
VRIJE UNIVERSITEIT

MASTER’ S THESIS

Fault Tolerant Rings: Creation and Maintenance

Author:
Atul M EHTA

Supervisor:
Prof. Wan FOKKINK

Second Reader:
Dr. Paolo COSTA

October 2, 2008

Contents

1 Problem Statement 1
1.1 Current Approaches to Topology Maintenance 1
1.2 Basic Definitions .2
1.3 The Unidirectional Ring .. 2
1.4 The Bidirectional Ring .. 4

1.4.1 Join Protocol . 4
1.4.2 Leave Protocol . 6

1.5 The Combined Protocol .. . 7
1.6 Conclusion .8

2 A General Solution 11
2.1 Suitable Functions .11
2.2 Methodology .12
2.3 Joins/Leaves in Rings .. . 14
2.4 P2P Networks .. 15

2.4.1 Joins and Leaves in P2P Systems . 18
2.5 Conclusion .20

3 A Special Case 21
3.1 Related Work .21
3.2 Basic System Design .. 21

3.2.1 Structure of the System . 22
3.2.2 Dynamic Operations . 23

3.3 Analysis .24
3.4 Conclusion .25

4 A Partial Geometric Solution 27
4.1 Overview .27
4.2 Analysis .28
4.3 Problems . 28
4.4 Conclusion .29

1

List of Figures

1.1 Joining a unidirectional ring [3] 3
1.2 Exchanges of messages during the join protocol [3] 3
1.3 Joining a bidirectional ring [3] 5
1.4 Exchanges of messages during thejoin protocol for the bidirectional ring [3] 5
1.5 Joining a bidirectional ring [3] 6
1.6 Exchanges of messages during thejoin protocol for the bidirectional ring [3] 7
1.7 Exchange of messages duringjoin/leave[3] . 9

2.1 A portion of a bidirectional ring .. . 12
2.2 Crashed process in a bidirectional ring 13
2.3 Nodes can be left out in a bidirectional ring 14
2.4 A t-crash tolerant protocol .. 15
2.5 Problems withf ()/g() in P2P networks . 16

3.1 Proposed P2P system 22

4.1 A hyper-ring system 27
4.2 Sparsity issues in a hyper-ring 29

2

Abstract

Numerous algorithms have been provided for maintaining the topology of a ringnetwork in a fault-free
environment. But a simple, fast and effective fault-tolerant algorithm hasbeen lacking in this field so
far. In this report, we seek to address this problem and provide a detaileddesign to solve the problem in
the general case. As our detailed analysis proves, our algorithms function very well in providing a high
degree of fault tolerance at very little additional cost. We further construct a new peer-to-peer system
built using our ideas. This new system provides very fast routing and a high degree of fault tolerance at
almost no additional cost. We also propose a new geometric solution to the problem which provides a
reasonably high degree of fault tolerance.

1
Problem Statement

Many structured peer-to-peer systems have been built using the ring topology as a base, for example
Symphony and Skipnet. But the most prominent of such systems is undoubtedlyChord [10]. The
success of this kind of systems has led to further investigation on how to maintainthe topology of a
network in the face of concurrent leaves and joins. Different systems adopt different approaches, but
in the ultimate analysis a simple and symmetric solution was lacking thus far. In real-timewe need to
factor in not only concurrent joins and leaves, but also the fact that faults are liable to arise and that too
frequently. A fault could arise from the sudden crash of a node (eitherhardware/software crash) or if the
network connecting that particular node gets disrupted. But this cannot be the only definition of a fault.
In general, there is no method to distinguish a slow and unresponsive system from a system that has
crashed. Also an involuntary leave from the system can also be construed as a fault. While some crashed
systems recover in a finite time (by rebooting the system) we cannot say this is true in every single case.

All these factors come into play significantly when we attack the problem of maintaining the topology
of the network in a practical real-world scenario. It is obvious that any system which departs from its set
topology, will suffer from significant performance degradation. A partitioning of the system for example
can leave the majority of users without access to important data. In this chapter we discuss existing
work done in this area, and elaborate on the leave/join protocols discussedin [3]. We focus solely on a
fault-free environment in this chapter, and will proceed to the more practical scenario of dealing with
faulty environments later on. The problem of designing an adequate and robust, topology maintenance
protocol for thefault-freeenvironment has been satisfactorily dealt with by Li, Misra and Plaxton in [3].
In this chapter, we explain the essence of the various protocols they havedeveloped for maintaining
the topology, in various types of rings, such as unidirectional, bidirectionaland P2P rings. Extending
their solution tofaulty environments is however not an easy task and has, in fact, been posed as an open
problem in [3].

1.1 Current Approaches to Topology Maintenance

While there is no standard approach to the problem of topology maintenance, we can still classify exist-
ing attempts into two broad categories, apassiveapproach and anactiveone. In the former, neighbor
variables arenot instantaneously updated to reflect the node joins or leaves. A background protocol is
run periodically to restore the topology to the desired state. The obvious drawback of this method is
the cost of running such a background task in terms of computing and network resources and also the
latency introduced. The effect of changes in the network are not immediately obvious to the other nodes.
Theactiveapproach stresses that all neighbor variables get updated immediately at every change in the
network (joins and leaves). This method is costly as every node has to keeptrack of any change in its
neighbors, wasting time and resources on this task. Theactiveapproach, on the other hand, implicitly
assumes that any departure from the set topology is detrimental, which is notalways the case. Most
systems can tolerate temporary departures from the ideal topology to a significant extent.

Protocols for coping with joins and leaves can fall in either of the two categories. For example

1

1.2. BASIC DEFINITIONS

Skipgraphs handles joins and leaves actively, while some others handle joins actively but leaves pas-
sively, likeTapestry. The correctness proofs for some of the join/leave protocols, which aretypically
used, are not rigorous but are operational and sketchy, as in [10].

