.

[8] Square Kilometer Array. http://www.skatelescope.org/about.

[9] F. Agakov, E. Bonilla, J.Cavazos, B.Franke, G. Fursin, M.F.P. O’Boyle,
J. Thomson, M. Toussaint, and C.K.I. Williams. Using machine learning
to focus iterative optimization. Code Generation and Optimization, 2006.

[10] Jason Ansel, Maciej Pacula, Yee Lok Wong, Cy Chan, Marek Olszewski,
Una-May O’Reilly, and Saman Amarasinghe. Siblingrivalry: online auto-
tuning through local competitions. Proceedings of the 2012 international
conference on Compilers, architectures and synthesis for embedded systems,
2012.

[11] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James
Gebis, Parry Husbands, Kurt Keutzer, David A. Patterson, William Lester
Plishker, John Shalf, Samuel Webb Williams, and Katherine A. Yelick. The

73

http://code.google.com/p/aparapi
http://code.google.com/p/aparapi
http://www.astron.nl/radio-observatory/astronomers/lofar-astronomers
http://www.astron.nl/radio-observatory/astronomers/lofar-astronomers
http://www.cs.vu.nl/ibis/ipl.html
http://www.cs.vu.nl/ibis/ipl.html
http://code.google.com/p/javacl
http://code.google.com/p/javacl
http://www.jocl.org
http://www.ska.ac.za/meerkat
http://en.wikipedia.org/wiki/OpenCL
http://www.skatelescope.org/about

landscape of parallel computing research: A view from berkeley. Technical
report, EECS Department, University of California, Berkeley, Dec 2006.

[12] Jong-Ho Byun, Richard Lin, Katherine A. Yelick, and James Demmel. Au-
totuning sparse matrix-vector multiplication for multicore. Technical report,
EECS Department, University of California, Berkeley, Nov 2012.

[13] Shuai Che, Jeremy W. Sheaffer, and Kevin Skadron. Dymaxion: optimiz-
ing memory access patterns for heterogeneous systems. In Proceedings of
2011 International Conference for High Performance Computing, Network-
ing, Storage and Analysis, SC ’11, pages 13:1–13:11, 2011.

[14] Jee W. Choi, Amik Singh, and Richard W. Vuduc. Model-driven autotuning
of sparse matrix-vector multiply on gpus. SIGPLAN Not., 45(5):115–126,
January 2010.

[15] CSIRO. Australian Square Kilometre Array Pathfinder Fast Facts.
http://www.atnf.csiro.au/projects/askap/ASKAP_
Overview.pdf.

[16] M. De Vos. Lofar: the first of a new generation of radio telescopes. In
Acoustics, Speech, and Signal Processing, 2005. Proceedings. (ICASSP ’05).
IEEE International Conference on, volume 5, pages v/865 – v/868 Vol. 5,
march 2005.

[17] M. De Vos, A.W. Gunst, and R. Nijboer. The lofar telescope: System archi-
tecture and signal processing. Proceedings of the IEEE, 97(8):1431 –1437,
aug. 2009.

[18] A.T. Deller, S.J. Tingay, M. Bailes, and West. c. Difx: A software corre-
lator for very long baseline interferometry using multi-processor computing
environments. arXiv:astro-ph/0702141v1, 2007.

[19] C.H.Q. Ding. An optimal index reshuffle algorithm for multidimensional
arrays and its applications for parallel architectures. IEEE Transactions on
Parallel and Distributed Systems, 12, 2001.

[20] M. Frigo and S.G. Johnson. The design and implementation of fftw3. Pro-
ceedings of the IEEE, 93(2):216 –231, feb. 2005.

[21] MB Giles, GR Mudalige, B. Spencer, C. Bertolli, and I. Reguly. Designing
op2 for gpu architectures. Journal of Parallel and Distributed Computing,
2012.

74

http://www.atnf.csiro.au/projects/askap/ASKAP_Overview.pdf
http://www.atnf.csiro.au/projects/askap/ASKAP_Overview.pdf

[22] S. Kamil, Cy Chan, L. Oliker, J. Shalf, and S. Williams. An auto-tuning
framework for parallel multicore stencil computations. In Parallel Dis-
tributed Processing (IPDPS), pages 1 –12, april 2010.

[23] NVIDIA. Opencl programming guide for the cuda architecture.
http://www.nvidia.com/content/cudazone/download/
OpenCL/NVIDIA_OpenCL_ProgrammingGuide.pdf, 2009.

[24] NVIDIA. OpenCL Best Practices Guide. http://developer.
download.nvidia.com/compute/DevZone/docs/html/
OpenCL/doc/OpenCL_Best_Practices_Guide.pdf, 2011.

[25] NVIDIA. Cufft library. http://docs.nvidia.com/cuda/pdf/
CUDA_CUFFT_Users_Guide.pdf, 2012.

[26] NVIDIA, Matt Pharr, and Randima Fernando. Gpu gems 2: Programming
techniques for high-performance graphics and general-purpose computation,
2005.

[27] Markus Püschel, José M. F. Moura, Jeremy Johnson, David Padua, Manuela
Veloso, Bryan Singer, Jianxin Xiong, Franz Franchetti, Aca Gacic, Yevgen
Voronenko, Kang Chen, Robert W. Johnson, and Nicholas Rizzolo. SPI-
RAL: Code generation for DSP transforms. Proceedings of the IEEE, special
issue on “Program Generation, Optimization, and Adaptation”, 93(2):232–
275, 2005.

