VRIJEUNIVERSITEIT

MASTER' S THESIS

Fault Tolerant Rings: Creation and Maintenance

Supervisor:

Author: Prof. Wan FOKKINK

Atul MEHTA Second Reader:

Dr. Paolo @sTA

October 2, 2008

Contents

\1 Problem Statement 1
1.1 Current Approaches to Topology Maintenance 1
1.2 Basic Definitions e e e e e e 2
1.3 TheUnidirectional Ring 2
1.4 The Bidirectional Rng 4
1.4.1 JoinProtocol e
1.4.2 Leave Protocol e
1.5 The Combined Protod;ol 7
1.6 Conclusio\n ... 8
\2 A General Solution 11
2.1 Suitable Functions e e 11
2.2 Methodologhl 12
2.3 Joins/LeavesinRiNgS o i i e e e e 14
24 P2PNEIWOIKS . « o o o oot e e e 15
2.4.1 Joins and Leaves in P2P Systems 8.
25 CONCIUSION .« .« v o o e e 20
\3 A Special Case 21
3.1 Related WOIK . . . o oo 21
3.2 Basic System Design e e e e 21
3.2.1 StructureoftheSystem 2
3.2.2 Dynamic Ooeratiohs
3.3 Analysié .. 24
3.4 CONCIUSION . o o o o ot e 25
\4 A Partial Geometric SolutioH 27
4.1 OVEIVIEW . . . o e e e e e e e e e e 27
4.2 Anal sils .. 28
4.3 Probleﬂs ... 8
4.4 Conclusio\n .. 29

23

List of Figures

1.1 Joining a unidirectional rinﬁs] 3
1.2 Exchanges of messages during the join prot@ol Bl . . o 3
1.3 Joining a bidirectionalring [3] 5
1.4 Exchanges of messages duringjthe protocol for the bidirectional rinﬁS] 5
1.5 Joining abidirectionalring [3] 6
1.6 Exchanges of messages duringjtie protocol for the bidirectional rinﬁS] 7
1.7 Exchange of messages durjn'@/leave[ﬁ] 9
21 A portion of a bidirectional riﬁg 12
2.2 Crashed process in a bidirectionalring aaa.. 13
2.3 Nodes can be left out in a bidirectionalring 14
2.4 At-crash tolerant protocolo 15
2.5 Problemswithf()/g()inP2P networks 16
3.1 Proposed P2P system 22
4.1 Ahyper-ringsystem. e e 27
4.2 Sparsityissuesinahyper-ringo 29

Abstract

Numerous algorithms have been provided for maintaining the topology of aeitvgprk in a fault-free
environment. But a simple, fast and effective fault-tolerant algorithmbleas lacking in this field so
far. In this report, we seek to address this problem and provide a dedaiégh to solve the problem in
the general case. As our detailed analysis proves, our algorithms funetip well in providing a high
degree of fault tolerance at very little additional cost. We further coasainew peer-to-peer system
built using our ideas. This new system provides very fast routing anghedegree of fault tolerance at
almost no additional cost. We also propose a new geometric solution to thlerpralnich provides a
reasonably high degree of fault tolerance.

Problem Statement

Many structured peer-to-peer systems have been built using the ring ggpadoa base, for example
Synphony and Ski pnet. But the most prominent of such systems is undoubt@dly d [10]. The
success of this kind of systems has led to further investigation on how to maih&atopology of a
network in the face of concurrent leaves and joins. Different systetoptalifferent approaches, but
in the ultimate analysis a simple and symmetric solution was lacking thus far. In realvBrmeed to
factor in not only concurrent joins and leaves, but also the fact thétsfare liable to arise and that too
frequently. A fault could arise from the sudden crash of a node (dittelware/software crash) or if the
network connecting that particular node gets disrupted. But this caentbiebonly definition of a fault.
In general, there is no method to distinguish a slow and unresponsivensirst® a system that has
crashed. Also an involuntary leave from the system can also be cothsswefault. While some crashed
systems recover in a finite time (by rebooting the system) we cannot say this ia #very single case.

All these factors come into play significantly when we attack the problem of niiimgethe topology
of the network in a practical real-world scenario. It is obvious that gsyesn which departs from its set
topology, will suffer from significant performance degradation. Atitianing of the system for example
can leave the majority of users without access to important data. In this cheptiscuss existing
work done in this area, and elaborate on the leave/join protocols discinsg3dd We focus solely on a
fault-free environment in this chapter, and will proceed to the more pracsicanario of dealing with
faulty environments later onThe problem of designing an adequate and robust, topology maintenance
protocol for thefault-freeenvironment has been satisfactorily dealt with by Li, Misra and Plaxton in [3]
In this chapter, we explain the essence of the various protocols theydesreéoped for maintaining
the topology, in various types of rings, such as unidirectional, bidirectianalP2P rings. Extending
their solution tofaulty environments is however not an easy task and has, in fact, been poseadpen
problem in [3].

1.1 Current Approaches to Topology Maintenance

While there is no standard approach to the problem of topology maintenaa@anstill classify exist-
ing attempts into two broad categoriespassiveapproach and aactiveone. In the former, neighbor
variables arenot instantaneously updated to reflect the node joins or leaves. A backbpvatocol is
run periodically to restore the topology to the desired state. The obvioudbdck of this method is
the cost of running such a background task in terms of computing and rketespurces and also the
latency introduced. The effect of changes in the network are not immbdadi@ous to the other nodes.
The activeapproach stresses that all neighbor variables get updated immediatedyyatkange in the
network (joins and leaves). This method is costly as every node has tdrae&mof any change in its
neighbors, wasting time and resources on this task. athige approach, on the other hand, implicitly
assumes that any departure from the set topology is detrimental, which &@weots the case. Most
systems can tolerate temporary departures from the ideal topology to acsighéktent.

Protocols for coping with joins and leaves can fall in either of the two caiegor-or example

1.2. BASIC DEFINITIONS

Ski pgraphs handles joins and leaves actively, while some others handle joins activielgdwes pas-
sively, like Tapest ry. The correctness proofs for some of the join/leave protocols, whictypieally
used, are not rigorous but are operational and sketchy, as in [10].

1.2 Basic Definitions

We consider amsynchronousetwork with a fixed and finite set of nodes (processes), denoteéd Bie-
ments denoted by, v andw represent processes belonging to thé/sétach processes has left and right
neighbors (as in the case of a bidirectional network). Variabksdr denote the neighbor variables.
For examplau.r denotes the right neighbor af while u.l is the left neighbor. A process is called an “
process” iffu.x # nil, where a fil” process is one that does not belong to thésahd consequently no
neighbor variables are applicable to\t. denotes the set of process¥s, {nil }. Thus, it is easily seen
that neighbor variables likeandr belong to the se¥’. Message delivery is reliable and asynchronous,
meaning that messages take a finite but indeterminable time to reach their destivi&ido not make
any assumptions regarding the order of the delivery. Now we are teatfine the unidirectional ring.

ring (x) =< Vu,v:ux##nil Av.x# nil @ path®(u,v,x) >,
wherepath™ (u,v,x) =< 3Ji:i > 0:uxX =v> and wherai.x = u.x.x.x...xwith x repeated times.

Thus,ring(l) andring(r) denote unidirectional rings with a left and right channel respectivaeiynC
bining the two, we can arrive at the definition for a bidirectional ring.

biring(x,y) = ring(x) Aring(y)
A <YU:ux#nil:uxy=u>
A<Vu:uy#nil iuyx=u>

Thusbiring(l, r) denotes a bidirectional ring.

Now that we have defined the ring, we concentrate on the protocols teede\VWe will use Gouda’s
Abstract Protocol Notation [1], and assume that an execution of thegmotonsists of an infinite
sequence of actions, where each action is a series of atomic stepsdseive/ior local assignments).
The subsequent results can be seen to holddquential executiors the protocol, one where steps of
each action are contiguous. It can also be proved that the results haldifderleaving execution.e.
one in which steps belonging to different actions may be interleaved. Irodogving sections, we list
the protocols to be adopted for joins and leaves for the unidirectionalidinddiional ring, respectively.
Finally we combine the join and leave protocol to come up with a combined protocol.

1.3 The Unidirectional Ring

First let us look into the case of node joins for a unidirectional ring. Assaipecess wants to join
ring(r) (i.e. every node in the ring has a right neighbor). Processokes a functioncontact) which
returns an existing suitable noddor joining. If ring(r) is empty it returns the id of the calling node.
itself. Figure 1.1(a) depicts the initial topology of the network. Proeessends ajoin() message to
v. Nodev accordingly changes its right pointer to point to its new neighboProcess also sends a
grant(w) message ta so that it can update its right pointer accordingly. This is depicted in figl(@)L

Upon receipt of thgrant(w) message from, procesai updates its right variable to pointta Node
uis now part of the network (figure 1.1(c)). The flow of messages duhiegourse of the join protocol
is depicted in figure 1.2.