1.2 Basic Definitions

We consider anasynchronousnetwork with a fixed and finite set of nodes (processes), denoted byV. Ele-
ments denoted byu, v andw represent processes belonging to the setV. Each processes has left and right
neighbors (as in the case of a bidirectional network). Variablesl andr denote the neighbor variables.
For exampleu.r denotes the right neighbor ofu, while u.l is the left neighbor. A process is called an “x
process” iffu.x 6= nil , where a “nil ” process is one that does not belong to the setV and consequently no
neighbor variables are applicable to it.V ′ denotes the set of processes,V ∪{nil}. Thus, it is easily seen
that neighbor variables likel andr belong to the setV ′. Message delivery is reliable and asynchronous,
meaning that messages take a finite but indeterminable time to reach their destination. We do not make
any assumptions regarding the order of the delivery. Now we are readyto define the unidirectional ring.

ring(x) =< ∀u,v : u.x 6= nil ∧v.x 6= nil : path+(u,v,x) >,
wherepath+(u,v,x) =< ∃i : i > 0 : u.xi = v > and whereu.xi = u.x.x.x. . .x with x repeatedi times.

Thus,ring(l) andring(r) denote unidirectional rings with a left and right channel respectively. Com-
bining the two, we can arrive at the definition for a bidirectional ring.

biring(x,y) = ring(x)∧ ring(y)
∧ < ∀u : u.x 6= nil : u.x.y = u >
∧ < ∀u : u.y 6= nil : u.y.x = u >

Thusbiring(l, r) denotes a bidirectional ring.
Now that we have defined the ring, we concentrate on the protocols to be used. We will use Gouda’s

Abstract Protocol Notation [1], and assume that an execution of the protocol consists of an infinite
sequence of actions, where each action is a series of atomic steps (send/receive or local assignments).
The subsequent results can be seen to hold forsequential executionsof the protocol, one where steps of
each action are contiguous. It can also be proved that the results hold for an interleaving execution, i.e.
one in which steps belonging to different actions may be interleaved. In the following sections, we list
the protocols to be adopted for joins and leaves for the unidirectional and bidirectional ring, respectively.
Finally we combine the join and leave protocol to come up with a combined protocol.

1.3 The Unidirectional Ring

First let us look into the case of node joins for a unidirectional ring. Assumea processu wants to join
ring(r) (i.e. every node in the ring has a right neighbor). Processu invokes a function,contact() which
returns an existing suitable nodev for joining. If ring(r) is empty it returns the id of the calling node.
itself. Figure 1.1(a) depicts the initial topology of the network. Processu sends ajoin() message to
v. Nodev accordingly changes its right pointer to point to its new neighboru. Processv also sends a
grant(w) message tou so that it can update its right pointer accordingly. This is depicted in figure 1.1(b).

Upon receipt of thegrant(w) message fromv, processu updates its right variable to point tow. Node
u is now part of the network (figure 1.1(c)). The flow of messages duringthe course of the join protocol
is depicted in figure 1.2.

2

1.3. THE UNIDIRECTIONAL RING

(a) Initial topology (b) After the join() message (c) Successful completion of join

Figure 1.1: Joining a unidirectional ring [3]

Figure 1.2: Exchanges of messages during the join protocol [3]

Now we are ready to list thejoin protocol. Note that an action in our protocol is represented by a
sequence of statements. A statement can be of any of the three forms, a local assignment, sending a
message or a selection. The first two are obvious. The selection statement isof the formif 〈 branch〉 fi.
Each of the branches is represented in the form〈 local guard〉 → 〈 statement list〉 and different branches
are separated by⊲.

processp
var {in, out, jng}; r : V’; a: V’
init s = out∧ r = nil
begin

s = out→ a := contact();
if a = p → r,s := p, in
⊲ a 6= p→ s := jng; sendjoin() to a fi

⊲ rcv join() from q→
if s = in → sendgrant(r) to q; r := q
⊲ s 6= in → sendretry() to q fi

⊲ rcv grant(a)from q→ r,s := a, in
⊲ rcv retry() from q → s := out

end

If a node sends ajoin() message to another node which is currently not part of the network (for in-
stance, it might have just left), then it receives aretry() message. In such a case, we would expect the
initial node to runcontact()again. A fresh node id would be received and the process can start allover
again. While [3] does not list a specificleaveprotocol for a unidirectional ring, we can develop on the
concepts listed in that paper, and come up with aleaveprotocol. We have to keep in mind though, that
leaves in a unidirectional ring involve a high cost. Consider the case in figure1.1(c). If now processu

3

1.4. THE BIDIRECTIONAL RING

wants to leave the network, it has to inform processv so that we can achievev.r = w. For this a message
has to be routed around the ring, since the network is unidirectional. If the size of the network isN, then
the number of hops to reach the predecessor of any given process isN−1. Theleaveprotocol proceeds
as follows. Processu routes a message,leave(w), to its predecessorv informing its intent to leave.v will
now set its right variable to point tow, and this will removeu from the ring. The leave protocol for the
unidirectional ring can now be stated as follows. Note that the functionpredecessor(u) will route the
message to some nodev such thatv.r = u.

processp
var {in, out, lvg}; r : V’;
init all process states are eitherin or out;

the in processes formring(r) ;
t = nil ∧ (s= in ⇒ r = nil)

begin
s= in →

if r = p → r,s := nil ,out
⊲ r 6= p→ sendleave(r)to predecessor(p); r,s,t := nil,lvg,r fi

⊲ rcv leave(a)from q→
if s= in∧ r = q→ r = a ; sendack(nil) to q ;
⊲ s 6= in∨ r 6= q→ sendretry() to q fi

⊲ rcv retry() from q → s, r, t := in, t,nil
⊲ rcv ack(nil) from q→ s, t := out,nil

end

1.4 The Bidirectional Ring

Devising suitable protocols for joins and leaves for the bidirectional ring, involves more work than for
the corresponding unidirectional case. An important feature of the leaveand join protocols is that they
should be symmetric to each other. This is needed if we are to combine them effectively later on.

