PARALLEL PROGRAMMING
MANY-CORE COMPUTING:
ADVANCED CUDA (4/5)
Schedule

1. Introduction, performance metrics & analysis
2. Many-core hardware, low-level optimizations
3. GPU hardware and Cuda class 1: basics
4. Cuda class 2: advanced; OpenCL
5. Case study: LOFAR telescope with many-cores
Grids, Thread Blocks and Threads

Grid

Thread Block 0, 0

<table>
<thead>
<tr>
<th>0,0</th>
<th>0,1</th>
<th>0,2</th>
<th>0,3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,0</td>
<td>1,1</td>
<td>1,2</td>
<td>1,3</td>
</tr>
<tr>
<td>2,0</td>
<td>2,1</td>
<td>2,2</td>
<td>2,3</td>
</tr>
</tbody>
</table>

Thread Block 0, 1

<table>
<thead>
<tr>
<th>0,0</th>
<th>0,1</th>
<th>0,2</th>
<th>0,3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,0</td>
<td>1,1</td>
<td>1,2</td>
<td>1,3</td>
</tr>
<tr>
<td>2,0</td>
<td>2,1</td>
<td>2,2</td>
<td>2,3</td>
</tr>
</tbody>
</table>

Thread Block 0, 2

<table>
<thead>
<tr>
<th>0,0</th>
<th>0,1</th>
<th>0,2</th>
<th>0,3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,0</td>
<td>1,1</td>
<td>1,2</td>
<td>1,3</td>
</tr>
<tr>
<td>2,0</td>
<td>2,1</td>
<td>2,2</td>
<td>2,3</td>
</tr>
</tbody>
</table>

Thread Block 1, 0

<table>
<thead>
<tr>
<th>0,0</th>
<th>0,1</th>
<th>0,2</th>
<th>0,3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,0</td>
<td>1,1</td>
<td>1,2</td>
<td>1,3</td>
</tr>
<tr>
<td>2,0</td>
<td>2,1</td>
<td>2,2</td>
<td>2,3</td>
</tr>
</tbody>
</table>

Thread Block 1, 1

<table>
<thead>
<tr>
<th>0,0</th>
<th>0,1</th>
<th>0,2</th>
<th>0,3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,0</td>
<td>1,1</td>
<td>1,2</td>
<td>1,3</td>
</tr>
<tr>
<td>2,0</td>
<td>2,1</td>
<td>2,2</td>
<td>2,3</td>
</tr>
</tbody>
</table>

Thread Block 1, 2

<table>
<thead>
<tr>
<th>0,0</th>
<th>0,1</th>
<th>0,2</th>
<th>0,3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,0</td>
<td>1,1</td>
<td>1,2</td>
<td>1,3</td>
</tr>
<tr>
<td>2,0</td>
<td>2,1</td>
<td>2,2</td>
<td>2,3</td>
</tr>
</tbody>
</table>
Memory Spaces in CUDA

Host

Grid

Block (0, 0)

Shared Memory

Registers

Thread (0, 0)

Thread (1, 0)

Device Memory

Constant Memory

Block (1, 0)

Shared Memory

Registers

Thread (0, 0)

Thread (1, 0)
Vector addition GPU code

// compute vector sum c = a + b
// each thread performs one pair-wise addition
__global__ void vector_add(float* A, float* B, float* C) {
 int i = threadIdx.x + blockDim.x * blockIdx.x;
 C[i] = A[i] + B[i];
}

int main() {
 // initialization code here ...

 // launch N/256 blocks of 256 threads each
 vector_add<<<N/256, 256>>>(deviceA, deviceB, deviceC);

 // cleanup code here ...
}

(can be in the same file)
CUDA: Scheduling, Synchronization and Atomics
Thread Scheduling

- Order in which thread blocks are scheduled is undefined!
 - any possible interleaving of blocks should be valid
 - presumed to run to completion without preemption
 - can run in any order
 - can run concurrently OR sequentially

- Order of threads within a block is also undefined!
Q: How do we do global synchronization with these scheduling semantics?
Q: How do we do global synchronization with these scheduling semantics?

A1: Not possible!
Q: How do we do global synchronization with these scheduling semantics?

A1: Not possible!

A2: Finish a grid, and start a new one!
Q: How do we do global synchronization with these scheduling semantics?

A1: Not possible!