1.3. THE UNIDIRECTIONAL RING

v O———=Ow v /(O T W
v
0, ;

u

(a) Initial topology (b) After thejoin() message (c) Successful completion of join

Figure 1.1: Joining a unidirectional ring/[3]

exchange of messages

v u

Jng time

grani(w)

(.,_:g

\in

Figure 1.2: Exchanges of messages during the join protocol [3]

Now we are ready to list th@in protocol. Note that an action in our protocol is represented by a
sequence of statements. A statement can be of any of the three forms| assigament, sending a
message or a selection. The first two are obvious. The selection stateroktitagormif (branch) fi.
Each of the branches is represented in the foloeal guard) — (statement lisf and different branches
are separated by

processp
var {in, out, jng}; r: V; a: V'
init s =outA r =nil
begin
s = out— a := contact();
fa=p—rs:=p,in
>a# p— S :=jng; sendjoin() to afi
> rcv join() from q —
if s=in — sendgrant(r)toq;r:=q
> S # in — sendretry() to g fi
> rcv grant(a)from g — r,s:=a, in
> rev retry() from g — s 1= out

end

If a node sends min() message to another node which is currently not part of the network ¢or in
stance, it might have just left), then it receivestry() message. In such a case, we would expect the
initial node to runcontact()again. A fresh node id would be received and the process can staveall
again. While [3] does not list a specifieaveprotocol for a unidirectional ring, we can develop on the
concepts listed in that paper, and come up withaveprotocol. We have to keep in mind though, that
leaves in a unidirectional ring involve a high cost. Consider the case in figlite). If now process

3

1.4. THE BIDIRECTIONAL RING

wants to leave the network, it has to inform process that we can achiewer = w. For this a message
has to be routed around the ring, since the network is unidirectional. Ifzb@&the network idN, then
the number of hops to reach the predecessor of any given prodéssis Theleaveprotocol proceeds
as follows. Procesgroutes a messagkeave(w) to its predecessarinforming its intent to leavev will
now set its right variable to point t, and this will removeu from the ring. The leave protocol for the
unidirectional ring can now be stated as follows. Note that the fungiedecessong) will route the
message to some nodauch that.r = u.

processp
var {in, out, Ivg}; r: V’;
init all process states are eithirror out,
thein processes forming(r) ;
t=nilA(s=in=r=nil)
begin
s=in—
if r=p—r,s:=nil,out
> r £ p — sendleave(r)to predecessor(p)r,s,t := nil,Ivg,r fi
> rcv leave(a)from q —
if s=inAr=q—r=a; sendack(nil) toq;
>S#InVr #q— sendretry() to g fi
> rev retry() from q — s,r,t :=in,t, nil
> rcv ack(nil) from q — st := out, nil

end

1.4 The Bidirectional Ring

Devising suitable protocols for joins and leaves for the bidirectional ringghies more work than for
the corresponding unidirectional case. An important feature of the keadgoin protocols is that they
should be symmetric to each other. This is needed if we are to combine thativefielater on.

1.4.1 Join Protocol

We first approach the question of devising a protocoljéamns for a bidirectional ringbiring(l,r). The
initial state of the network is depicted in figure 1.3(a). Nod=ends goin() message te, which will in
turn adjust its right pointer accordingly.{ = u), figure 1.3(b).

Processv also sends @rant(u) message to its previous right neighbey which adjusts its left
pointer accordingly as shown in figure 1.3(c). Finally prooessll set its right and left pointers tav
andv respectively, and join the ring. The new topology is reflected in figure L.B{@ur messages are
exchanged during the course of the join process, and this is shown i/ figt

The join() protocol is listed below.

1.4. THE BIDIRECTIONAL RING

y D=0 y V(T)w VQ\Q/OW
0 U U

I

(a) Initial Topology of the net- (b) After the join() message (c) grant(u) message has been
work received byw

u

(d) Successful completion of
protocol

Figure 1.3: Joining a bidirectional ring [3]

exchange of messages

busy

in

Figure 1.4: Exchanges of messages duringaheprotocol for the bidirectional ring [3]

1.4. THE BIDIRECTIONAL RING

processp
var {in, out, jng, busy; rl: V’; ta: vV’
init s =outA r=l=t=nil
begin
S = out— a := contact();
if —rls:=p,p,in
> S# p — S :=jng; sendjoin()to afi
>rcv join() from q —
if s =1in — sendgrant(q)tor;
r,s,t:=q,busy,r
> S in — sendretry() to qfi
> rcv grant(a)from q —
sendack(l)to a; | :=a
> rcv ack(a)from g —
rl,s :=q,a,in senddone()to |
> rcv done()from q — s,t :=in,nil
> rev retry() from g — s := out

end

1.4.2 Leave Protocol

We now turn our attention to designing theave protocol. As mentioned earlier, we strive to make
both thejoin andleaveprotocols highly symmetrical to each other, so as to combine them later on, in
one protocol. The initial state of the network is depicted in figure 1.5(a)ce®sn wants to leave the
network and it informs its left neighbor of its intention to leave. Proesesscordingly changes its right
pointer, figure 1.5(b) and contacts its new neighbor informing it of the @han

y w OWO Wy OWO oy Je——(0
0
U I I

I

(a) Initial Topology of the(b) After the leavew) mes-(c) grant(u) message ha@&) Successful completion of
network sage been received bw the join

Figure 1.5: Joining a bidirectional ring [3]

Processv changes its left pointer accordingly and informthat it can leave (figure 1.5(c)). Process
u can now remove itself from the network; the changed topology is depicteguirefiL.5(d). Similar to
the previougoin protocol, theleaveprotocol also uses four messages. The flow of messages during the
leaveprotocol is depicted in figure 1.6.

The completdeaveprotocol is listed below.

1.5. THE COMBINED PROTOCOL

v 124 w

,,,,Qleave(wj Q

Ivg
grant(u)

busy

Figure 1.6: Exchanges of messages duringaheprotocol for the bidirectional ring [3]

processp
var s: {in, out, Ivg, busy; rl: V'; ta: Vv’
init all process states are eithieror out;;
thein processes forrbiring(r, I) ;
t=nil A (s=out=r=1=nil)
begin
s=in—
if | =p — rl,s := nil,nil,out
> | # p— s:=Ivg; sendleave(r)to | fi
> rcv leave(a)from q —
if s=in A r=qg — sendgrant(q)to a;
r,s,t:=a,busy,r
>S#inVr # q— sendretry() to qfi
> rcv grant(a)from q —
sendack(nil)to a; | :=q
> rcv ack(a)from q —
senddone()to I; r,l,s := nil,nil,out
> rcv done()from q — s,t:=in,nil
> rev retry() from g — s :=in

end

1.5 The Combined Protocol

A combined protocol which handles both joins and leaves is easy to makeTiogvis because both
thejoin andleaveprotocol, listed in the earlier sections, are symmetrical to each other. Ve atran
integrated protocol, we just combine the two. The new protocol is listed below.

1.6. CONCLUSION

processp
var s: {in, out, jng, Ivg, busy; r,l: V'; ta: V'
init s=outAr=1=t= nil
begin
S = out— a := contact();
ifa=p—rls:=p,p,in
>a# p— s:=jng; sendjoin() to afi
>S=in—
if | =p — rl,s = nil,nil,out
> 1 #£ p— s :=Ivg; sendleave(r)to | fi
rcv join() from q —
if s =in — sendgrant(q)to r;
r,s,t:=q,busy,r
> S in — sendretry() to g fi
rcv leave(a)from q —
if s=in A r=q — sendgrant(q)to a;
r,s,t:=a,busy,r
>S#inVr #q— sendretry() to g fi
rcv grant(a)from q —
if |=q — sendack(l)to a; | :=a;
> | £ q— sendack(nil)to a; | := q; fi

rcv ack(a)from q —
if s=jng—rls:=q,a,n
senddone()to |
> s = Ilvg — senddone()to [;
rl,s := nil,nil,out fi
rcv done()from g — s,t :=in,nil
rcv retry() from q —
if s=jng — s :=out
>s=lvg— s:=infi

end

1.6 Conclusion

The protocols in the earlier sections are explained in depth in [3]. Detaitsitamal proofs are also
provided there. Variants of the protocols are also listed, which handlélgames in FIFO networks and
for P2P networks lik&hor d. But on further analysis it soon becomes apparent that these protrols
not deliver, when we seek to apply them to faulty environments. In a redtwscenario, processes can
crash arbitrarily, messages can get lost, or nodes can become so dloamrasponsive that it becomes
difficult to tell them apart from crashed ones. The protocols that we Bavfar elaborated on duwt
have any provisions to handle these kind of errors and will fail in suculyf environment. We list a
few examples that serve to illustrate this point further.