1.4.1 Join Protocol

We first approach the question of devising a protocol forjoins for a bidirectional ringbiring(l,r) . The
initial state of the network is depicted in figure 1.3(a). Nodeu sends ajoin() message tov, which will in
turn adjust its right pointer accordingly (v.r = u), figure 1.3(b).

Processv also sends agrant(u) message to its previous right neighborw, which adjusts its left
pointer accordingly as shown in figure 1.3(c). Finally processu will set its right and left pointers tow
andv respectively, and join the ring. The new topology is reflected in figure 1.3(d). Four messages are
exchanged during the course of the join process, and this is shown in figure 1.4.

The join() protocol is listed below.

4

1.4. THE BIDIRECTIONAL RING

(a) Initial Topology of the net-
work

(b) After the join() message (c) grant(u) message has been
received byw

(d) Successful completion of
protocol

Figure 1.3: Joining a bidirectional ring [3]

Figure 1.4: Exchanges of messages during thejoin protocol for the bidirectional ring [3]

5

1.4. THE BIDIRECTIONAL RING

processp
var {in, out, jng, busy}; r,l : V’; t,a: V’
init s = out∧ r =l =t = nil
begin

s = out→ a := contact();
if → r,l,s := p,p,in
⊲ s 6= p→ s := jng; sendjoin()to a fi

⊲ rcv join() from q→
if s = in → sendgrant(q)to r;

r,s,t := q,busy,r
⊲ s 6= in → sendretry() to q fi

⊲ rcv grant(a)from q→
sendack(l) to a; l := a

⊲ rcv ack(a)from q→
r,l,s := q,a,in senddone()to l

⊲ rcv done()from q → s,t := in,nil
⊲ rcv retry() from q → s := out

end

1.4.2 Leave Protocol

We now turn our attention to designing theleaveprotocol. As mentioned earlier, we strive to make
both thejoin and leaveprotocols highly symmetrical to each other, so as to combine them later on, in
one protocol. The initial state of the network is depicted in figure 1.5(a). Processu wants to leave the
network and it informs its left neighbor of its intention to leave. Processv accordingly changes its right
pointer, figure 1.5(b) and contacts its new neighbor informing it of the change.

(a) Initial Topology of the
network

(b) After the leave(w) mes-
sage

(c) grant(u) message has
been received byw

(d) Successful completion of
the join

Figure 1.5: Joining a bidirectional ring [3]

Processw changes its left pointer accordingly and informsu that it can leave (figure 1.5(c)). Process
u can now remove itself from the network; the changed topology is depicted in figure 1.5(d). Similar to
the previousjoin protocol, theleaveprotocol also uses four messages. The flow of messages during the
leaveprotocol is depicted in figure 1.6.

The completeleaveprotocol is listed below.

6

1.5. THE COMBINED PROTOCOL

Figure 1.6: Exchanges of messages during thejoin protocol for the bidirectional ring [3]

processp
var s: {in, out, lvg, busy}; r,l : V’; t,a : V’
init all process states are eitherin or out ;

the in processes formbiring(r, l) ;
t = nil ∧ (s = out⇒ r = l = nil)

begin
s = in →

if l = p → r,l,s := nil,nil,out
⊲ l 6= p→ s := lvg; sendleave(r)to l fi

⊲ rcv leave(a)from q→
if s = in ∧ r = q → sendgrant(q)to a;

r,s,t := a,busy,r
⊲ s 6= in ∨ r 6= q→ sendretry() to q fi

⊲ rcv grant(a)from q→
sendack(nil) to a; l := q

⊲ rcv ack(a)from q→
senddone()to l ; r,l,s := nil,nil,out

⊲ rcv done()from q → s,t := in,nil
⊲ rcv retry() from q → s := in

end

1.5 The Combined Protocol

A combined protocol which handles both joins and leaves is easy to make now.This is because both
the join and leaveprotocol, listed in the earlier sections, are symmetrical to each other. To arrive at an
integrated protocol, we just combine the two. The new protocol is listed below.

7

1.6. CONCLUSION

processp
var s: {in, out, jng, lvg, busy}; r,l: V’; t,a: V’
init s = out∧ r = l =t = nil
begin

s = out→ a := contact();
if a = p → r,l,s := p,p,in
⊲ a 6= p→ s := jng; sendjoin() to a fi

⊲ s = in →
if l = p → r,l,s := nil,nil,out
⊲ l 6= p→ s := lvg; sendleave(r)to l fi

rcv join() from q→
if s = in → sendgrant(q)to r;

r,s,t := q,busy,r
⊲ s 6= in → sendretry() to q fi

rcv leave(a)from q →
if s = in ∧ r = q → sendgrant(q)to a;

r,s,t := a,busy,r
⊲ s 6= in ∨ r 6= q→ sendretry() to q fi

rcv grant(a)from q→
if l = q → sendack(l) to a; l := a ;
⊲ l 6= q→ sendack(nil) to a; l := q ; fi

rcv ack(a)from q→
if s = jng→ r,l,s := q,a,in

senddone()to l
⊲ s = lvg→ senddone()to l ;
r,l,s := nil,nil,out fi

rcv done()from q→ s,t := in,nil
rcv retry() from q→

if s = jng→ s := out
⊲ s = lvg→ s := in fi

end

1.6 Conclusion

The protocols in the earlier sections are explained in depth in [3]. Detailed assertional proofs are also
provided there. Variants of the protocols are also listed, which handle joins/leaves in FIFO networks and
for P2P networks likeChord. But on further analysis it soon becomes apparent that these protocolsdo
not deliver, when we seek to apply them to faulty environments. In a real-world scenario, processes can
crash arbitrarily, messages can get lost, or nodes can become so slow and unresponsive that it becomes
difficult to tell them apart from crashed ones. The protocols that we have so far elaborated on donot
have any provisions to handle these kind of errors and will fail in such a faulty environment. We list a
few examples that serve to illustrate this point further.

