1. Argue that the problem of finding a minimum spanning tree in an undirected weighted graph is in P.

2. Sketch an explicit (nondeterministic, polynomial) construction to show that the bounded tiling problem is in NP.

3. Let $\Sigma = \{a, b\}$. The TM M, with $F = \{q_f\}$, is defined by:
 \[
 \begin{align*}
 \delta(q_0, a) &= (q_0, a, R) \\
 \delta(q_0, b) &= (q_1, b, R) \\
 \delta(q_1, a) &= (q_0, a, R) \\
 \delta(q_1, b) &= (q_f, b, L)
 \end{align*}
 \]
 (a) Transform the question whether string abb is in $L(M)$ into an instance of the bounded tiling problem.
 (b) Show, by applying the transition function of M to the tape, that $abb \in L(M)$.
 (c) Transform this computation of M on input string abb into a solution for the corresponding instance of the bounded tiling problem.

4. Consider the following two adaptations of the definition of tiles for instructions (r, b, R) and (r, b, L) in $\delta(q, a)$, in the construction to show that the bounded tiling problem is NP-complete. In both cases explain what goes wrong.
 (a) The r in the color at the sides of the tiles are omitted:

 \[
 \begin{array}{ccc}
 \square & R & R \square \\
 q, a & r, c & c \\
 \end{array}
 \]
 \[
 \begin{array}{ccc}
 \square & L & L \square \\
 r, c & c & q, a \\
 \end{array}
 \]
 \[
 (r, b, R) \in \delta(q, a) \\
 (r, b, L) \in \delta(q, a)
 \]

 (b) The R in the color at the sides of the tiles for instructions (r, b, R) and the L in the color at the sides of the tiles for instructions (r, b, L) are omitted:

 \[
 \begin{array}{ccc}
 \square & r & r \square \\
 q, a & r, c & c \\
 \end{array}
 \]
 \[
 \begin{array}{ccc}
 \square & r & r \square \\
 r, c & c & q, a \\
 \end{array}
 \]
 \[
 (r, b, R) \in \delta(q, a) \\
 (r, b, L) \in \delta(q, a)
 \]
5. Argue that P is closed under complement, union and intersection.

6. Argue that NP is closed under union and intersection.
 Also explain why the proof that P is closed under complement does not carry over to NP.

7. Suppose that some NP-complete language L_1 is polynomial-time reducible to $L_2 \in NP$.
 Argue that L_2 is also NP-complete.

8. Is it possibly impossible to determine whether P = NP holds?