Figure 1.6 illustrates the messages exchanged during the coursastandjoin in a bidirectional
ring. Note that in both cases four messages need to be sent for thesutcempletion of the protocol.
Let us consider the case of tf@n, as illustrated in figure 1.7(a). If subsequent to the inite()
message, any one of the remaining three messages fail to get deliveredhéhnetwork is left in an
inconsistent state. For example, if thek(v) message fails, then both nodesindw will point to u,
which will make processi behave like alackhole. Procesa will then be able to receive messages,
but cannot contact any of its neighbors on the ring, since it is still waitingaéi() to arrive. If the
grant(u)fails, then the ring gets broken betweeandw. Procesw will not be able to contaat, since
its right neighbor is process which is out of the ring currently. It is important to bear in mind that the

1.6. CONCLUSION

non-delivery of messagesnstonly because of faulty links. If that were the case, we could always kee
retransmitting the messages, and soon the protocol would get completedh&tif any of the nodes
u,v or w crashes during the course of the protocol? The messages neverardithe protocol fails,
leaving the ring in an inconsistent state.

exchange of messages

v i w

vg

grant(u)

busy

in

(a) Joirring a bidirectional ring (b) Leaveing a bidirectional ring
Figure 1.7: Exchange of messages dujmig/leave[3]

Let us take a look at thieaveprotocol now, as depicted in figure 1.7(b). The situation is no better
than the previous case. If immediately after receipt ofli¢la®e(w)messagey crashes, then the ring gets
broken at that point. Now will never be able to leave the ring, as tiwant(u) will not be forthcoming.

If node u crashes before sending tdene thenv will be condemned to live in thbusystate, or if the
ack(nil) fails, then bothu andv have to suffer. An obvious solution could be to implement a series of
timeouts. This has a two-fold disadvantage. Firstly, it robs the above protaddiseir generality by
making the network essentially synchronous. Secondly, if a procesiseltasne busy or temporarily
disconnected at that particular time, then the system of timeout’s will fail. A timggmitem might not

be able to make a distinction between a slow process and a crashed oneexfftg of the timeout,
other processes will assume that the process in question has crabi@dneed not always be the case.
This is thus the central problem that we face, namely modifying the Li-Mikrgidh protocolg[3] to
cope with faults in an asynchronous network.

An elegant solution to this problem, albeit fosynchronous systerexists in [8]. The basic idea is to
adopt the'Paxos Commit Algorithmto provide fault tolerance. It uses three stages in every join/leave
operation. In the first, participating processes determine the action to leetakeh, the second phase
prepares the action, and the last phase commits it. The method used is flexable dfe sense that
instead of the Paxos commit, we can use the common 3-phase commit protocolTalscconcept
remains the same. But the main drawback of this algorithm is its reliance on lareyoas network.

A promising line of investigation appears to be that when a process suspewtsother process to
have crashed, then it simply bypasses it and contacts another suitaklénnibe ring. For example,
assume that processas crashed in figure 1.3(b). Nodéhen contacts the left neighborafand along
with w, u will join and repair the ring. While this method is promising, an element of centtalizgets
introduced. How can a node “by-pass” crashed/slow nodes? It lkastothe identity of the neighboring
nodes, but for this some central server might have to keep informatiar #i®current topology of the
network. This is both impractical and undesirable. Even a group of isedigtributed at various parts
of the ring would be impractical, as no guarantee can be provided dineftenesof the information

9

1.6. CONCLUSION

they store, especially in networks with high churn. There would be extrl imgolved in keeping all
the servers up-to-date.

Note that while fault tolerance might not be important to the working of distribriteys created over
the Internet, it is vital factor in the design of P2P networks. Without reasigrgood fault tolerance,
performance of P2P networks suffer. There is another aspect dfitlésra protocols that is worth
mentioning. They do not provide a progress propertiFor example, if a process desires to leave the
network, it should eventually be able to do so. This can be provided ordyplbygressproperty.

In the remaining part of this thesis, we will propose a de-centralized soltditme fault-tolerance
problem. Our solution works in networks with high churn, and can accomtaaaé only rings, but also
P2P networks based on the ring topology, I#®r d. We will also present a new design for creating
highly fault tolerant and fast ring networks, assuming cerggariori information about the size of the
ring is made available. Additionally both our solutions also guarantee thega®groperty, which is
lacking in [3]. Lastly we present a partial geometric solution with interestiragadteristics. This will
provide a high degree of fault tolerance.

10

A General Solution

We approach the problem from a different direction. Let us assuméhiat is a group auccessoand
predecessofunctions, denoted by () andg() respectively. The domain and range of these functions
cover the whole space of possible node id’s. So if node id’s are dehgte6l0 bits, then both the domain
and range are equal {6,259 — 1]. The behavior of theuccessoandpredecessofunctions for normal
rings (uni- and bidirectional) antivrap around” rings@ like Chor d is defined below.

f() applied to an existing node id gives the id of §wecessoof the node in the ring and likewise
9() gives the node id of thpredecessoof that particular nodef () applied successively times,
will give the node id’s of the first, second, third and so on till tif&successor of that particular
node. The same holds fgf). We assume that a value ®flenotes error, i.e. the node id does not
exist or in case of wrap around rings, the true successor is different.

For a bidirectional ring, it is important that the functioh§ andg() be inter-related, i.e. for some
node with an idk, the following holds always = f(g(x)) andx = g(f(x)). In other wordsf() andg()
are the inverses of each other. For unidirectional rings, we can dg witfathis restriction. Only one
set of functionsf () andg() will need to be applied, depending on the direction.

2.1 Suitable Functions

What could be suitable group of functions which can be usedffgrandg()? Our functions will
necessarily have to be scalable and easy to compute if they are to be depltsmge-scale distributed
systems. Also a regular function likgx) = x+ 1 is not feasible, as it will amount to pre-ordering the
node id's. Pre-ordering the id’s can lead to grave security issues.dfl@ersary is able to predict the id,
for each node about to join the network, he can initiate man-in-the-middle at&dily. But the main
problem with pre-ordering is the uneven nature of the lookups that iesad#$is point is further detailed
in section 2.4. On the other hand, symmetric encryption functions are highly saiteir requirements
and do not suffer from any of these pitfalls.

If we assume that symmetric encryption functions are cyclic, then it wouldssecily have a very
large periodT such that for some, f(x) = f(x+T. A large period is necessary as the ring cannot

1in a ring network likeChor d, the successor of a node has a numerically larger id than its own. Thisastampif we have
to order them around the identifier circle. But there would exist some, wduese successor has a numerically smaller id than
its own. If this does not hold, we will end up with a straight chain of proeessith increasing id’s. Thus, the set of nodes
“wrap around” to form a circle.

2|f the function is periodic, then sooner or later, we arrive at a cycliarayement of nodes. In essence, we get the “wrap
around” feature. While this is strictly not necessary, it is desirable.€dtlyr it is unknown whether the symmetric encryption
functions are cyclic or not. In case they are cyclic, then definitely the gpevimuld be very large. In case they are proved to
be acyclic, we would then, need to re-phrase the meaning of “periodppléed to our successor and predecessor functions.
In such a scenario, the period would represent the maximum numipeoadsses that can be supported in the ring. Processes
with id greater than the maximum would get mapped to some existing process.

11

2.2. METHODOLOGY

grow beyond siz& . For example, functions liké(x) = (ax) mod N wherea, N are large prime numbers
andN is smaller than the absolute range, would be unsuitable. In such a casagtbarmot have more
nodes tharN, after which duplicate id's start to creep in. Symmetric encryption functioesasily
invertible if one knows the shared, secret key. Thus in our scheme,itiglynemploy f(x) equal to
K(x) andg(x) = K~1(x), whereK) is the symmetric encryption function. This is an important choice,
especially if we are implementing bidirectional rings, because we now haged seadily invertible
functions. Symmetric encryption functions are also reasonably fast toutenom modern machines.
There is no distinct pre-order among the node id’s if we are using symmetigmion functions. If
an adversary is unaware of the id of the starting node and the shared lseg being used, he won't
be able to predict the id's of the successive nodes. The node id’'s wilaagust as a set of random
numbers. Because of these desirable properties, symmetric encrypiciofis are very suitable for
implementing the successor and predecessor functions.

2.2 Methodology

We use the successor and predecessor functions to constructguretrus assume for the time being,
that we are constructing a bidirectional ring. Figure 2.1 illustrates how tteessor function comes into
play in defining the ring.

Figure 2.1: A portion of a bidirectional ring

Here we make a crucial assumptioiVe assume that every node can resolve the IP or the physical
address of every other node as long as it knows its process id in therkefifos can be arranged by a
suitable external mechanism. For example, every node joining the ring wilitpqghysical address and
node id to a central server or a group of servers. The latter is ofeownse preferable. We need to further
elaborate on this point since we intend to use this assumption in the section redd®i2g systems also.
The main pitfall here is in, introducing an element of centralization. This has swbided or else it will
render the entire scheme impracticable. Instead of resorting to a cermtugl gf fixed servers, we can
instead use a dynamic set of already existing nodes (alternatively a ‘$mtamfon” nodes can be built
into the system). This small group of nodes holds the physical and virtdeésslinformation, of all the
nodes participating in the system. The “beacon” nodes need not havedanfimbership. Instead we
can make it dynamic and any change in the membership in the set of “beamd@s s transmitted to
all the participating nodes in the system (using either flooding or gossipMgjeover, the(physical,
virtual) address information can be widely replicated among the set of the “beacal®s or it can
alternatively be broken down amongst these nodes. In the latter methodrttied &ddress space is
broken up and divided equally among the set of “beacon” nodes.adveur scheme should sufficiently
guard us centralization.