Figure 1.6 illustrates the messages exchanged during the course of aleaveandjoin in a bidirectional
ring. Note that in both cases four messages need to be sent for the successful completion of the protocol.
Let us consider the case of thejoin, as illustrated in figure 1.7(a). If subsequent to the initialjoin()
message, any one of the remaining three messages fail to get delivered, then the network is left in an
inconsistent state. For example, if theack(v)message fails, then both nodesv andw will point to u,
which will make processu behave like ablackhole. Processu will then be able to receive messages,
but cannot contact any of its neighbors on the ring, since it is still waiting for ack() to arrive. If the
grant(u) fails, then the ring gets broken betweenv andw. Processv will not be able to contactw, since
its right neighbor is processu, which is out of the ring currently. It is important to bear in mind that the

8

1.6. CONCLUSION

non-delivery of messages isnot only because of faulty links. If that were the case, we could always keep
retransmitting the messages, and soon the protocol would get completed. Butwhat if any of the nodes
u,v or w crashes during the course of the protocol? The messages never arrive and the protocol fails,
leaving the ring in an inconsistent state.

(a) Join-ing a bidirectional ring (b) Leave-ing a bidirectional ring

Figure 1.7: Exchange of messages duringjoin/leave[3]

Let us take a look at theleaveprotocol now, as depicted in figure 1.7(b). The situation is no better
than the previous case. If immediately after receipt of theleave(w)message,v crashes, then the ring gets
broken at that point. Nowu will never be able to leave the ring, as thegrant(u) will not be forthcoming.
If nodeu crashes before sending thedone, thenv will be condemned to live in thebusystate, or if the
ack(nil) fails, then bothu andv have to suffer. An obvious solution could be to implement a series of
timeout’s. This has a two-fold disadvantage. Firstly, it robs the above protocolsof their generality by
making the network essentially synchronous. Secondly, if a process hasbecome busy or temporarily
disconnected at that particular time, then the system of timeout’s will fail. A timeoutsystem might not
be able to make a distinction between a slow process and a crashed one. After expiry of the timeout,
other processes will assume that the process in question has crashed, which need not always be the case.
This is thus the central problem that we face, namely modifying the Li-Misra-Plaxton protocols[3] to
cope with faults in an asynchronous network.

An elegant solution to this problem, albeit for asynchronous system, exists in [8]. The basic idea is to
adopt the“Paxos Commit Algorithm”to provide fault tolerance. It uses three stages in every join/leave
operation. In the first, participating processes determine the action to be undertaken, the second phase
prepares the action, and the last phase commits it. The method used is flexible also, in the sense that
instead of the Paxos commit, we can use the common 3-phase commit protocol also. The concept
remains the same. But the main drawback of this algorithm is its reliance on a synchronous network.

A promising line of investigation appears to be that when a process suspectssome other process to
have crashed, then it simply bypasses it and contacts another suitable node in the ring. For example,
assume that processv has crashed in figure 1.3(b). Nodeu then contacts the left neighbor ofv, and along
with w, u will join and repair the ring. While this method is promising, an element of centralization gets
introduced. How can a node “by-pass” crashed/slow nodes? It has toknow the identity of the neighboring
nodes, but for this some central server might have to keep information about the current topology of the
network. This is both impractical and undesirable. Even a group of servers distributed at various parts
of the ring would be impractical, as no guarantee can be provided on thefreshnessof the information

9

1.6. CONCLUSION

they store, especially in networks with high churn. There would be extra work involved in keeping all
the servers up-to-date.

Note that while fault tolerance might not be important to the working of distributed rings created over
the Internet, it is vital factor in the design of P2P networks. Without reasonably good fault tolerance,
performance of P2P networks suffer. There is another aspect of theLi-Misra protocols that is worth
mentioning. They do not provide a progress property. For example, if a process desires to leave the
network, it should eventually be able to do so. This can be provided only byaprogressproperty.

In the remaining part of this thesis, we will propose a de-centralized solutionto the fault-tolerance
problem. Our solution works in networks with high churn, and can accommodate not only rings, but also
P2P networks based on the ring topology, likeChord. We will also present a new design for creating
highly fault tolerant and fast ring networks, assuming certainapriori information about the size of the
ring is made available. Additionally both our solutions also guarantee the progress property, which is
lacking in [3]. Lastly we present a partial geometric solution with interesting characteristics. This will
provide a high degree of fault tolerance.

10

2
A General Solution

We approach the problem from a different direction. Let us assume thatthere is a group ofsuccessorand
predecessorfunctions, denoted byf () andg() respectively. The domain and range of these functions
cover the whole space of possible node id’s. So if node id’s are denotedby 160 bits, then both the domain
and range are equal to[0,2160−1]. The behavior of thesuccessorandpredecessorfunctions for normal
rings (uni- and bidirectional) and“wrap around” rings1 like Chord is defined below.

f () applied to an existing node id gives the id of thesuccessorof the node in the ring and likewise
g() gives the node id of thepredecessorof that particular node.f () applied successivelyn times,
will give the node id’s of the first, second, third and so on till thenth successor of that particular
node. The same holds forg(). We assume that a value ofε denotes error, i.e. the node id does not
exist or in case of wrap around rings, the true successor is different.

For a bidirectional ring, it is important that the functionsf () andg() be inter-related, i.e. for some
node with an idx, the following holds alwaysx = f (g(x)) andx = g(f (x)). In other words,f () andg()
are the inverses of each other. For unidirectional rings, we can do away with this restriction. Only one
set of functionsf () andg() will need to be applied, depending on the direction.