A2: Finish a grid, and start a new one!

```
step1<<<grid1,blk1>>>(...);
// CUDA ensures that all writes from step1 are complete.
step2<<<grid2,blk2>>>(...);
```

We don't have to copy the data back and forth!
Atomics

- Guarantee that only a single thread has access to a piece of memory during an operation
- No dropped data, but ordering is still arbitrary
- Different types of atomic instructions
 - Atomic Add, Sub, Exch, Min, Max, Inc, Dec, CAS, And, Or, Xor
- Can be done on device memory and shared memory
- Much more expensive than load + operation + store
// Determine frequency of colors in a picture.
// Colors have already been converted into integers
// between 0 and 255.
// Each thread looks at one pixel,
// and increments a counter

__global__ void histogram(int* colors, int* buckets)
{
 int i = threadIdx.x + blockDim.x * blockIdx.x;
 int c = colors[i];
 buckets[c] += 1;
}
Example: Histogram

// Determine frequency of colors in a picture.
// Colors have already been converted into integers
// between 0 and 255.
// Each thread looks at one pixel,
// and increments a counter

__global__ void histogram(int* colors, int* buckets)
{
 int i = threadIdx.x + blockDim.x * blockIdx.x;
 int c = colors[i];
 buckets[c] += 1;
}
// Determine frequency of colors in a picture.
// Colors have already been converted into integers
// between 0 and 255.
// Each thread looks at one pixel,
// and increments a counter atomically

__global__ void histogram(int* colors, int* buckets){
 int i = threadIdx.x + blockDim.x * blockIdx.x;
 int c = colors[i];
 atomicAdd(&buckets[c], 1);
}
CUDA: optimizing your application

Coalescing
Coalescing

traditional multi-core optimal memory access pattern

- **thread 0**
 - t = 0
 - address 0
 - t = 1
 - address 1
 - t = 1

- **thread 1**
 - t = 0
 - address 2
 - t = 1
 - address 3
 - t = 1

- **thread 2**
 - t = 0
 - address 4
 - t = 1
 - address 5
 - t = 1

- **thread 3**
 - t = 0
 - address 6
 - t = 1
 - address 7
 - t = 1

many-core GPU optimal memory access pattern

- **thread 0**
 - t = 0
 - address 0
 - t = 1
 - address 1

- **thread 1**
 - t = 0
 - address 2
 - t = 1
 - address 3
 - t = 0

- **thread 2**
 - t = 0
 - address 4
 - t = 1
 - address 5
 - t = 0

- **thread 3**
 - t = 0
 - address 6
 - t = 1
 - address 7
 - t = 1
__global__ void foo(int* input, float3* input2) {
 int i = blockDim.x * blockIdx.x + threadIdx.x;

 // Stride 1, OK!
 int a = input[i];

 // Stride 2, half the bandwidth is wasted
 int b = input[2*i];

 // Stride 3, 2/3 of the bandwidth wasted
 float c = input2[i].x;
}

Consider the stride of your accesses
struct record {
 int key;
 int value;
 int flag;
};

record *d_records;
cudaMalloc((void**)&d_records, ...);
Example: Structure of Arrays (SoA)

```c
Struct SoA {
    int* keys;
    int* values;
    int* flags;
};

SoA d_SoA_data;
cudaMalloc((void**)&d_SoA_data.keys, ...);
cudaMalloc((void**)&d_SoA_data.values, ...);
cudaMalloc((void**)&d_SoA_data.flags, ...);
```
Example: SoA vs AoS

```c
__global__ void bar(record* AoS_data,
                      SoA SoA_data) {
    int i = blockDim.x * blockIdx.x + threadIdx.x;

    // AoS wastes bandwidth
    int key1 = AoS_data[i].key;

    // SoA efficient use of bandwidth
    int key2 = SoA_data.keys[i];
}
```
Memory Coalescing

- Structure of arrays is often better than array of structures
- Very clear win on regular, stride 1 access patterns
- Unpredictable or irregular access patterns are case-by-case
- Can lose a factor of 10 – 30!
CUDA: optimizing your application

Shared Memory
Matrix multiplication example

- $C = A \times B$
- Each element $C_{i,j}$

 $= \text{dot}(\text{row}(A,i),\text{col}(B,j))$

- Parallelization strategy
 - Each thread computes element in C
 - 2D kernel
Matrix multiplication implementation

__global__ void mat_mul(float *a, float *b, float *c, int width)
{

 // calc row & column index of output element
 int row = blockIdx.y*blockDim.y + threadIdx.y;
 int col = blockIdx.x*blockDim.x + threadIdx.x;

 float result = 0;