Note that our scheme is very different from storing or replicating the t@yodd the network, since
we, only store the node id and its physical address. Moreover theyecatoted in any order and do

12

2.2. METHODOLOGY

not need to have one-to-one correspondence with the actual patt@insoand leaves in the network.
Nodes which are leaving the network may perhaps want to remove theirndtfre database. While
this is preferable (in case of rings) it is not necessary. It can betbeemwith this limited information
one cannot replicate the topology of the network. Any participating psocas query such a database
with the node id as the key and obtain the physical address of the pracessponding to that particular
node id (if it exists). An empty string signifies non-existence of the node id searched for. Overall our
assumption is not totally unreasonable and can be implemented with little extrta Sffme the physical
address is resolved, then the processes can contact each othidy.direc

Theorem 2.2.1.Given any pair of arbitrarylive processes in the network. These processes will always
be able to contact each other in a finite number of steps, as long as nohe ofo processes crash or
depart from the network in that particular time interval.

Proof. Given a starting process all the other process id’s are of the forfifi(x) wheren € N, the set of
natural numbers. Without any loss of generality, let us denote the tworneepses ag; and p; where

i < j. The node id’s corresponding f® and p; are thusf(x) and f1(x) respectively. Let the period of
the functionf () be denoted byr. Consider the following two cases.

¢ Unidirectional RingsFor p; to contactp; it keeps resolving(f'(x)), wherek is 1 initially and
increased at every iteration. Whknr= j —i, pj is able to successfully resolve the id of nogle
If node p; desires to contagh;, we apply a similar procedure. Whé&n=T +i — |, p; is able to
successfully resolve and contggt

e Bidirectional RingsWith bidirectional rings, we are able to move both ways.can contacip;
by applying the procedure mentioned above ini steps. Fomp; to contactp; we use the inverse
function f~() (basically the functiorg()). This is applied successivejy- i times to arrive ap;.
Relying solely onf () to contactp; will entail more steps.

This proves our theorem. O]

Let us assume an asynchronous network consistimgfatilty but not Byzantine processes. We can
never achieve an algorithm for consensus 3f (%1 processes crash. A detailed proof for this can be
found in [11]. This has an important bearing in our work, and the full ihpbthis condition will be
realized soon.

Let us now consider a portion of the bidirectional ring as shown in figuiteNodesy, u, w andz are
initially connected. Processwants to leave the ring, but its right neighbohas crashed in the midst of
theleaveprotocol.

Figure 2.2: Crashed process in a bidirectional ring

This example illustrates the major problem faced by the algorithms listed in [3]e Siacare deal-
ing with an asynchronous network, messages from all the correctgses arrive eventually. Also we

13

2.3. JOINS/LEAVES IN RINGS

assume that crashed processes stay crashed and do not recataren $o processes u andw can
run adecisionalgorithm any time to determine whether they want to continue the protocol orlfnot.
any process feels that, one of the other two has crashed, it votestagmitiauation and vice-versa.
A correctly working process and one whichrist unduly suspiciousf the others, will always vote for
continuation of the protocoMoreover, the algorithm can be run multiple times during the course of the
protocol If one process has crashed and a tie of votes happens betweenethevotidiscontinuation of
the protocol is the preferred course of action. When a discontinuatitvegfrotocol occurs, we assume
that all nodes revert to the initial state.

But we still have the problem afi not being able to leave the network. In case a consensus is
achieved amongandu thatw has crashed, nodere-initiates the protocol but withandz now. Process
zis the next live process after procegsand by theorem 2.2.1yis guaranteed to reach it. Our treatment
of crashes is not fair to slow, unresponsive processes as theyealstagsed with crashed processes.
Assume in the above case that nedbad not crashed but was merely slow. But by the time it recovers,
the topology of the ring has changed and the situation is illustrated in figure 2.3.

()

o O

Figure 2.3: Nodes can be left out in a bidirectional ring

There is no proper solution for this. The only option then is to ruegair protocol initiated by
procesg, when it finds that two processes are considering it as its right neighbtbiis case, process
will have to change its right link tev eventually.

The above method is only 1-crash tolerant. But it is likely that more than aeegs might fail. So
if we desire a more robust algorithm, which is sagrash tolerant, then we do not have any other option
but to start off with more nodes initially. In case of unidirectional rings, thibésonly possible option.

In subsequent sections we will further develop this methodology andystauyit tolerant versions of the
algorithms listed in [3].

2.3 Joins/Leaves in Rings

The results in this section apply equally to both the unidirectional and the didmatrings. Consider

the join protocol as illustrated in figure 1.3. It is obvious that there caneat b-crash fault-tolerant

join protocol in this case. Node cannot determine asynchronously whethidras crashed or is slow.

The same is the case for proc&s3o make it 1-crash tolerant we need another process. ldexision
algorithm we usel, v andw. We assume that a 0 vote means discontinuation of the protocol and a 1 vote
favors continuation. Thdecisionalgorithm to arrive at a 1-crash tolerant protocol is simple now. The
decisionalgorithm for leaves remains the same. No special change is required.

begin

wait for [§7 votes

if majority() = 0 — stop();
> majority() = 1 — continue();
> stop() fi;

end

14

2.4. P2P NETWORKS

If we want to make the protocol more than 1-crash tolerant, we need to addprozesses. Let us
assume that we desird¢-@rash tolerant algorithm. The situation is depicted in figure 2.4

N processes participating in protocol

Figure 2.4: At-crash tolerant protocol

So if we start with a set dfl processes participating in our join protocol, the number of faults that
can be tolerated, will always have to be less tha[r%]. Faults equal to or more than this limit will make
our protocol fail. In figuré 2.4, assume that the 2 nodes at the extremittee afside box have crashed.
There are a total of 5 processes inside the box and barring the 3 invaltieel join, the other two have
crashed. The join protocol can still be continued as the 3 processesealhvfavor of continuation. This
is the correct decision if we assume that nodes cannot detect whetierig@bors have crashed. If we
assume otherwise, then at least 2 of the participating processes in theillonotiee that their neighbors
have crashed and would vote against the protocol. The protocol wewtbpped and again, this is the
correct decision since the 3 nodes (which are alive) are totally discteth&som the main ring. Thus we
have managed to make the our join protocol 2-crash tolerant in this case.

Theorem 2.3.1.0ur algorithm guarantees a limited progress property. A non-crashinggss, desirous
to complete either the join or leave protocol (depending on the case), wititeslly be able to do so.
For a set of N processes, the progress property holds as long as déineino more than & [%1 failures.

Proof. We assume that the process is denoted asd without any loss of generality we further assume
that the protocol in question is tHeaveprotocol. The initial situation would be similar to the case
depicted in figure 1.5(a). The left and right neighborsuadre denoted by andw. Assume thatv
crashes in-midst of the leave protocol, and the protocol consequenthad as failed (processes not
casting their votes are denoted as crashed; alternatively we can usfebantd data to corroborate this).

u will now re-initiate the protocol, but with a different set of processeand f(w). If again a failure
happens in the (new) right neighbor, the next iteration of the protocolmitlive v, u and f (f (w)). If
bothv andw crash in the first phase, then the next iteration useé'§v), u and f(w) and so on. We
can continue this process up ttaterations, after which it is impossible to get consensus in the given
asynchronous network [11]. O

2.4 P2P Networks

In many ways, P2P networks provide the best platform to test for robocakable, fault-tolerant algo-
rithms. The wide popularity of such networks translates to a highly dynamicomment with many
concurrent processes leaving and joining at any given time. Moreorashes do happen all too fre-
guently. We seek to extend our scheme of using successor and Esaleftactions to a P2P network,
like thewrap-aroundring basedchor d.

Directly applying our scheme to P2P networks won't work for reasovesngbelow.

1. Usage of simple functioniBhis problem is illustrated in figure 2.5(a). If we use a simple function
for f(), like f(x) = x+ 1 or say,f(x) = ax (whereais some large number), then we are bound to

15

2.4. P2P NETWORKS

(a) Simple pre-order of id’s (b) Unordered set of id’s (c) “Pseudo” Sparse P2P network

Figure 2.5: Problems witli()/g() in P2P networks

face this problem. In P2P networks, all the keys and process id’s riesalarge address space,
typically [0,2150 — 1]. The number of processes in the network at any given moment is a very tiny
fraction of this. If we assume even a few billion live processes in our rmitviboen it translates
approximately to &. In P2P networks, lik&hor d, a node is responsible for storing all the keys
falling in the range of its id and its predecessor@. ido if we use a regular function, and the
number of keys is far larger than the number of processes, the lastimélde network will in
effect storealmostall the keys. Our P2P network will now resemble a traditional client server
architecture, with the last node acting as server and all the other nodksras.

