Distributed Algorithms 2014 Seminar

Anastasija Efremovska and István Haller

Vrije Universiteit Amsterdam

November 6, 2014
Exercises for today:

- 8.4 - 8.5 (chapter Routing - Merlin-Segall (All shortest paths to initiator))
- 8.6 - 8.10 (chapter Routing - Toueg (All pair shortest path))
- 8.16 (chapter Routing - Dijkstra (All shortest paths to initiator))
Centralized algorithms for shortest path towards initiator

Chandy-Misra
- Each node broadcasts its distance towards initiator whenever it is updated
- When a message is received, it checks to update the current distance
- Potential spam of messages (incremental updates)

Merlin-Segall
- Organized into rounds to accumulate updates
- Single broadcast per round → At message from parent
- Round finishes when all messages received and message sent to parent (similar to echo)
- Distances updated continuously
- Parent only updated at end of round
Suppose that in the Merlin-Segall algorithm a node v would update $next_v$ each time it updates $dist_v$. Explain why the worst-case message complexity would become exponential.
Exercise 8.4

Run the **Merlin-Segall** algorithm on the following undirected weighted network, to compute all shortest paths toward node y. Give an execution that takes four rounds before the correct sink tree has been computed.
Reminder: Merlin-Segall Algorithm

- Centralized algorithm to compute shortest paths to u_0.
- Initial sink tree with root u_0 and $\text{dist}_v(u_0) = \infty$ for all $v \neq u_0$.
- Each round u_0 sends $<0>$ to its neighbor.
- Let node v receive $<d>$ from node w.
 - If $d + \omega_{wv} < \text{dist}_v(u_0)$, then $\text{dist}_v(u_0) = d + \omega_{wv}$, also save w for $\text{next}_v(u_0)$ in next round.
 - If $w = \text{next}_v(u_0)$ (from u_0 along sink tree), then broadcast distance to all neighbors except $\text{next}_v(u_0)$.
- Wait for message from all neighbors before sending distance to $\text{next}_v(u_0)$ and ending round (echo-like to ensure separation between rounds).
- Algorithm terminates in $N - 1$ rounds.
Run Toueg's algorithm on the following undirected weighted network. Take as pivot order: $u \ v \ w \ x \ y$.
Reminder: Toueg’s Algorithm

- Compute for each pair u, v a shortest path from u to v
- Each node maintains $dist_v$ and $next_v$ for all other nodes
- No initial sink-tree (built up progressively)
- Incrementally add intermediate nodes as pivots
 - Pivots selected uniformly in the same order
 - Nodes request distance vector of current pivot
 - Pivot broadcasts its routing table along sink tree
 - For each pivot w udpate distance vector:
 $$d^{S \cup \{w\}} = \min \{d^S(u, w) + d^S(w, v), d^S(u, v)\}$$
 - Pivot round terminates after distance update and propagation of pivot routing table
- Pointers in sink tree consist of processed pivots
Argue that Toueg’s algorithm is an all-pairs shortest path algorithm.
Exercice 8.8

Analyze the space complexity of Toueg’s algorithm.
In Toueg’s algorithm, when a node $u \neq w$ in the sink tree of the pivot w receives the distance values of w, let u first perform for each node v the check whether $\text{dist}_u(w) + \text{dist}_w(v) < \text{dist}_u(v)$. Explain why u only needs to forward those values $\text{dist}_w(v)$ for which this check yields a positive result.
Suppose that edges can carry negative weights. Explain how the output of Toueg’s algorithm can be used to detect the presence of a negative-weight cycle of at least two edges.
Develop a distributed version of Dijkstra’s celebrated single-source shortest path algorithm. Discuss the worst-case message and time complexity of your algorithm.
Reminder: Dijkstra’s Algorithm

- Single source shortest path algorithm
- Extension of Breadth First Search with weighted edges
- Basic scheme: expand closest unvisited node first
- Logic: any component of optimal path is also optimal