2.1 Suitable Functions

What could be suitable group of functions which can be used forf () and g()? Our functions will
necessarily have to be scalable and easy to compute if they are to be deployed in large-scale distributed
systems. Also a regular function likef (x) = x+ 1 is not feasible, as it will amount to pre-ordering the
node id’s. Pre-ordering the id’s can lead to grave security issues. If an adversary is able to predict the id,
for each node about to join the network, he can initiate man-in-the-middle attacks easily. But the main
problem with pre-ordering is the uneven nature of the lookups that it causes. This point is further detailed
in section 2.4. On the other hand, symmetric encryption functions are highly suited to our requirements
and do not suffer from any of these pitfalls.

If we assume that symmetric encryption functions are cyclic, then it would necessarily have a very
large periodT such that for somex, f (x) = f (x+ T)2. A large period is necessary as the ring cannot

1In a ring network likeChord, the successor of a node has a numerically larger id than its own. This is important if we have
to order them around the identifier circle. But there would exist some node, whose successor has a numerically smaller id than
its own. If this does not hold, we will end up with a straight chain of processes with increasing id’s. Thus, the set of nodes
“wrap around” to form a circle.

2If the function is periodic, then sooner or later, we arrive at a cyclic arrangement of nodes. In essence, we get the “wrap
around” feature. While this is strictly not necessary, it is desirable. Currently it is unknown whether the symmetric encryption
functions are cyclic or not. In case they are cyclic, then definitely the period would be very large. In case they are proved to
be acyclic, we would then, need to re-phrase the meaning of “period” asapplied to our successor and predecessor functions.
In such a scenario, the period would represent the maximum number ofprocesses that can be supported in the ring. Processes
with id greater than the maximum would get mapped to some existing process.

11

2.2. METHODOLOGY

grow beyond sizeT. For example, functions likef (x) = (ax) mod N, wherea,N are large prime numbers
andN is smaller than the absolute range, would be unsuitable. In such a case, the ring cannot have more
nodes thanN, after which duplicate id’s start to creep in. Symmetric encryption functions are easily
invertible if one knows the shared, secret key. Thus in our scheme, we initially employ f (x) equal to
K(x) andg(x) = K−1(x), whereK() is the symmetric encryption function. This is an important choice,
especially if we are implementing bidirectional rings, because we now have a set of readily invertible
functions. Symmetric encryption functions are also reasonably fast to compute on modern machines.
There is no distinct pre-order among the node id’s if we are using symmetric encryption functions. If
an adversary is unaware of the id of the starting node and the shared secret key being used, he won’t
be able to predict the id’s of the successive nodes. The node id’s will appear just as a set of random
numbers. Because of these desirable properties, symmetric encryption functions are very suitable for
implementing the successor and predecessor functions.

2.2 Methodology

We use the successor and predecessor functions to construct our ring. Let us assume for the time being,
that we are constructing a bidirectional ring. Figure 2.1 illustrates how the successor function comes into
play in defining the ring.

Figure 2.1: A portion of a bidirectional ring

Here we make a crucial assumption.We assume that every node can resolve the IP or the physical
address of every other node as long as it knows its process id in the network. This can be arranged by a
suitable external mechanism. For example, every node joining the ring will post its physical address and
node id to a central server or a group of servers. The latter is of course more preferable. We need to further
elaborate on this point since we intend to use this assumption in the section relatingto P2P systems also.
The main pitfall here is in, introducing an element of centralization. This has to be avoided or else it will
render the entire scheme impracticable. Instead of resorting to a central group of fixed servers, we can
instead use a dynamic set of already existing nodes (alternatively a set of“beacon” nodes can be built
into the system). This small group of nodes holds the physical and virtual address information, of all the
nodes participating in the system. The “beacon” nodes need not have a fixed membership. Instead we
can make it dynamic and any change in the membership in the set of “beacon” nodes is transmitted to
all the participating nodes in the system (using either flooding or gossiping).Moreover, the(physical,
virtual) address information can be widely replicated among the set of the “beacon”nodes or it can
alternatively be broken down amongst these nodes. In the latter method, the virtual address space is
broken up and divided equally among the set of “beacon” nodes. Overall, our scheme should sufficiently
guard us centralization.

Note that our scheme is very different from storing or replicating the topology of the network, since
we, only store the node id and its physical address. Moreover they can be stored in any order and do

12

2.2. METHODOLOGY

not need to have one-to-one correspondence with the actual pattern ofjoins and leaves in the network.
Nodes which are leaving the network may perhaps want to remove their id from the database. While
this is preferable (in case of rings) it is not necessary. It can be seenthat with this limited information
one cannot replicate the topology of the network. Any participating process can query such a database
with the node id as the key and obtain the physical address of the process corresponding to that particular
node id (if it exists). An empty stringε signifies non-existence of the node id searched for. Overall our
assumption is not totally unreasonable and can be implemented with little extra effort. Once the physical
address is resolved, then the processes can contact each other directly.

Theorem 2.2.1.Given any pair of arbitrarylive processes in the network. These processes will always
be able to contact each other in a finite number of steps, as long as none ofthe two processes crash or
depart from the network in that particular time interval.

Proof. Given a starting processx, all the other process id’s are of the formf n(x) wheren∈ N, the set of
natural numbers. Without any loss of generality, let us denote the two live processes aspi andp j where
i < j. The node id’s corresponding topi andp j are thusf i(x) and f j(x) respectively. Let the period of
the functionf () be denoted byT. Consider the following two cases.

• Unidirectional RingsFor pi to contactp j it keeps resolvingf k(f i(x)), wherek is 1 initially and
increased at every iteration. Whenk = j − i, pi is able to successfully resolve the id of nodep j .
If node p j desires to contactpi , we apply a similar procedure. Whenk = T + i − j, p j is able to
successfully resolve and contactpi .

• Bidirectional RingsWith bidirectional rings, we are able to move both ways.pi can contactp j

by applying the procedure mentioned above inj − i steps. Forp j to contactpi we use the inverse
function f−1() (basically the functiong()). This is applied successivelyj − i times to arrive atpi .
Relying solely onf () to contactpi will entail more steps.

This proves our theorem.