2. Ordering of processelset us assume that we employ some symmetric encryption function as our

function f(). Encryption functions have some nice properties which were well utilizethan r
networks. Applying an encryption function would lead to the situation depictdéidure 2.5(b).
We have id’s randomly scattered across with no definite ordering, and impielgeany kind
of routing for such a network is nearly impossible. The central featuraast traditional P2P
systems is the ordering of nodes around the identifier circle. But with aymian function the
nodes become totally disordered, and no traditional P2P system can be imf@drar top of the
given network.

3. “Pseudo Sparsity” in the rin@ P2P systems witness a lot of traffic with a high amount of churn
in the system. There have been attempts to measure and analyze this behasiomportantly
in [9]. Over a period of four days, they were able to recoi2irillion active peers in total. This
study was done in 2001. It is not unreasonable to assume that curreetlgam record a few
million active peers using some popular P2P networks (like Bittorrent, NapsjeMoreover, [9]
recorded that around 80% of the peers are active for a short time efdyeldisconnecting. This is
a very important observation. As mentioned earlier, two nodes in our sglstrteave to compute
f() a finite number of times, before they can contact each other. Going by treureezgents of
traffic in P2P networks, it is extremely likely that the immediate neighbor for sade would lie
a million iterations away. If we assume a simple hash function like SHA-1 (160dstsurf (),
one iteration will take around.067 seconds So just to compute the node id for the immediate
neighbor, some half a million iterations away, will take close to an hour then. tNatehis is just

3meaning the key falls in the interval between its own id and its successor’s id.

4By “pseudo sparsity” we mean that while the network might be otherwissedéhe computational cost for calculating the
successor and predecessor functions is very high. This is diffs@ntthe normal definition of sparsity and hence the term
“pseudo sparsity”.

Shttp://www.hashemall.com

16

2.4. P2P NETWORKS

to compute the node id, the resolving cost is extra. An interesting obsenistiat this problem
is not endemic to P2P networks alone. If we apply our scheme to large ritlga Wigh amount
of churn, then this problem will recur there also.

To apply our scheme of successor and predecessor functionsyavelgrmount the above difficul-
ties. We propose two modifications of our scheme which will make our aplpfeasible for application
to P2P networks.

1. Using monotonic functionor f() we propose to use monotonic functions. We can use either
a monotonically increasing or decreasing function. A monotonically incrgdsimction has the
following property. Ifx; andx; belong to the domain of andx; < xj, thenf(x;) < f(x;). Similar
is the case for a monotonically decreasing function. Many simple functionsf [kKe= x+ 1
will qualify as monotonic. As explained before, these cannot be usedrisalieme. We do not
supply an analytic expression for a suitalhlg in this work, but it should be possible to easily
design a monotonic, non-simple function to fit our needs. In this work, we aakalternative
approach and pre-compute the list of possible node id’'s. For exampleyunwie MD5 hash
algorithm successively on some sample input key a few million times. This list issttied in
ascending order and the resulting list can be widely replicated in differeations. Alternatively
this “master” list can be broken down and stored at various locations (esgaser space is at a
premium). Any process desiring to join our network can pick up the nextaéa id from the list
and proceed to join the network. The id is then removed from the list of alaildb. A node can
also use @ontaci) function to get the process id of last joined process, and (yn it to obtain
its own id. If we have such a precomputed, sorted list of id’s, then fundt{grsimply involves
moving one place down the list, and its invergé), is moving one place up. The size of this
list will be quite small (in terms of the capacity of modern disks), and we can expect nodes
to carry large chunks of it. We wish to emphasize once again that in pragoey a suitable
analytic expression fof() is more preferable compared to our method of pre-computation. But
theoretically it does not make much of a difference.

2. “Reincarnation” of process id'sVe apply a scheme of “reincarnating”, i.e. used process id’s are
again re-inserted into the system. Any process voluntarily leaving the netwikadd its id to
some publicly available list. A node desiring to join, can obtain this “used” id a®dthat for
joining. There is no centralization here. Lists of “re-usable” id’s cantbeed in different places
on the Net, corresponding to different regions of the network. Also amithot simultaneously
exist in both the “free” list and the “reusable” ones. Crashed nodesl@mot be able to store
their id on the “reusable” listimmediately, and consequently their id will take somettirmgpear.

If the number of crashed processes is small, this would not pose much obkemr The whole
scheme of “reincarnating” process id’s, is to make the network denserw&iit every node to
ideally computef () only a few times before it reaches the next (live) neighbor’s id.

Our approach for processes joining the P2P network is diregihositeto the normal convention.
For example, in a system likéhor d a process computes the hash of its physical (IP) address, and that
becomes the id for that node in the network. We do not give this freedore frtéltesses in our network.
A node joining the network has the following two options (in decreasing astipreference). It can
obtain at random an already used id from the list of “reusable id’s”, cantobtain the next available id
from the list of “free id’s” and proceed to join the ring.

Theorem 2.4.1. Assume N processes distributed over a circular ring. J2rocesses crash or leave

. 2 —
voluntarily, and—-rd of the exited id’s are “recovered”, both at random, then on avgraevery process
can contact its nearest neighbor on the ring in a small number of finitesstep

17

2.4. P2P NETWORKS

2 , , o 5 ,
Proof. If g—rd of all process id’s get reincarnated, then the ring is alw6ajz13 full. The distance between

two nodes is measured by the number of iteration$(¢frequired to reach the next live node. In case
of a fully populated ring, the separation would be 1, since we need onljtena¢gion of f () to get the id

of the next process in the ring. If the ringgsth full, then the number of iterations is 2, onaverage

Assume that this is not the case. In case the average distakcg, ithen there can be a maximum of
only N/2 processes in the ring. This disproves our starting assumption, and tienaverage number
of iterations to reach the neighbor4s2. The maximum separation between two live nodes (worst case)
would beN/6. But in case, crashes and re-incarnation of process id’'s happtaty at random, it is
very unlikely that such a event would odEt(probabiIity isl (5[\:“)). O]
6

By theorem 2.4.1 it is obvious that, even if the number of processes in thEsys very large, a
node can still contact its nearest neighbor within a small number of finite. sté@<an also minimize
the message transfer incurred in this operation by making the procesaigete id's of, say the next
ten processes down the line, and then looking them up in a single messagediyng them together.
The cost for such a combined look-up would be cheaper than lookingupesne by one.

Corollary 2.4.2. With high probability a node can find its immediate successor in an N-noderetw
within a small number of finite stepgK) where k< logN.

Proof. For N > 100, logN will exceed 2. But if the conditions of theorem 2.4.1 are satisfied, then the
average number of iterations to reach the next neighbor of the prosagsh(will be the immediate
successor) on the ring will be 2. This completes the proof. OJ

Using the concept of successor and predecessor functions alon@ing'nalntableg normally used
in Chor d, one can obtain a highly fault-tolerant and dynamic P2P system. Also sinaesaeva pre-
sorted hash list to generafé), the P2P system will be well-balanced. Note that the id’'s which are not
“reincarnated” (but instead are pulled from the list of “free id’'s”) willlp be a single hop away from
the next neighbor, since the next valuefdj is used for them. Moreover, our system provides limited
auditing functionality. By noting the number of used id’'s, one can get alradga of the number of
nodes in the system. This can be fine tuned further if one takes into adbeumaimber of id’s waiting
to get reused.

2.4.1 Joins and Leaves in P2P Systems

For the P2P system to be highly efficient, it is important that the processes imthhave an accurate
idea of the nodes comprising their predecessors and succesborsg uses a stabilization protocol,
stab() which runs periodically in the background. This will update the succdist@f a given process
periodically [10, 4]. Before we furnish updated versionsstabilize() join() and notify(), we need to
highlight the fault tolerant aspect of our network.

Fault Tolerance

The key to building thdinger table inChor d rests on a function calledosestprecedingnode The
pseudo code for this is listed in [10], and we replicate the same Below

6A more rigorous bound can be obtained for all the cases mentioned. Bhefpurposes of our design, these rough bounds
suffice at present.

A finger table is used to increase speed of node lookups. If a fingerttasiheentries, then essentially the node will cache
the locations of all its successors in increasing powers of 2 till it reach28-itis successor in the ring. Ravthen corresponds
to the 2-th successor in the ring.

8We abandon Gouda’s abstract protocol definition here and revesdmawhat Pascal-like notation

18

2.4. P2P NETWORKS

% search the local table for the highest predecessor of id
n.closestpreceding node(id)
for i = m downto 1
if (finger(i) € (n,id))
return finger(i);
return n;

Let us for a moment assume that the nearest finger returned has crasteed is no clear way to
handle this in normathor d. The query will be blocked, and we can hope to resume it once the network
is stabilized again. But in our updated system, we can “jump” over the atasise. Assume that the
average separation between two live nodeg@small, finite number). Novi() appliedx times over the
id of the crashed node will, with high probability, return the id of the next liodain the ring. Moreover,
we can vastly improve upon this if the network is suitably dense (if the conditibtieeorem 2.4.1 are
satisfied). To find a successor for a given process e just runf () a finite number of times on, and
then do a single look-up on the process id’s thus obtained to find the faialle/live successor.