[28] John W. Romein, P. Chris Broekema, Jan David Mol, and Rob V. van Nieuw-
poort. The LOFAR Correlator: Implementation and Performance Analysis.
In ACM Symposium on Principles and Practice of Parallel Programming
(PPoPP’10), pages 169–178, Bangalore, India, January 2010.

[29] J. Roy, Y. Gupta, U. Pen, J.B. Peterson, S. Kudale, and J. Kodilkar. A
real-time software backend for the gmrt. arXiv:0910.1517v2 [astro-ph.IM],
2010.

[30] G. Ruetsch and M. Paulius. Optimizing matrix transpose in cuda.
http://docs.nvidia.com/cuda/samples/6_Advanced/
transpose/doc/MatrixTranspose.pdf, 2009.

[31] Christoph A. Schaefer, Victor Pankratius, and Walter F. Tichy. Atune-il: An
instrumentation language for auto-tuning parallel applications. In Proceed-
ings of the 15th International Euro-Par Conference on Parallel Processing.
Springer-Verlag, 2009.

75

http://www.nvidia.com/content/cudazone/download/OpenCL/NVIDIA_OpenCL_ProgrammingGuide.pdf
http://www.nvidia.com/content/cudazone/download/OpenCL/NVIDIA_OpenCL_ProgrammingGuide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Best_Practices_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Best_Practices_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Best_Practices_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_CUFFT_Users_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_CUFFT_Users_Guide.pdf
http://docs.nvidia.com/cuda/samples/6_Advanced/transpose/doc/MatrixTranspose.pdf
http://docs.nvidia.com/cuda/samples/6_Advanced/transpose/doc/MatrixTranspose.pdf

[32] Alessio Sclocco, Ana Lucia Varbanescu, Jan David Mol, and Rob V. van
Nieuwpoort. Radio astronomy beam forming on many-core architectures.
2012 IEEE 26th International Parallel and Distributed Processing Sympo-
sium, 2012.

[33] B. Spencer. A general auto-tuning framework for software performance op-
timisation, 2011.

[34] I-Jui Sung, G.D. Liu, and W.-M.W. Hwu. Dl: A data layout transforma-
tion system for heterogeneous computing. In Innovative Parallel Computing
(InPar), 2012, pages 1 –11, may 2012.

[35] I-Jui Sung, John A. Stratton, and Wen-Mei W. Hwu. Data layout trans-
formation exploiting memory-level parallelism in structured grid many-core
applications. In Proceedings of the 19th international conference on Parallel
architectures and compilation techniques, PACT ’10, pages 513–522, 2010.

[36] Victor Pankratius Thomas Karcher. Run-time automatic performance tuning
for multicore applications. Euro-Par 2011 Parallel Processing, 2011.

[37] A. Tiwari, Chun Chen, J. Chame, M. Hall, and J.K. Hollingsworth. A
scalable auto-tuning framework for compiler optimization. In Parallel Dis-
tributed Processing, may 2009.

[38] Karel van der Veldt, Rob van Niewpoort, Ana Lucia Varbanescu, and Chris
Jesshope. A polyphase filter for gpus and multi-core processors. Astro-HPC
’12 Proceedings of the 2012 workshop on High-Performance Computing for
Astronomy Date, 2012.

[39] Rob V. van Nieuwpoort and John W. Romein. Correlating Radio Astron-
omy Signals with Many-Core Hardware. Springer International Journal of
Parallel Programming, 39, 2011.

[40] R. Clint Whaley and Antoine Petitet. Minimizing development and mainte-
nance costs in supporting persistently optimized blas. Softw. Pract. Exper.,
35(2):101–121, February 2005.

[41] Samuel Williams, Kaushik Datta, Jonathan Carter, Leonid Oliker, John
Shalf, Katherine Yelick, and David Bailey. Peri- auto-tuning memory in-
tensive kernels for multicore, 2008.

[42] Samuel Williams, Andrew Waterman, and David Patterson. Roofline: an
insightful visual performance model for multicore architectures. Commun.
ACM, 52(4), April 2009.

76

[43] K. Yotov, X. Li, G. Ren, M.J.S. Garzaran, D. Padua, K. Pingali, and
P. Stodghill. Is search really necessary to generate high-performance blas?
Proceedings of the IEEE, 93(2):358 –386, feb. 2005.

77

	Introduction
	Background
	LOFAR pipeline
	Poly-phase filter
	Beam former
	Correlator

	Auto-tuning

	Programming model
	OpenCL
	JavaCL
	JavaCL vs OpenCL vs CUDA

	Related work
	Radio astronomy pipelines
	Auto-tuning
	Data layout transformation
	Summary

	Kernel auto-tuning
	Identification of parameters
	Construction of tunable kernel
	Generic vs specific kernel
	Full tiling

	Exploration of parameters' values
	Cell shape
	Cell size
	Work group size
	Shared memory
	Combining several parameters

	Conclusions

	Data layout conversion
	Data layout introduction
	Transposition schemes analysis
	Transposition schemes implementation
	Transposition schemes comparison

	Pipeline auto-tuning
	Motivation
	Specific pipelines analysis
	Experiments setup
	Tuning Pipeline 1
	Tuning Pipeline 2
	Pipeline tuning on CPU
	Tuning time
	Conclusions & recommendations

	Conclusions
	Answers
	Future work