Let us assume an asynchronous network consisting ofN faulty but not Byzantine processes. We can
never achieve an algorithm for consensus ift ≥ ⌈N

2 ⌉ processes crash. A detailed proof for this can be
found in [11]. This has an important bearing in our work, and the full import of this condition will be
realized soon.

Let us now consider a portion of the bidirectional ring as shown in figure 2.2. Nodesv, u, w andzare
initially connected. Processu wants to leave the ring, but its right neighborw has crashed in the midst of
the leaveprotocol.

Figure 2.2: Crashed process in a bidirectional ring

This example illustrates the major problem faced by the algorithms listed in [3]. Since we are deal-
ing with an asynchronous network, messages from all the correct processes arrive eventually. Also we

13

2.3. JOINS/LEAVES IN RINGS

assume that crashed processes stay crashed and do not recover in future. So processesv, u andw can
run adecisionalgorithm any time to determine whether they want to continue the protocol or not.If
any process feels that, one of the other two has crashed, it votes against continuation and vice-versa.
A correctly working process and one which isnot unduly suspiciousof the others, will always vote for
continuation of the protocol.Moreover, the algorithm can be run multiple times during the course of the
protocol. If one process has crashed and a tie of votes happens between the other two, discontinuation of
the protocol is the preferred course of action. When a discontinuation ofthe protocol occurs, we assume
that all nodes revert to the initial state.

But we still have the problem ofu not being able to leave the network. In case a consensus is
achieved amongv andu thatw has crashed, nodeu re-initiates the protocol but withv andznow. Process
z is the next live process after processw and by theorem 2.2.1,u is guaranteed to reach it. Our treatment
of crashes is not fair to slow, unresponsive processes as they also get classed with crashed processes.
Assume in the above case that nodew had not crashed but was merely slow. But by the time it recovers,
the topology of the ring has changed and the situation is illustrated in figure 2.3.

Figure 2.3: Nodes can be left out in a bidirectional ring

There is no proper solution for this. The only option then is to run arepair protocol initiated by
processz, when it finds that two processes are considering it as its right neighbor. In this case, processv
will have to change its right link tow eventually.

The above method is only 1-crash tolerant. But it is likely that more than one process might fail. So
if we desire a more robust algorithm, which is sayt-crash tolerant, then we do not have any other option
but to start off with more nodes initially. In case of unidirectional rings, this isthe only possible option.
In subsequent sections we will further develop this methodology and supply fault tolerant versions of the
algorithms listed in [3].

2.3 Joins/Leaves in Rings

The results in this section apply equally to both the unidirectional and the bidirectional rings. Consider
the join protocol as illustrated in figure 1.3. It is obvious that there cannot be a 1-crash fault-tolerant
join protocol in this case. Nodeu cannot determine asynchronously whetherv has crashed or is slow.
The same is the case for processv. To make it 1-crash tolerant we need another process. In ourdecision
algorithm we useu, v andw. We assume that a 0 vote means discontinuation of the protocol and a 1 vote
favors continuation. Thedecisionalgorithm to arrive at a 1-crash tolerant protocol is simple now. The
decisionalgorithm for leaves remains the same. No special change is required.

begin
wait for ⌈N

2 ⌉ votes
if majority() = 0→ stop();

⊲ majority() = 1→ continue();
⊲ stop() fi;

end

14

2.4. P2P NETWORKS

If we want to make the protocol more than 1-crash tolerant, we need to add more processes. Let us
assume that we desire at-crash tolerant algorithm. The situation is depicted in figure 2.4

Figure 2.4: At-crash tolerant protocol

So if we start with a set ofN processes participating in our join protocol, the number of faults that
can be tolerated,t, will always have to be less than⌈N

2 ⌉. Faults equal to or more than this limit will make
our protocol fail. In figure 2.4, assume that the 2 nodes at the extremities ofthe inside box have crashed.
There are a total of 5 processes inside the box and barring the 3 involvedin the join, the other two have
crashed. The join protocol can still be continued as the 3 processes all vote in favor of continuation. This
is the correct decision if we assume that nodes cannot detect whether their neighbors have crashed. If we
assume otherwise, then at least 2 of the participating processes in the join, will notice that their neighbors
have crashed and would vote against the protocol. The protocol would be stopped and again, this is the
correct decision since the 3 nodes (which are alive) are totally disconnected from the main ring. Thus we
have managed to make the our join protocol 2-crash tolerant in this case.

Theorem 2.3.1.Our algorithm guarantees a limited progress property. A non-crashing process, desirous
to complete either the join or leave protocol (depending on the case), will eventually be able to do so.
For a set of N processes, the progress property holds as long as there are no more than t< ⌈N

2 ⌉ failures.

Proof. We assume that the process is denoted asu, and without any loss of generality we further assume
that the protocol in question is theleaveprotocol. The initial situation would be similar to the case
depicted in figure 1.5(a). The left and right neighbors ofu are denoted byv andw. Assume thatw
crashes in-midst of the leave protocol, and the protocol consequently is voted as failed (processes not
casting their votes are denoted as crashed; alternatively we can use outof band data to corroborate this).
u will now re-initiate the protocol, but with a different set of processes,v and f (w). If again a failure
happens in the (new) right neighbor, the next iteration of the protocol willinvolve v, u and f (f (w)). If
both v andw crash in the first phase, then the next iteration usesf−1(v), u and f (w) and so on. We
can continue this process up tot iterations, after which it is impossible to get consensus in the given
asynchronous network [11].

2.4 P2P Networks

In many ways, P2P networks provide the best platform to test for robust,scalable, fault-tolerant algo-
rithms. The wide popularity of such networks translates to a highly dynamic environment with many
concurrent processes leaving and joining at any given time. Moreover, crashes do happen all too fre-
quently. We seek to extend our scheme of using successor and predecessor functions to a P2P network,
like thewrap-aroundring basedChord.

Directly applying our scheme to P2P networks won’t work for reasons given below.