Lemma 2.4.3. In an N-node network, the number of nodes to be contacted to find thessar of a
process id is QogN). But if the network is dense, it can be found itkD

Proof. The proof for the normal case @i(logN) is listed in [10]. If the network is dense, finding the
successor is a simple matter of looking up the first live process from the pebcess id’s obtained by
running f () on the id a finite number of times. O

Lemma 2.4.4.Given a key k, finding the node responsible for it will invol\@@N) steps if the network
is sparse, and (X) (where k< logN) if the network is dense.

Proof. For a sparse network the proof is listed in [10]. For a dense network]idre can pre-compute
the approximate node responsible for the key (by referring to tableseeégmputed values of() for
example) and then udd) to start the search from this node. The number of steps thus taken willde les
than logN since we are already starting close to the responsible node, if not atitia mede itself. [

Dynamic Operations

In our ideal system, the density in the network is high, i.e. a small number ofitimiggions off () will

lead us to the successor of any rﬁldéhis fact is important because based on this we can implement
a rich set of API's for our system. A function likguery predecessor(n, trailyill return the first live
node, which is not trailing the nodeby more thartrail number of iterations. We use this to modify the
standardoin() of Chor d.

% 1 uses an existing node n to join the system
n.join (M)

predecessos nil;

s = f.find successor(n)

build_fingers(s)

successor =3

m = query predecessof, trail);

if m = nil

predecessor =m

9In case the network is static and with no churn, there is no problem to begin@itthe other hand, if the network is such
that nodes keep on leaving/crashing in high numbers, without a comdsg proportion of joins, then our model will fail. In
the latter case the system reverts thar d-like behavior to stabilize the network.

19

2.5. CONCLUSION

We can also create a functiauery live_nodes(a,bwhich will return any live processes between
a andb, provided the two parameters are not too far apart. Such a functionecasda fruitfully in
redesigning thetabilize()function of Chor d.

% periodically verify n’s immediate successor,
% and tell the successor about n
n.stabilize()
X = query.live_nodes(successor;n)
if x I= nil
successor = x
successor.notifyl);

Note that the functions are to be used when the range between the two asimsmall. Else the
time taken to return will be enormous. We can alternatively remilrim such cases. Also we dwt do
away with thefinger tables used ifthor d. Our design simply enhances it and makes the system more
fault-tolerant and fast. This brings us to the following lemma.

Lemma 2.4.5.In a sparse network or a network where the rate of leaves and crdahestweighs that
of joins, our system reduces to that@for d.

Proof. All our functions returmil in case the ranges are large. Moreover, in a sparse network, a small
number of iterations of() will return no live processes. This forces the system to rely solely on the
traditionalfingertables used ithor d. This proves our lemma. O

Lemma 2.4.6. If normal system operations are measured over a suitably large timevaitehe rate of
leaves and crashes cannot exceed the rate of joins to the system.

Proof. Assume that the rate of leaves and crashes exceed that of joins. laseatite membership of
the system is declining and soon it will reduce to nil. This is against our aggmgd a system which
is constantly online. O

We can know whether the rate of leaves outweighs that of joins, by juskittgethe activity in the
tables of “reusable” id's. If the tables keep growing faster over time, it@eans a high rate of leaves.
This condition can arise in modern day systems due to major WAN disturbanegblilexample, onset
of a worm such as$l ammer . But generally these conditions are temporary and normal order sé®n ge
established.

2.5 Conclusion

Using successor and predecessor functions, we have demonstrateol ¢reate highly responsive and
fault tolerant, rings and P2P networks. A good feature of this method isvinatin always fall back on

the more traditional means of routing and communication, should conditionserndehl for applying
these functions. Our worst-case performance is the same as @airaf, while in normal situations it
would far exceedhor d. In the coming chapter we seek to improve upon this method and come up with
even more robust and faster networks. While the basic principles remasartie we utilize some more
assumptions.

20

A Special Case

There have been many studies conducted on P2P systems which mainly testnibgeneity (or lack
thereof) of the various peers and measure the connectivity, latencghanidg ratios between them. We
combine the ideas listed in the earlier chapter along with the results publishgd@n@of the important
findings of [9] has been that the “hek20% of peers in two popular P2P networks had the best up-times
also. This very clearly proves thadtall the peers participating in the P2P system are homogeneous. We
seek to leverage this vital information and come up with a new P2P system, wkéshtéo account this
issue. We assume the very basic of information to start with. The P2P systegmer need to have only

a rough idea of the size of the user pool and the percentage of the fimst in the systenOur goal

is to come up with a system which takes into account this inherent non-eoemiggand yet is stable,
fault-tolerant and very fast

3.1 Related Work

Our design can be classified as a OneHop peer-to-peer system. Opeéteio-peer systems have been
the subject of intense research in recent times. There have been sthiibexplore its scalability and
robustness especially under heavy churn [2, 5]. The current nisttbat OneHop is preferable @or d

in cases of up to 3000 nodes under heavy churn. OneHop or O(1dmatare more suitable compared
to Chord when the network is relatively stable. In cases of networks with many ephélmmadég,
Chor d and other similaD(logN) networks are the preferred choice [7]. Our approach resembles¢he o
adopted in/[5]. Conceptually our design has been realized by exploitinigehs listed in the previous
chapter and we give proof sketches, which show our network prayictmstant lookup time, close to
O(1) even under heavy churn. We hope that our design can ultimately help tyehtid performance
gap between curre@(1) andO(logN) systems.

3.2 Basic System Design

Our system consists of two types of nodes, as shown in figurd8irhary nodesepresent peers which
have high speed connectivity and are up most of the time. They are alsndbheélat contribute most of
the shared data. In [9] the percentages of these peers is shown tmbd 20%, which means for every
primary node, there are five other nodes which are poorly equippethbeship of the primary nodes
is not fixed of course. Rather, at any time we can only expect a certeiemiage of peers to fit in the
profile of primary nodes.
Secondary nodeshown in the figure comprise those processes which join the P2P systartirfre

to time. They have little uptime and comparatively poor connectivity. Thesesept the bulk of the
activity. Normally they do not contribute much of the data and are mostly inter@stdownloading

1Those stable with high speed connectivity. Normally they have more dakete also.
2nodes which have a short lifespan in the system

21

3.2. BASIC SYSTEM DESIGN

Secondary Nodes
Primary Nodes

Figure 3.1: Proposed P2P system

only. We assume that nodes which join the system are aware of the identitwihagsume and the
distinction of roles.

Here we come to the first major question. How doapeiori determine which processes qualify as
“primary” and which as “secondary”? There is no satisfactory wayashigl so. One way is to measure
the upstream and downstream bandwidths of the participating procesgescting the participating
process to reliably provide this information won't work, as [9] has shidvat most peers falsely report
this information). Nodes with hi-speed connectivity qualify for being a pnmasde, else they are
relegated to secondary role. This is obviously not a fool-proof methaidit lwill suffice most of the
time. The authors in [9] list methods to develop tools which can accomplish thisvidth measurement
economically.

3.2.1 Structure of the System

We assume that a suitable symmetric encryption algorityt), has been used to generate the process
id’s in the core ring. Starting from a random value (start id), a set ofigligenerated by repeatedly
applyingK, to it. We are assuming a wrap-around ring here, so after a finite numberrafiotes
it returns back to the start id. Primary nodes are given any of the idma flos set, depending on
availability. Primary nodes leaving the system will make available their id folerelisis scheme is a bit
flexible. If we desire to increase the number of primary nodes, we makalalesa larger number of id’s
in the system, and we can also cut down id’s from the list of reusable id’s tothmitumber of primary
nodes. A node which joins the core ring is made aware of its role as a priradey Generally we view
primary nodes as more dependable than secondary ones.

To generate the secondary nodes we use another symmetric encryptigthaigdlenoted byKs().
By using a totally random election procedure, atachthe secondary node to any of the primary nodes.
Since allocation is done totally at random, we can expect every primarytodigve an almost equal
number of secondary nodes attached to it. Going by the results in [9}ydoy primary node there will
be upto five secondary nodes. This would seem small and a drastic sintiplifida our design though,
we assume that the number of secondary nodes assigned to a primarng goite large and with no
significant limitations.

22

3.2. BASIC SYSTEM DESIGN

Let us assume that the keys and process id’s reside in a 160-bit adqgrase, i.e.[0,2160— 1].

Initially this space is divided equally among all primary nodes. So if therdNapeimary nodes, each
node is responsible forr®/N keys. Primary nodes which are voluntarily leaving the network relinquish
their share of keys to their successor in the ring. The new node repldengcancy will take its share
of keys from its immediate successor. From figure 3.1 it is clear that a prinwtg “manages” the
secondary nodes attached to it. This entails a simple set of operationsoidseg node gets allotted
to some primary node by a random process. It collects its id from the prinuathy (either a used one
or the primary can generate a new one, depending on the case). Aldaia share of keys is assigned
to the new secondary node. Each time a secondary node joins, the prifiagsignx% of the keys it
has to the new node. The valuexadan be arbitrary (a good choice would require some more data about
the traffic, etc), but the important thing here is that the value isfknown to all nodes in the network.
A secondary node will transfer its keys to the primary when it is voluntarilyitepthe network. Thus
at any point, a primary node has a good idea of the number of seconoidey it is responsible for. It
can also advertise this figure openly to the other primary nodes too. Sinedidbation of secondary
nodes is done totally at random, with a high probability all nodes have ab®sathe number of active
secondary nodes. This has important consequences, which will biedétdater sections.