 // do dot product between row of a and column of b
 for(int k = 0; k < width; k++) {
 result += a[row*width+k] * b[k*width+col];
 }

 c[row*width+col] = result;
}
Matrix multiplication performance

<table>
<thead>
<tr>
<th>Loads per dot product term</th>
<th>2 (a and b) = 8 bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLOPS</td>
<td>2 (multiply and add)</td>
</tr>
<tr>
<td>AI</td>
<td>2 / 8 = 0.25</td>
</tr>
<tr>
<td>Performance GTX 580</td>
<td>1581 GFLOPs</td>
</tr>
<tr>
<td>Memory bandwidth GTX 580</td>
<td>192 GB/s</td>
</tr>
<tr>
<td>Attainable performance</td>
<td>192 * 0.25 = 48 GFLOPS</td>
</tr>
<tr>
<td>Maximum efficiency</td>
<td>3.0 % of theoretical peak</td>
</tr>
</tbody>
</table>
Data reuse

- Each input element in A and B is read WIDTH times
- Load elements into shared memory
- Have several threads use local version to reduce the memory bandwidth
Using shared memory

- Partition kernel loop into phases
- In each thread block, load a tile of both matrices into shared memory each phase
- Each phase, each thread computes a partial result

![Diagram showing matrix A, B, and C with shared memory access and computation phases.]
__global__ void mat_mul(float *a, float *b, float *c, int width) {

 // shorthand
 int tx = threadIdx.x, ty = threadIdx.y;
 int bx = blockIdx.x, by = blockIdx.y;

 // allocate tiles in shared memory
 __shared__ float s_a[TILE_WIDTH][TILE_WIDTH];
 __shared__ float s_b[TILE_WIDTH][TILE_WIDTH];

 // calculate the row & column index
 int row = by*blockDim.y + ty;
 int col = bx*blockDim.x + tx;

 float result = 0;

Matrix multiply with shared memory

// loop over input tiles in phases
for(int p = 0; p < width/TILE_WIDTH; p++) {
 // collaboratively load tiles into shared memory
 s_a[ty][tx] = a[row*width + (p*TILE_WIDTH + tx)];
 s_b[ty][tx] = b[(p*TILE_WIDTH + ty)*width + col];
 __syncthreads();

 // dot product between row of s_a and col of s_b
 for(int k = 0; k < TILE_WIDTH; k++) {
 result += s_a[ty][k] * s_b[k][tx];
 }
 __syncthreads();
}

c[row*width+col] = result;
Use of Barriers in mat_mul

- Two barriers per phase:
 - `__syncthreads` after all data is loaded into shared memory
 - `__syncthreads` after all data is read from shared memory
 - Second `__syncthreads` in phase p guards the load in phase p+1

- Use barriers to guard data
 - Guard against using uninitialized data
 - Guard against corrupting live data
Matrix multiplication performance

<table>
<thead>
<tr>
<th></th>
<th>Original</th>
<th>shared memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global loads</td>
<td>$2N^3 \times 4$ bytes</td>
<td>$(2N^3 / \text{TILE_WIDTH}) \times 4$ bytes</td>
</tr>
<tr>
<td>Total ops</td>
<td>$2N^3$</td>
<td>$2N^3$</td>
</tr>
<tr>
<td>AI</td>
<td>0.25</td>
<td>$0.25 \times \text{TILE_WIDTH}$</td>
</tr>
</tbody>
</table>

Performance GTX 580
- 1581 GFLOPs

Memory bandwidth GTX 580
- 192 GB/s

AI needed for peak
- $1581 / 192 = 8.23$

TILE_WIDTH required to achieve peak
- $0.25 \times \text{TILE_WIDTH} = 8.23$
 - $\text{TILE_WIDTH} = 32.9$
Partition data into subsets that fit into shared memory
A Common Programming Strategy

- Handle each data subset with one thread block
Load the subset from device memory to shared memory, using multiple threads to exploit memory-level parallelism.
A Common Programming Strategy

- Perform the computation on the subset from shared memory
A Common Programming Strategy

- Copy the result from shared memory back to device memory
CUDA: optimizing your application

Optimizing Occupancy
SM implements zero-overhead warp scheduling

- A warp is a group of 32 threads that runs concurrently on a SM.
- At any time, only one of the warps is executed by SM.
- Warps whose next instruction has its inputs ready for consumption are eligible for execution.
- Eligible Warps are selected for execution on a prioritized scheduling policy.
- All threads in a warp execute the same instruction when selected.

\[TB = \text{Thread Block}, \ W = \text{Warp} \]
Stalling warps

- What happens if all warps are stalled?
 - No instruction issued → performance lost

- Most common reason for stalling?
 - Waiting on global memory

- If your code reads global memory every couple of instructions
 - You should try to maximize occupancy
Occupancy

- What determines occupancy?
- Limited resources!
 - Register usage per thread
 - Shared memory per thread block
Pool of registers and shared memory per SM

- Each thread block grabs registers & shared memory
- If one or the other is fully utilized ➞ no more thread blocks
Resource Limits (2)

- Can only have 8 thread blocks per SM
 - If they’re too small, can’t fill up the SM
 - Need 128 threads / block on gt200 (4 cycles/instruction)
 - Need 192 threads / block on Fermi (6 cycles/instruction)

- Higher occupancy has diminishing returns for hiding latency
Hiding Latency with more threads

Throughput, 32-bit words

GB/s

Threads Per Multiprocessor
How do you know what you’re using?

