Hash Functions and Hash Tables

A hash function h maps keys of a given type to integers in a fixed interval $[0, \ldots, N - 1]$. We call $h(x)$ hash value of x.

Examples:
- $h(x) = x \mod N$ is a hash function for integer keys.
- $h((x, y)) = (5 \cdot x + 7 \cdot y) \mod N$ is a hash function for pairs of integers.

<table>
<thead>
<tr>
<th>key</th>
<th>element</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>14</td>
</tr>
</tbody>
</table>

A hash table consists of:
- hash function h
- an array (called table) of size N

The idea is to store item (k, e) at index $h(k)$.
Example: phone book with table size $N = 5$

- hash function $h(w) = \text{(length of the word } w) \mod 5$

- Ideal case: one access for $\text{find}(k)$ (that is, $O(1)$).

- Problem: collisions
 - Where to store Joe (collides with Sue)?

- This is an example of a bad hash function:
 - Lots of collisions even if we make the table size N larger.
A dictionary based on a hash table for:
- items (social security number, name)
- 700 persons in the database

We choose a hash table of size $N = 1000$ with:
- hash function $h(x) = \text{last three digits of } x$

![Hash Table Diagram]

- (025-611-001, Mr. X)
- (987-067-002, Brad Pit)
- (431-763-997, Alan Turing)
- (007-007-999, James Bond)
Collisions occur when different elements are mapped to the same cell:

- Keys k_1, k_2 with $h(k_1) = h(k_2)$ are said to collide.

Different possibilities of handing collisions:

- chaining,
- linear probing,
- double hashing, . . .
Usual setting:

- The set of keys is much larger than the available memory.
- Hence collisions are unavoidable.

How probable are collisions:

- We have a party with p persons. What is the probability that at least 2 persons have birthday the same day ($N = 365$).

Probability for no collision:

\[
q(p, N) = \frac{N}{N} \cdot \frac{N - 1}{N} \cdots \frac{N - p + 1}{N} = \frac{(N - 1) \cdot (N - 2) \cdots (N - p + 1)}{N^{p-1}}
\]

- Already for $p \geq 23$ the probability for collisions is > 0.5.
The efficiency of hashing depends on various factors:

- hash function
- type of the keys: integers, strings, ...
- distribution of the actually used keys
- occupancy of the hash table (how full is the hash table)
- method of collision handling

The load factor α of a hash table is the ratio n/N, that is, the number of elements in the table divided by size of the table.

High load factor $\alpha \geq 0.85$ has negative effect on efficiency:

- lots of collisions
- low efficiency due to collision overhead
What is a good Hash Function?

Hash functions should have the following properties:

▶ Fast computation of the hash value \(O(1)\).

▶ Hash values should be distributed (nearly) uniformly:
 - Every has value (cell in the hash table) has equal probability.
 - This should hold even if keys are non-uniformly distributed.

The goal of a hash function is:

▶ ‘disperse’ the keys in an apparently random way

Example (Hash Function for Strings in Python)

We display python hash values modulo 997:

\[
\begin{align*}
 h('a') &= 535 & h('b') &= 80 & h('c') &= 618 & h('d') &= 163 \\
 h('ab') &= 354 & h('ba') &= 979 & \ldots
\end{align*}
\]

At least at first glance they look random.
Hash function is usually specified as composition of:

- **hash code map**: $h_1 : \text{keys} \rightarrow \text{integers}$
- **compression map**: $h_2 : \text{integers} \rightarrow [0, \ldots, N - 1]$

The hash code map is applied before the compression map:

- $h(x) = h_2(h_1(x))$ is the composed hash function

The compression map usually is of the form $h_2(x) = x \mod N$:

- The actual work is done by the hash code map.
- What are good N to choose? \ldots see following slides
We revisit the example (social security number, name):

- hash function $h(x) = x$ as number mod 1000

Assume the last digit is always 0 or 1 indicating male/female.

Then 80% of the cells in the table stay unused! Bad hash!
A better hash function for ‘social security number’:

- hash function \(h(x) = x \) as number \(\mod 997 \)
- e.g. \(h(025 - 611 - 000) = 025611000 \mod 997 = 409 \)

Why 997? Because 997 is a prime number!