1. Usage of simple functionsThis problem is illustrated in figure 2.5(a). If we use a simple function
for f (), like f (x) = x+1 or say,f (x) = ax (wherea is some large number), then we are bound to

15

2.4. P2P NETWORKS

(a) Simple pre-order of id’s (b) Unordered set of id’s (c) “Pseudo” Sparse P2P network

Figure 2.5: Problems withf ()/g() in P2P networks

face this problem. In P2P networks, all the keys and process id’s residein a large address space,
typically [0,2160−1]. The number of processes in the network at any given moment is a very tiny
fraction of this. If we assume even a few billion live processes in our network, then it translates
approximately to 230. In P2P networks, likeChord, a node is responsible for storing all the keys
falling in the range of its id and its predecessor’s id3. So if we use a regular function, and the
number of keys is far larger than the number of processes, the last nodein the network will in
effect storealmostall the keys. Our P2P network will now resemble a traditional client server
architecture, with the last node acting as server and all the other nodes asclients.

2. Ordering of processesLet us assume that we employ some symmetric encryption function as our
function f (). Encryption functions have some nice properties which were well utilized in ring
networks. Applying an encryption function would lead to the situation depictedin figure 2.5(b).
We have id’s randomly scattered across with no definite ordering, and implementing any kind
of routing for such a network is nearly impossible. The central feature ofmost traditional P2P
systems is the ordering of nodes around the identifier circle. But with an encryption function the
nodes become totally disordered, and no traditional P2P system can be implemented on top of the
given network.

3. “Pseudo Sparsity” in the ring4 P2P systems witness a lot of traffic with a high amount of churn
in the system. There have been attempts to measure and analyze this behavior,most importantly
in [9]. Over a period of four days, they were able to record 1.2 million active peers in total. This
study was done in 2001. It is not unreasonable to assume that currently one can record a few
million active peers using some popular P2P networks (like Bittorrent, Napster etc). Moreover, [9]
recorded that around 80% of the peers are active for a short time only before disconnecting. This is
a very important observation. As mentioned earlier, two nodes in our schemejust have to compute
f () a finite number of times, before they can contact each other. Going by the measurements of
traffic in P2P networks, it is extremely likely that the immediate neighbor for some node would lie
a million iterations away. If we assume a simple hash function like SHA-1 (160 bits)as our f (),
one iteration will take around 0.067 seconds5. So just to compute the node id for the immediate
neighbor, some half a million iterations away, will take close to an hour then. Notethat this is just

3meaning the key falls in the interval between its own id and its successor’s id.
4By “pseudo sparsity” we mean that while the network might be otherwise dense, the computational cost for calculating the

successor and predecessor functions is very high. This is differentfrom the normal definition of sparsity and hence the term
“pseudo sparsity”.

5http://www.hashemall.com

16

2.4. P2P NETWORKS

to compute the node id, the resolving cost is extra. An interesting observationis that this problem
is not endemic to P2P networks alone. If we apply our scheme to large rings with a high amount
of churn, then this problem will recur there also.

To apply our scheme of successor and predecessor functions, we have to surmount the above difficul-
ties. We propose two modifications of our scheme which will make our approach feasible for application
to P2P networks.

1. Using monotonic functionsFor f() we propose to use monotonic functions. We can use either
a monotonically increasing or decreasing function. A monotonically increasing function has the
following property. Ifxi andx j belong to the domain off andxi < x j , then f (xi) < f (x j). Similar
is the case for a monotonically decreasing function. Many simple functions likef (x) = x+ 1
will qualify as monotonic. As explained before, these cannot be used in our scheme. We do not
supply an analytic expression for a suitablef () in this work, but it should be possible to easily
design a monotonic, non-simple function to fit our needs. In this work, we take an alternative
approach and pre-compute the list of possible node id’s. For example, werun the MD5 hash
algorithm successively on some sample input key a few million times. This list is thensorted in
ascending order and the resulting list can be widely replicated in differentlocations. Alternatively
this “master” list can be broken down and stored at various locations (in case server space is at a
premium). Any process desiring to join our network can pick up the next available id from the list
and proceed to join the network. The id is then removed from the list of available id’s. A node can
also use acontact() function to get the process id of last joined process, and runf () on it to obtain
its own id. If we have such a precomputed, sorted list of id’s, then functionf () simply involves
moving one place down the list, and its inverse,g(), is moving one place up. The size of this
list will be quite small (in terms of the capacity of modern disks), and we can even expect nodes
to carry large chunks of it. We wish to emphasize once again that in practice,using a suitable
analytic expression forf() is more preferable compared to our method of pre-computation. But
theoretically it does not make much of a difference.

2. “Reincarnation” of process id’sWe apply a scheme of “reincarnating”, i.e. used process id’s are
again re-inserted into the system. Any process voluntarily leaving the network, will add its id to
some publicly available list. A node desiring to join, can obtain this “used” id and use that for
joining. There is no centralization here. Lists of “re-usable” id’s can be stored in different places
on the Net, corresponding to different regions of the network. Also an idcannot simultaneously
exist in both the “free” list and the “reusable” ones. Crashed nodes should not be able to store
their id on the “reusable” list immediately, and consequently their id will take some timeto appear.
If the number of crashed processes is small, this would not pose much of a problem. The whole
scheme of “reincarnating” process id’s, is to make the network denser. We want every node to
ideally computef () only a few times before it reaches the next (live) neighbor’s id.

Our approach for processes joining the P2P network is directlyoppositeto the normal convention.
For example, in a system likeChord a process computes the hash of its physical (IP) address, and that
becomes the id for that node in the network. We do not give this freedom to the processes in our network.
A node joining the network has the following two options (in decreasing orderof preference). It can
obtain at random an already used id from the list of “reusable id’s”, or itcan obtain the next available id
from the list of “free id’s” and proceed to join the ring.