3.2.2 Dynamic Operations

We have covered the question of joins and leaves of the various compohémessystem in the earlier
section. We now turn our attention to crashes. A primary node, by assumigtioot prone to frequent
crashes. Unfortunately it is impossible to provide a 100% guarantee. Theema crash is detected
(presumably its neighbors on the ring or its secondary nodes find theeckra®de unresponsive over a
long period), other primary nodes are informed (for instance by gosgipamd the vacancy in the core
ring is advertised. The successor of the crashed node assumessibdity for the keys covered earlier
by the crashed node. A leave by a primary node is more graceful. It arstfars its share of keys and
information about the number of secondary nodes to its successor. Adbges from the secondary
nodes to the departing primary node are now diverted to this successalwaks strive to aggressively
fillin any vacancies caused by crashes or departures in the coréCriaghes of secondary nodes are less
of a concern. The primary node responsible for that section comes o $moner or later, and it will
take care over the keys residing in the earlier crashed node, and difizeaid of the secondary node in
its list of reusable id’s. Leaves among secondary nodes proceed in arsimait@er, except that keys are
handed over to the concerned primary node and the primary node agdaithadd of the departing node
to its list of re-usable id’s. Note that there is no re-assignment of keys ievitat of a crash/leave of a
secondary node. The concerned primary node will simply take over thagearent of the keys which
used to reside in the departed node. Our logic behind this is that in a highdyrdgisystem, vacancies
are filled as fast as they are generated.

The information available to each type of node is very limited. Both types ofskdew to which
class they belong, whether primary or secondary, the values of kegsig/Ks), and system related
information like x and the size of the primary ring. Secondary nodes know their id, the anipe
id’s responsible by its primary node, and possibly the number of iteratiokq pothey are from the
primary node. Primary nodes know a bit more. They know their own id, thebeu of secondary nodes
they possess, and the full range of id’s they are responsibl&\ferdo not propose to use finger tables,
routing maps, neighbor tables and such in our constructibmere is no elaborate background protocol
for stabilization of the network. The only information a node can possesbd®n listed above.

23

3.3. ANALYSIS

3.3 Analysis

We now proceed to demonstrate how we can achieve fast routing usingysi@m. The following
theorems are applicable only to a fault-free environment. The situation witly Environments will be
dealt with later.

Theorem 3.3.1. Given a key k, any node can always determine the identity of the primacgsso
responsible for the key.

Proof. By our construction, any node knows the identity of its primary node andahger of keys
that fall under the responsibility of its primary node. Furthermore, the nuwibgrimary nodes in the
system is a design parameter and known to all participating processes tGis information, it is easy
to compute the number of hops away from the current primary processeth&ey would be residiﬁg
The id of the primary node can then be computed by appl¥ipQ or Klgl() on the id of the node’s
primary process, the desired number of times. O

Theorem 3.3.2.Assume that a secondary process is i hops or i-iterations away fromitspr node in
a chain of j nodes. It can resolve all keys belonging to other primaespin Q1) and keys residing
in other secondary nodes in(D), but with a probability of f j.

Proof. The allocation of secondary nodes is done totally at random. So everyrpiimecess has almost
the same number of secondary nodes at any given time. Thus a givardaeg node can assume that
with high probability other primary nodes have approximately the same numissrcohdary nodes,
namelyi. By theorem 3.3.2, a secondary node can point out the primary proegssnsible for that
particular key. This will be done i®(1). Furthermore with high probability we can assume thak%

of the id’s residing in the given primary have been shifted to its secon Now with a probability

of i/ the given id resides in the firstnodes, and our secondary node will be able to resolve it (by
applyingKs() that many number of times on the id of the primary node). If the given key noi®side

in the firsti nodes, then the secondary node will assume that the primary is still in coftiwit key,
which is erroneous. O

Corollary 3.3.3. If a secondary node knows the total number of secondary nodes wvitglmain, then
it can resolve most queries in(0).

Proof. The crucial fact here is that almost all primary processes in the ringdgy@ximately the same
number of secondary processes at any given time. By theorem 3.3&wealculate the id of the primary
process responsible for that key, and then work out if the key residbe any of the secondary nodes
(note that secondary nodes keep takifigof the keys from the primary always), or if the primary is still
holding the desired key. This completes the proof. O

Corollary 3.3.4. A primary process can resolve most queries {1 Qwith high probability.

Proof. A primary process will always know the number of secondary nodesiahd by our assumption
the number of secondary nodes every other (primary) process kake&en 3.3.2 it can now resolve
most queries iO(1). O

Corollary 3.3.5. A random secondary process can successfully resolve any givenigu@(1) with a
probability just over0.5.

SWe can do a simple computation for this. If the number of primary preseissa power of 2, say*Znd the total address
space is againi2then every primary node is responsible fér®entries. Right shifting the given ke — k) times till we get
0 will reveal the number of the primary node responsible for the key

4Without loss of generality assume that the id’s are leeched from the steatigg of id’s the primary is responsible for.

24

3.4. CONCLUSION

Proof. By theorem 3.3.2, in a chain ¢fsecondary nodes, thi¢th secondary node will resolve all queries

successfully with a probability af/ j. Thus on an average, a secondary node can successfully resolve a
I
given query with probabilityz'jé = ?J(jjjl) =314, O

Now we turn our attention to faulty environments. A primary node can crashandtv probability,
but no such assumption can be made about the secondary nodes. Thsomtof interest is that the
keys residing in crashed or departed secondary nodes get tradsferthe primary in finite time. Also
the successor of a crashed or departed primary node will take ovesgpensibility of its neighbor as
long as the vacancy remains unfilled. Finally since the secondary nodegjaining has to pick up an
id from the concerned primary node, we can safely assume that the pmodeyhas a good idea about
the number of active secondary nodes that it is responsible for.

Theorem 3.3.6.In our given P2P system, most queries are resolved (k) @here k is a small, finite
number.

Proof. A secondary node can find the query to the concerned primary nddglin The primary node
knows the number of secondary nodes it is responsible for, and loastids can decide whether the
given id resides in one of its secondary nodes or with itself. Finally, it sotlie query again to the
concerned secondary node or to itself in the next step. This completeotife p O]

The bulk of the theorems from the earlier chapter will also apply here cedlyerelating to joins
and leaves. A process is guaranteed a successful join as long agnheypnode it is attached to does
not crash during the join process. In case a crash in the primary oecnogle can always apply to join
another primary (usinép() over the initial primary node id will give the address of the next id on the
chain), or it can wait a finite time for the primary node to return. We are gieeing grogresproperty
here. The same is the case with leaves. The fault tolerant nature of teendgsvery important. Since
we directly home in to the concerned nodes, even if the bulk of the nodeg evathhave crashed or are
crashing, it will not affect our progress. This is a trait missing in othengarable systems. The more
the number of steps in routing, the less fault-tolerant the system becomes.

3.4 Conclusion

Using the concepts from the earlier chapter and some more assumptiorasenshiown a special case of
P2P networks which guarantees fast routing. The remarkable faar afesign is the complete absence
of neighbor maps, finger tables and such. There is very little backgstabdization of the network. In
fact, we have exploited the inherent non-homogeneity of modern dayyRg#hss to our advantage. We
can speed up our network if extra functionality like routing tables or neightaps and such is added.
But the base design is sufficient and robust enough. So adding mogeoaty to the network should
not be required. To lessen the computational load on the nodes, we trénutkspre-computed tables of
Kp() andKs(). This should help in reducing the computational workload in all the nodes.

We hope to conduct future experiments to test the performance of therketiigied in this and
the previous chapter. There are numerous parameters of this systemneleid to be empirically de-
termined, prominent among these is the average distance between two rmethes system is under
heavy churn. Also it is very important to fix the limits for the percentagesasteed nodes (as opposed
to those leaving gracefully). Crashed nodes would take some time to gednredited. Nodes departing
voluntarily get their id added to the “available” list more or less instantaneduslit would take some
time for nodes to realize that one of its neighbors has crashed. If we imagieévork under heavy
churn and crashes far outweighing voluntary leaves, then there is#iibsof the system performance
degrading. Thus it is important to determine the extent of crashes a syategracefully handle. We

25

3.4. CONCLUSION

need to experimentally determine the limits that the network can scale up to, anmbteups realized,
and compare it to the existing simulations doneGhor d andO(1) networks. We plan to mainly use
the popular network simulatars- 2 for this work. We hope to simulate both kinds of networks})
and O(logN), but built using our ideas. Currently there are simulators existingfior d. But right
now, we are unable to say definitely, whether any of the existing simulatorsecanodified to suit our
design. Furthermore, we hope to construct a rich set of API's on thtersy We expect that interest-
ing functionalities like caching and replication can be built in a robust ankhtsieamanner with our
construction.

