1. If \mathcal{H} doesn’t reach a halt state on (M, w) (which implies that M halts on w), we will never start the execution of M on w to check whether M accepts w.

2. (a) Yes. Both $w_3w_4w_1$ and $v_3v_4v_1$ are equal to 11101001.

 (b) No. The second symbol of $w_1 = 001$ is 0, while the second symbol of $v_1 = 01$ is 1.

 (c) $y_0 = \$0\$0\$1$ $y_1 = \$0\$0\$1$ $y_2 = \$0\$0\$1\1 $y_3 = \$1\1 $y_4 = \$0\$0\$1$ $y_5 = \#$

 $z_0 = \$0\1 $z_1 = \$0\1 $z_2 = \$1\$1\$1$ $z_3 = \$1\$1\$1$ $z_4 = \$0\$1\$0$ $z_5 = \$#$

3. (a) $(a + b)^*bb(a + b)^*$.

 (b) λ $\#q_0abb$ $q_f\lambda$ q_f

 a a $q_a b$ q_f

 b b $q_f \square$ q_f

 \square \square $aq_f b$ q_f

 $\#$ $\#$ $b q_f a$ q_f

 $q_0 a$ $a q_0$ $\square q_f a$ q_f

 $q_0 b$ $b q_1$ $\# q_f a$ λ

 $q_1 a$ $a q_0$ $a q_1 b$ $q_f a b$

 $a q_1 b$ $a q_1 b$ $q_f a b$

 $b q_1 b$ $b q_f b b$

 $\square q_1 b$ $q_f \square b$

 $\# q_1 b$ $\# q_f \square b$

 (c) Start on the leftmost element of the string, in state q_0.

 Read a, leave it a, make one step to the right, and stay in state q_0.

 Read b, leave it b, make one step to the right, and go to state q_1.

 Read b, leave it b, make one step to the left, and go to state q_f.

 (d) $\# q_0 a b b \# a q_0 b b \# a b q_1 b \# a q_1 b b \# q_f b b \# q_f b \# q_f$.

4. Each instance of the PCP over a general Σ can be encoded into an instance of the PCP over $\{0, 1\}$ as follows: replace each element of Σ by 01^k0 where k is unique for each element. It is not hard to see that the original instance of the PCP over a general Σ has a solution if and only if the encoded instance of the PCP over $\{0, 1\}$ has a solution. So decidability of the PCP over $\{0, 1\}$ would imply decidability of the PCP over general Σ.

1
5. Let $\Sigma = \{a\}$. Then we only need to consider the length of every string. Suppose the PCP instance consists of strings $w_1w_2\ldots w_n$ and $v_1v_2\ldots v_n$.

If there is a i such that $|w_i| = |v_i|$, then this constitutes a solution.

If there is a i with $|w_i| < |v_i|$ and a j with $|w_j| > |v_j|$, then it is easy to see that there is a solution of the form

$$w_i \ldots w_iw_j \ldots w_j = v_i \ldots v_iv_j \ldots v_j$$

If $|w_i| > |v_i|$ for all i, or $|w_i| < |v_i|$ for all i, then there is no solution.