1. The (regular) language $ab^* + b^*a(a + b)^*$.

2. $\delta(q_0, a) = (q_1, a, R)$ and $\delta(q_1, a) = (q_2, a, R)$ and $\delta(q_2, b) = (q_3, b, R)$ and $\delta(q_3, a) = (q_f, a, L)$.

3. The following TM accepts $\{a^n b^m \mid n \geq 1 \land n \neq m\}$.

The transition from q_0 to q_6 changes the first a of the string to 1. Now in q_6, an arbitrary number of a’s are passed over. If the string consists of only a’s, then at the end of the string we encounter \square and go to the final state. Else the first b of the string is changed into 1 by going to q_2. Now we can repeatedly change one a and one b into 1: walk to the left passing over 1’s (in q_2), until an a is encountered, which is changed into 1 (going to q_1); now walk to the right passing over 1’s (in q_1), until a b is encountered, which is changed into 1 (going back to q_2).

There are two ways to leave this cycle. The first one is if there are more a’s than b’s: in q_1, while walking to the right passing over 1’s, \square is encountered, meaning that the b’s have been exhausted. Then we go to the final state immediately. The second one is if there are more b’s than a’s: in q_2, while walking to the left passing over 1’s, \square is encountered, meaning that the a’s have been exhausted. Then we go to q_3, where we walk to the right passing over 1’s, until a b is encountered, which is changed into 1. This leads to q_5, where an arbitrary number of b’s are passed over, until \square is encountered, after which we go to the final state.

4. Yes. If there are multiple final states, then select one of them, say q_f, as the only final state, and allow all states that used to be final to make a transition to q_f for any input symbol.
5. Let L_1 and L_2 be recursively enumerable languages. Then there exist TMs M_1 and M_2 that accept $L_1 \setminus \{\lambda\}$ and $L_2 \setminus \{\lambda\}$, respectively.

We define a TM N which nondeterministically chooses between executing M_1 or M_2, and accepts the input string if M_1 respectively M_2 accepts the input string. Clearly, $L(N) = (L_1 \cup L_2) \setminus \{\lambda\}$. So $L_1 \cup L_2$ is recursively enumerable.

We define a TM N' which remembers the input string (for example on an additional tape). N' first executes M_1 on the input string. If this leads to acceptance, then N' executes M_2 on the input string (on the additional tape). If this also leads to acceptance, then N' goes to a final state. Clearly, $L(N') = (L_1 \cap L_2) \setminus \{\lambda\}$. So $L_1 \cap L_2$ is recursively enumerable.

6. Let the TM M accept $L \setminus \{\lambda\}$ and halt on every non-empty input string. We define a TM N which behaves exactly as M. Only, each final state of M becomes a non-final state of N (from which no transitions are possible). And each non-final halt state of M makes one extra transition in N, to a final state. Clearly, $L(N) = T \setminus \{\lambda\}$. So T is recursively enumerable.

7. Take some nonempty Σ. For each finite k there are only finitely many TMs that can be defined using k symbols (also counting brackets, comma’s, equality signs, occurrences of δ, etc.). On the other hand, each TM can be defined using finitely many symbols. So the collection of all TMs over Σ can be counted: first count the TMs that are defined using one symbol, then the TMs that are defined using two symbols, etc.

This implies that the collection of languages that are accepted by a TM together with their complements is countable.

Take an $a \in \Sigma$. Suppose, toward a contradiction, that the collection of languages over a is countable: L_1, L_2, L_3, \ldots. We define the language L by

$$L = \{ a^i \mid a^i \notin L_i \}$$

Clearly, $L \neq L_i$ for each i, because they disagree on a^i. So L is not in the sequence L_1, L_2, L_3, \ldots. Hence the languages over a are apparently not countable.

Since the collection of recursively enumerable languages together with their complements is countable, while the collection of languages over $\{a\}$ aren’t, we conclude that there must be a language over $\{a\}$ such that neither the language itself nor its complement is recursively enumerable.