26

A Partial Geometric Solution

In this chapter we seek to providgoartial geometric solution to the problem of designing fault tolerant
rings and networks. The solution is not complete as there are many opstiogse but the approach
looks promising and has therefore been added to this work. Hopefullyefuesearch would answer
some of these questions. The whole idea in this chapter and the previousapters have been to come
up with designs of networks with very fast routing. This automatically leads te faalt tolerance, since
with fewer nodes hindering it, two active processes will always be ablertomwnicate. We continue in
much the same vein here. We begin by constructing a network in which twe iade a multitude of
paths to communicate with each other. Just by knowing their id and the destiithtio&can guarantee
communication.

4.1 Overview

Assume ahyper-ringsystem as shown in figure 4.1. Basically bytamper-ringwe mean a system of
concentric rings which are interconnected with each other. A single ringhold a maximum of s

nodes, and there can be a totaRafings in the system. Both these parameters are system dependent and

should be defined appropriately by the system designer.

Figure 4.1: A hyper-ring system

A node in the interior ring can have a maximum of four neighbors. Nodeshwhgide on the ring(s)
on the extremes of the network can only have three immediate neighbors. e/éNusize namespace
(= Rxryg), with id's represented in bage The most significant bit of the process id would represent the

27

4.2. ANALYSIS

ring it belongs to. Let us assume a single ring with slotsNlatodes. So we can distribute nodes with
id’s a, ar, ar?, ar® and so on tilarN-1. Basically the node id’s will form a geometric progression. Any id
< awill be mapped to the first node, those greater thamd< ar to the second node and so on. This is
only one possible arrangement, but we can always try oth@s Misused id’s are recycled back into the
system to make it denser. In case there are no id’s left to be reuseddties prior to joining run a local
algorithm at their end which will throw back any (free and unused) idred@en. Using this they proceed
to join the network. In case the id has already been taken, we revert nanguthe algorithm again.
Leaves are also handled in a similar fashion. It hands over the keys $fgemsible for to its successor,
and puts up its id for re-use. Neighbors of the departed node will thexk Ibthe existing link and instead
connect to its successor to keep the network topology intact. In this netveodssume that all peers are
reasonably homogeneous to each other and are liable to crash orwlgpadual probabili@.

4.2 Analysis

How fast can such a network route? In case the network is dense aramess adheres to the topology
in figurel 4.1, it is trivial to show that all routing will happen@(1). But the performance deteriorates as
soon as sparsity sets in. This forces us to use neighbor maps in much thenaamar as ifapestry.
Each node in the network can have a maximum of four neighbors. Assuiriekbaps a neighbor map
which shows the node responsible for particular positions in its own rirtgtrenrings above and below
it. Thus the size of the map would bex3.

Theorem 4.2.1.If the given network is sparse, then normal time for routing to a given keyoisnd
O(R/2), where R is the number of rings in the hyper-ring.

Proof. We use the neighbor map each node has and navigate ring by ring. Assaintfeetinodes in a
single ring can be numbered from 0, 1,.2,, R— 1. From the given key we can determine the node
which is responsible for it (since the ideal distribution pattern is knownrkbénd) and the ring on
which the node belongs (this is from the most significant bit of the key)uresthat the key resides

in nodei in ring numberj. We first navigate to ring, and then proceed to find the nodéor the
corresponding responsible node in cadees not exist) in that particular ring, using the neighbor maps
already constructed. The average number of hops would then be

R R
é;[;;lmj—mn

This is equal tdR/2 and completes our proof. O]

The routing performance of our network does not compare favorathytive other networks dis-
cussed in earlier chapters. But if the size of neighbor maps is increaseddmpass more rings, then
the routing performance will increase correspondingly. This comes astatltough. The bigger the
size of the map, the larger the cost for background maintenance (in termessfages, complexity of
joins/leaves and computational overhead).

4.3 Problems

The network analyzed has a number of significant problems, which wi loiet@wv.

1This is in fact one of the open questions.
2This need not always be true, as detailed in the earlier chapter.

28

4.4, CONCLUSION

e Apriori information To get this idea working properly, we need to know beforehand anraiecu
figure for the membership expected. This is needed most importantly to detehmisize of the
rings. Itis also important that the rate of joins and leaves closely match #aah b membership
figures are over-reported, then we will end up with more rings than reduand a lesser figure
would be equally disastrous for performance. The same is the case ifi¢hef jains and leaves
are mis-matched. Note that none of the earlier networks discussed haahthif kmitations.

e SparsityThis could lead to serious performance problems. It is evident froméhedr2.1 how
the performance suffers on account of sparsity setting into the netWhikleads to the question
on how best to fill up the network. Expecting the full strength of members frésent initially
would be fallacious. There could be different schemes for filling the ringhewn in figure 4.3.
These are just a small sample of possibilities, and do not represent theassiple way of filling
the ring

(a) Radially filling (b) Filling it ring by ring (c) Alternate filling on rings
Figure 4.2: Sparsity issues in a hyper-ring

There are problems in each of the schemes. In case of radial filling r&we orashes on the spoke
will disrupt the whole operation. It is not clear how we can cope with that.ti@nother hand,
filling it ring by ring will make the initial rings responsible for keys to be mappedthe other
nodes. This might lead to performance loss, and if by some chance theiogtgets disrupted
then performance would degrade rapidly.

e P2P networkdHow to map P2P networks to this ring is an interesting question. There has been
some prior work done on mapping P2P systems to constructsuiie connected cyclizetworks
(by Pandurangan et al. [6]). Possibly the same could be applied heeemain problem with the
ring is that performance degrades rapidly in case of sparsity. How tistii@p such a network is
again an open question.

4.4 Conclusion

We have demonstrated how to construct networks based on concergsc Tihe problems in such an
architecture have also been discussed. But we still maintain that it is a prgrhirgnof research. In
case node id’s are “recycled”, the network would become dense atidgaould happen i®(k) (k is
some small number). Also it is trivial to prove that a dense ring would proxdellent fault tolerance
and connectivity options. If satisfactory solutions are provided to sontkeeofjuestions raised earlier,
then the ring could emerge as a viable architecture for many different ofpetworks.

29

[1]
(2]

3]

[4]

Bibliography

M.G. Gouda.Elements of Network Protocol Desigwiley, New York, 1998.

A. Gupta, B. Liskov, and R. Rodrigues. Efficient Routing for PeePeer Overlays. Iirirst
Symposium on Networked Systems Design and Implementation 2088

Xiaozhou Li, Jayadev Misra, and C. Greg Plaxton. ConcurrerninMaance of RingsDistributed
Computing 19(2):126-148, 2006.

D. Liben-Nowell, H. Balakrishnan, and D. Karger. Analysis of theokition of Peer-to-Peer Sys-
tems. InProceedings of the 21st ACM Symposium on principles of Distributed @orgppages
233-242, 2002.

[5] A. Mizrak, Y. Cheng, V. Kumar, and S. Savage. Structured Spgens: leveraging heterogeneity

[6]

to provide constant time lookup. IEEE Workshop on Internet Applicatiar2003.

G. Pandurangan and S. Jagannathan. A Simple Churn Toleracti8&d Peer-to-Peer Scheme.
submitted 2008.

[7] John Risson and Tim Moors. Survey of research towards rgiemst-to-peer networks: Search

methods.Computer Network$0:3845—-3521, 2006.

[8] John Risson, Ken Robinson, and Tim Moors. Fault Tolerant AdRiregs for Structured Peer-to-

Peer Overlays. IProceedings of the 30th Annual IEEE Conference on Local Compwatievddks
pages 18-25, 2005.

[9] S. Saroiu, P.K. Gummadi, and S.D. Gribble. A Measurement Study aftBdeeer File Sharing

[10]

[11]

Systems. IrProceedings of Multimedia Computing and Networking (MMC2002.

I. Stoica, R. Morris, D.-Nowell Liben, D. Karger, F. Kaasho&k,Dabek, and H. Balakrishnan.
Chord: A Scalable Peer-to-Peer Lookup Service for Internet Apics. IEEE/ACM Transactions
on Networking11(1):17-32, 2003.

Gerard Tel.Introduction to Distributed AlgorithmsCambridge University Press, 1994.

30

	Problem Statement
	Current Approaches to Topology Maintenance
	Basic Definitions
	The Unidirectional Ring
	The Bidirectional Ring
	Join Protocol
	Leave Protocol

	The Combined Protocol
	Conclusion

	A General Solution
	Suitable Functions
	Methodology
	Joins/Leaves in Rings
	P2P Networks
	Joins and Leaves in P2P Systems

	Conclusion

	A Special Case
	Related Work
	Basic System Design
	Structure of the System
	Dynamic Operations

	Analysis
	Conclusion

	A Partial Geometric Solution
	Overview
	Analysis
	Problems
	Conclusion