- Use “nvcc -Xptxas -v” to get register and shared memory usage
- Plug those numbers into CUDA Occupancy Calculator
The other data points represent the range of possible block sizes, register counts, and shared memory allocation.

Varying Block Size

- **Multiprocessor Warp Occupancy vs. Threads Per Block**
- **My Block Size:** 128

Varying Register Count

- **Multiprocessor Warp Occupancy vs. Registers Per Thread**
- **My Register Count:** 25

Varying Shared Memory Usage

- **Multiprocessor Warp Occupancy vs. Shared Memory Per Block**
- **My Shared Memory:** 640

Physical Limits for GPU Compute Capability:

- **Maximum Threads per Multiprocessor:** 512
- **Maximum Wafers per Multiprocessor:** 16
- **Maximum Thread Blocks per Multiprocessor:** 4
- **Occupancy of each Multiprocessor:** 50%

GPU Occupancy Data is displayed here and in the graphs:

- **Multiprocessor Warp Occupancy vs. Threads Per Block**
- **My Block Size:** 128

Allocation Per Thread Block

- **Wafers:** 4
- **Registers:** 3584
- **Shared Memory:** 1024

These data are used in computing the occupancy data in blue.

CUDA Occupancy Calculator

Version: 2.0

Copyright and License
CUDA: optimizing your application

Shared memory bank conflicts
Shared Memory Banks

- Shared memory is banked
 - Only matters for threads within a warp
 - Full performance with some restrictions
 - Threads can each access different banks
 - Or can all access the same value
- Consecutive words are in different banks
- If two or more threads access the same bank but different value, we get bank conflicts
Bank Addressing Examples: OK

- No Bank Conflicts

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7
Thread 15

Bank 0
Bank 1
Bank 2
Bank 3
Bank 4
Bank 5
Bank 6
Bank 7
Bank 15

- No Bank Conflicts

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7
Thread 15

Bank 0
Bank 1
Bank 2
Bank 3
Bank 4
Bank 5
Bank 6
Bank 7
Bank 15
Bank Addressing Examples: BAD

- 2-way Bank Conflicts
- 8-way Bank Conflicts
Trick to Assess Performance Impact

- Change all shared memory reads to the same value
- All broadcasts = no conflicts
- Will show how much performance could be improved by eliminating bank conflicts

- The same doesn’t work for shared memory writes
 - So, replace shared memory array indices with threadIdx.x
 - (Could also be done for the reads)
Generic programming models

OpenCL
Portability

- Inter-family vs inter-vendor
 - NVIDIA Cuda runs on all NVIDIA GPU families
 - OpenCL runs on all GPUs, Cell, CPUs

- Parallelism portability
 - Different architecture requires different granularity
 - Task vs data parallel

- Performance portability
 - Can we express platform-specific optimizations?
The Khronos group

Over 100 companies creating visual computing standards
Board of Promoters
OpenCL: Open Compute Language

- Architecture independent
- Explicit support for many-cores
- Low-level host API
 - Uses C library, no language extensions
- Separate high-level kernel language
 - Explicit support for vectorization
- Run-time compilation
- Architecture-dependent optimizations
 - Still needed
 - Possible
Cuda vs OpenCL Terminology

<table>
<thead>
<tr>
<th>CUDA</th>
<th>OpenCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thread</td>
<td>Work item</td>
</tr>
<tr>
<td>Thread block</td>
<td>Work group</td>
</tr>
<tr>
<td>Device memory</td>
<td>Global memory</td>
</tr>
<tr>
<td>Constant memory</td>
<td>Constant memory</td>
</tr>
<tr>
<td>Shared memory</td>
<td>Local memory</td>
</tr>
<tr>
<td>Local memory</td>
<td>Private memory</td>
</tr>
</tbody>
</table>
Functions

<table>
<thead>
<tr>
<th>CUDA</th>
<th>OpenCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>global</td>
<td>__kernel</td>
</tr>
<tr>
<td>device</td>
<td>(no qualifier needed)</td>
</tr>
</tbody>
</table>