- Let the hash function be of the form \(h(x) = x \mod N \).
- Assume the keys are distributed in equidistance \(\Delta < N \):
 \[
 k_i = z + i \cdot \Delta
 \]

 We get a collision if:
 \[
 k_i \mod N = k_j \mod N
 \iff z + i \cdot \Delta \mod N = z + j \cdot \Delta \mod N
 \iff i = j + m \cdot N \quad (\text{for some } m \in \mathbb{Z})
 \]

Thus a prime maximizes the distance of keys with collisions!
Hash Code Maps

What if the keys are not integers?

- **Integer cast**: interpret the bits of the key as integer.

 \[
 \begin{array}{ccc}
 a & b & c \\
 0001 & 0010 & 0011
 \end{array}
 \]

 \[
 000100100011 = 291
 \]

What if keys are longer than 32/64 bit Integers?

- **Component sum**:
 - partition the bits of the key into parts of fixed length
 - combine the components to one integer using sum
 (other combinations are possible, e.g. bitwise xor, \ldots)

\[
\begin{array}{cccc}
1001010 & | & 0010111 & | & 0110000 \\
1001010 + 0010111 + 0110000 = 74 + 23 + 48 = 145
\end{array}
\]
Other possible hash code maps:

- **Polynomial accumulation:**
 - partition the bits of the key into parts of fixed length

 \[a_0 a_1 a_2 \ldots a_n \]

 - take as hash value the value of the polynom:

 \[a_0 + a_1 \cdot z + a_2 \cdot z^2 \ldots a_n \cdot z^n \]

 - especially suitable for strings (e.g. \(z = 33 \) has at most 6 collisions for 50,000 English words)

- **Mid-square method:**
 - pick \(m \) bits from the middle of \(x^2 \)

- **Random method:**
 - take \(x \) as seed for random number generator
Collision Handling: Chaining

Chaining: each cell of the hash table points to a linked list of elements that are mapped to this cell.

- colliding items are stored outside of the table
- simple but requires additional memory outside of the table

Example: keys = birthdays, elements = names

- hash function: \(h(x) = \) (month of birth) \(\mod 5 \)

<table>
<thead>
<tr>
<th>Cell</th>
<th>Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>∅</td>
</tr>
<tr>
<td>1</td>
<td>(01.01., Sue) → ∅</td>
</tr>
<tr>
<td>2</td>
<td>∅</td>
</tr>
<tr>
<td>3</td>
<td>(12.03., John) → (16.08., Madonna) → ∅</td>
</tr>
<tr>
<td>4</td>
<td>∅</td>
</tr>
</tbody>
</table>

Worst-case: everything in one cell, that is, linear list.
Collision Handling: Linear Probing

Open addressing:
- the colliding items are placed in a different cell of the table

Linear probing:
- colliding items stored in the next (circularly) available cell
- testing if cells are free is called ‘probing’

Example: \(h(x) = x \mod 13 \)
- we insert: 18, 41, 22, 44, 59, 32, 31, 73

Colliding items might lump together causing new collisions.
Linear Probing: Search

Searching for a key k (findElement(k)) works as follows:

- Start at cell $h(k)$, and probe consecutive locations until:
 - an item with key k is found, or
 - an empty cell is found, or
 - all N cells have been probed unsuccessfully.

findElement(k):

\[
i = h(k) \\
p = 0 \\
\textbf{while } p < N \textbf{ do} \\
\quad c = A[i] \\
\quad \textbf{if } c == \emptyset \textbf{ then return } \text{No_Such_Key} \\
\quad \textbf{if } c.key == k \textbf{ then return } c.element \\
\quad i = (i + 1) \mod N \\
\quad p = p + 1 \\
\textbf{return } \text{No_Such_Key}
\]
Linear Probing: Deleting

Deletion \text{remove}(k)\ is\ expensive:

- Removing 15, all consecutive elements have to be moved:

\[
\begin{array}{cccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\end{array}
\]

\[
\begin{array}{cccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\end{array}
\]

To avoid the moving we introduce a special element \text{Available}:

- Instead of deleting, we replace items by \text{Available} (A).

\[
\begin{array}{cccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\end{array}
\]

- From time to time we need to ‘clean up’:
 - remove all \text{Available} and reorder items
Linear Probing: Inserting

Inserting $\text{insertItem}(k, o)$:

- Start at cell $h(k)$, probe consecutive elements until:
 - empty or Available cell is found, then store item here, or
 - all N cells have been probed (table full, throw exception)

Example: $\text{insert}(3)$ in the above table yields ($h(x) = x \mod 13$)

Important: for findElement cells with Available are treated as filled, that is, the search continues.
Disadvantages of linear probing:
- Colliding items lump together, causing:
 - longer sequences of probes
 - reduced performance