Variables

<table>
<thead>
<tr>
<th>CUDA</th>
<th>OpenCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>constant</td>
<td>__constant</td>
</tr>
<tr>
<td>device</td>
<td>__global</td>
</tr>
<tr>
<td>shared</td>
<td>__local</td>
</tr>
</tbody>
</table>
Cuda vs OpenCL Indexing

<table>
<thead>
<tr>
<th>CUDA</th>
<th>OpenCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>gridDim</td>
<td>get_num_groups()</td>
</tr>
<tr>
<td>blockDim</td>
<td>get_local_size()</td>
</tr>
<tr>
<td>blockIdx</td>
<td>get_group_id()</td>
</tr>
<tr>
<td>threadIdx</td>
<td>get_local_id()</td>
</tr>
<tr>
<td>Calculate manually</td>
<td>get_global_id()</td>
</tr>
<tr>
<td>Calculate manually</td>
<td>get_global_size()</td>
</tr>
</tbody>
</table>

```cpp
__syncthreads() → barrier()
```
vectorAdd(float* a, float* b, float* c) {
 int index = blockIdx.x * blockDim.x + threadIdx.x;
 c[index] = a[index] + b[index];
}

__kernel__ void
vectorAdd(__global float* a, __global float* b, __global float* c) {
 int index = get_global_id(0);
 c[index] = a[index] + b[index];
}
const size_t workGroupSize = 256;
const size_t nrWorkGroups = 3;
const size_t totalSize = nrWorkGroups * workGroupSize;

cl_platform_id platform;
clGetPlatformIDs(1, &platform, NULL);

// create properties list of key/values, 0-terminated.
cl_context_properties props[] = {
 CL_CONTEXT_PLATFORM, (cl_context_properties)platform,
 0
};

cl_context context = clCreateContextFromType(props,
 CL_DEVICE_TYPE_GPU, 0, 0, 0);
cl_device_id device;
clGetDeviceIDs(platform, CL_DEVICE_TYPE_DEFAULT, 1,
 &device, NULL);

// create command queue on 1st device the context reported
cl_command_queue commandQueue =
 clCreateCommandQueue(context, device, 0, 0);

// create & compile program
cl_program program = clCreateProgramWithSource(context, 1,
 &programSource, 0, 0);
clBuildProgram(program, 0, 0, 0, 0, 0, 0);

// create kernel
cl_kernel kernel = clCreateKernel(program, "vectorAdd",0);
float* A, B, C = new float[totalSize]; // alloc host vecs
// initialize host memory here...

// allocate device memory
cl_mem deviceA = clCreateBuffer(context,
 CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
 totalSize * sizeof(cl_float), A, 0);

cl_mem deviceB = clCreateBuffer(context,
 CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
 totalSize * sizeof(cl_float), B, 0);

cl_mem deviceC = clCreateBuffer(context,
 CL_MEM_WRITE_ONLY, totalSize * sizeof(cl_float), 0, 0);
// setup parameter values
clSetKernelArg(kernel, 0, sizeof(cl_mem), &deviceA);
clSetKernelArg(kernel, 1, sizeof(cl_mem), &deviceB);
clSetKernelArg(kernel, 2, sizeof(cl_mem), &deviceC);

clEnqueueNDRangeKernel(commandQueue, kernel, 1, 0,
 &totalSize, &workGroupSize, 0, 0, 0); // execute kernel

// copy results from device back to host, blocking
clEnqueueReadBuffer(commandQueue, deviceC, CL_TRUE, 0,
 totalSize * sizeof(cl_float), C, 0, 0, 0);

delete[] A, B, C; // cleanup
clReleaseMemObject(deviceA); clReleaseMemObject(deviceB);
clReleaseMemObject(deviceC);
Summary and Conclusions
Higher performance cannot be reached by increasing clock frequencies anymore
Solution: introduction of large-scale parallelism

Multiple cores on a chip

Today:
- Up to 48 CPU cores in a node
- Up to 3200 cores on a single GPU
- Host system can contain multiple GPUs: 10,000+ cores
- We can build clusters of these nodes!

Future: 100,000s – millions of cores?
Summary and conclusions

- Many different types of many-core hardware
- Very different properties
 - Performance
 - Programmability
 - Portability
- It's all about the memory
- Choose the right platform for your application
 - Arithmetic intensity / Operational intensity
 - Roofline model
Summary and conclusions

- Many different many-core programming models
- Most models are hardware-induced, low-level
 - DMA, double buffering
 - Vectorization
 - Coalescing
 - Explicit cache (LS on Cell, shared memory on GPU)
- Future
 - Cuda? OpenCL?
 - high-level models on top of OpenCL?
- Many-cores are here to stay