Possible improvements/ modifications:
- instead of probing successive elements, compute the i-th probing index h_i depending on i and k:
 $$h_i(k) = h(k) + f(i, k)$$

Examples:
- Fixed increment c: $h_i(k) = h(k) + c \cdot i$.
- Changing directions: $h_i(k) = h(k) + c \cdot i \cdot (-1)^i$.
- Double hashing: $h_i(k) = h(k) + i \cdot h'(k)$.
Double Hashing

Double hashing uses a secondary hash function $d(k)$:

- Handles collisions by placing items in the first available cell

$$h(k) + j \cdot d(k)$$

for $j = 0, 1, \ldots, N - 1$.

- The function $d(k)$ always be > 0 and $< N$.

- The size of the table N should be a prime.
Double Hashing: Example

We use double hashing with:

- \(N = 13 \)
- \(h(k) = k \mod 13 \)
- \(d(k) = 7 - (k \mod 7) \)

<table>
<thead>
<tr>
<th>(k)</th>
<th>(h(k))</th>
<th>(d(k))</th>
<th>Probes</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>5</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>41</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>22</td>
<td>9</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>44</td>
<td>5</td>
<td>5</td>
<td>5, 10</td>
</tr>
<tr>
<td>59</td>
<td>7</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>32</td>
<td>6</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>31</td>
<td>5</td>
<td>4</td>
<td>5, 9, 0</td>
</tr>
<tr>
<td>73</td>
<td>8</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>
In worst case insertion, lookup and removal take $O(n)$ time:

- occurs when all keys collide (end up in one cell)

The load factor $\alpha = n/N$ affects the performance:

- Assuming that the hash values are like random numbers, it can be shown that the expected number of probes is:

$$\frac{1}{(1 - \alpha)}$$
Performance of Hashing

In worst case insertion, lookup and removal take $O(n)$ time:
- occurs when all keys collide (end up in one cell)

The load factor $\alpha = \frac{n}{N}$ affects the performance:
- Assuming that the hash values are like random numbers, it can be shown that the expected number of probes is:

 $$
 \frac{1}{1 - \alpha}
 $$

In practice hashing is very fast as long as $\alpha < 0.85$:
- $O(1)$ expected running time for all Dictionary ADT methods

Applications of hash tables:
- small databases
- compilers
- browser caches
No hash function is good in general:

- there always exist keys that are mapped to the same value

Hence no single hash function h can be proven to be good.

However, we can consider a set of hash functions H.
(assume that keys are from the interval $[0, M - 1]$)

We say that H is universal (good) if for all keys $0 \leq i \neq j < M$:

$$\text{probability}(h(i) = h(j)) \leq \frac{1}{N}$$

for h randomly selected from H.
The following set of hash functions H is universal:

- Choose a prime p between M and $2 \cdot M$.
- Let H consist of the functions
 \[h(k) = ((a \cdot k + b) \mod p) \mod N \]
 for $0 < a < p$ and $0 \leq b < p$.

Proof Sketch.

Let $0 \leq i \neq j < M$. For every $i' \neq j' < p$ there exist unique a, b such that $i' = a \cdot i + b \mod p$ and $j' = a \cdot i + b \mod p$. Thus every pair (i', j') with $i' \neq j'$ has equal probability. Consequently the probability for $i' \mod N = j' \mod N$ is $\leq \frac{1}{N}$. \qed
Comparison AVL Trees vs. Hash Tables

Dictionary methods:

<table>
<thead>
<tr>
<th></th>
<th>search</th>
<th>insert</th>
<th>remove</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVL Tree</td>
<td>$O(\log_2 n)$</td>
<td>$O(\log_2 n)$</td>
<td>$O(\log_2 n)$</td>
</tr>
<tr>
<td>Hash Table</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
</tbody>
</table>

1 expected running time of hash tables, worst-case is $O(n)$.

Ordered dictionary methods:

<table>
<thead>
<tr>
<th></th>
<th>closestAfter</th>
<th>closestBefore</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVL Tree</td>
<td>$O(\log_2 n)$</td>
<td>$O(\log_2 n)$</td>
</tr>
<tr>
<td>Hash Table</td>
<td>$O(n + N)$</td>
<td>$O(n + N)$</td>
</tr>
</tbody>
</table>

Examples, when to use AVL trees instead of hash tables:

1. if you need to be sure about worst-case performance
2. if keys are imprecise (e.g. measurements),
 e.g. find the closest key to 3.24: closestTo(3.72)