Theorem 2.4.1.Assume N processes distributed over a circular ring. If N/2 processes crash or leave

voluntarily, and
2
3

-rd of the exited id’s are “recovered”, both at random, then on average, every process

can contact its nearest neighbor on the ring in a small number of finite steps.

17

2.4. P2P NETWORKS

Proof. If
2
3

-rd of all process id’s get reincarnated, then the ring is always
5
6

-th full. The distance between

two nodes is measured by the number of iterations off () required to reach the next live node. In case
of a fully populated ring, the separation would be 1, since we need only oneiteration of f () to get the id

of the next process in the ring. If the ring is
5
6

-th full, then the number of iterations is< 2, onaverage.

Assume that this is not the case. In case the average distance is≥ 2, then there can be a maximum of
only N/2 processes in the ring. This disproves our starting assumption, and hence the average number
of iterations to reach the neighbor is< 2. The maximum separation between two live nodes (worst case)
would beN/6. But in case, crashes and re-incarnation of process id’s happenstotally at random, it is

very unlikely that such a event would occur6 (probability is 1/

(

N
5
6N

)

).

By theorem 2.4.1 it is obvious that, even if the number of processes in the system is very large, a
node can still contact its nearest neighbor within a small number of finite steps. We can also minimize
the message transfer incurred in this operation by making the process generate the id’s of, say the next
ten processes down the line, and then looking them up in a single message by bundling them together.
The cost for such a combined look-up would be cheaper than looking themup one by one.

Corollary 2.4.2. With high probability a node can find its immediate successor in an N-node network
within a small number of finite steps O(k) where k< logN.

Proof. For N > 100, logN will exceed 2. But if the conditions of theorem 2.4.1 are satisfied, then the
average number of iterations to reach the next neighbor of the process (which will be the immediate
successor) on the ring will be< 2. This completes the proof.

Using the concept of successor and predecessor functions along withfinger tables7 normally used
in Chord, one can obtain a highly fault-tolerant and dynamic P2P system. Also since weuse a pre-
sorted hash list to generatef (), the P2P system will be well-balanced. Note that the id’s which are not
“reincarnated” (but instead are pulled from the list of “free id’s”) will only be a single hop away from
the next neighbor, since the next value off () is used for them. Moreover, our system provides limited
auditing functionality. By noting the number of used id’s, one can get a rough idea of the number of
nodes in the system. This can be fine tuned further if one takes into accountthe number of id’s waiting
to get reused.

2.4.1 Joins and Leaves in P2P Systems

For the P2P system to be highly efficient, it is important that the processes in the ring have an accurate
idea of the nodes comprising their predecessors and successors.Chord uses a stabilization protocol,
stab(), which runs periodically in the background. This will update the successor list of a given process
periodically [10, 4]. Before we furnish updated versions ofstabilize(), join() andnotify(), we need to
highlight the fault tolerant aspect of our network.

Fault Tolerance

The key to building thefinger table inChord rests on a function calledclosestprecedingnode. The
pseudo code for this is listed in [10], and we replicate the same below8.

6A more rigorous bound can be obtained for all the cases mentioned. But for the purposes of our design, these rough bounds
suffice at present.

7A finger table is used to increase speed of node lookups. If a finger tablehasmentries, then essentially the node will cache
the locations of all its successors in increasing powers of 2 till it reaches its2m-th successor in the ring. Rowi then corresponds
to the 2i-th successor in the ring.

8We abandon Gouda’s abstract protocol definition here and revert to asomewhat Pascal-like notation

18

2.4. P2P NETWORKS

% search the local table for the highest predecessor of id
n.closestpreceding node(id)

for i = m downto 1
if (finger(i)∈ (n,id))

return finger(i);
return n;

Let us for a moment assume that the nearest finger returned has crashed. There is no clear way to
handle this in normalChord. The query will be blocked, and we can hope to resume it once the network
is stabilized again. But in our updated system, we can “jump” over the crashed node. Assume that the
average separation between two live nodes isx (a small, finite number). Nowf () appliedx times over the
id of the crashed node will, with high probability, return the id of the next live node in the ring. Moreover,
we can vastly improve upon this if the network is suitably dense (if the conditionsof theorem 2.4.1 are
satisfied). To find a successor for a given process idn, we just runf () a finite number of times onn, and
then do a single look-up on the process id’s thus obtained to find the first available/live successor.

Lemma 2.4.3. In an N-node network, the number of nodes to be contacted to find the successor of a
process id is O(logN). But if the network is dense, it can be found in O(k).

Proof. The proof for the normal case ofO(logN) is listed in [10]. If the network is dense, finding the
successor is a simple matter of looking up the first live process from the setof process id’s obtained by
running f () on the id a finite number of times.

Lemma 2.4.4.Given a key k, finding the node responsible for it will involve O(logN) steps if the network
is sparse, and O(k) (where k< logN) if the network is dense.

Proof. For a sparse network the proof is listed in [10]. For a dense network, theclient can pre-compute
the approximate node responsible for the key (by referring to tables of pre-computed values off () for
example) and then usef () to start the search from this node. The number of steps thus taken will be less
than logN since we are already starting close to the responsible node, if not at the actual node itself.

Dynamic Operations

In our ideal system, the density in the network is high, i.e. a small number of finiteiterations off () will
lead us to the successor of any node9. This fact is important because based on this we can implement
a rich set of API’s for our system. A function likequerypredecessor(n, trail)will return the first live
node, which is not trailing the noden by more thantrail number of iterations. We use this to modify the
standardjoin() of Chord.

% ń uses an existing node n to join the system
n.join (ń)

predecessor= nil ;
s = ń.find successor(n);
build fingers(s);
successor = s;
m = querypredecessor(́n, trail);
if m != nil

predecessor = m;

9In case the network is static and with no churn, there is no problem to begin with. On the other hand, if the network is such
that nodes keep on leaving/crashing in high numbers, without a corresponding proportion of joins, then our model will fail. In
the latter case the system reverts to aChord-like behavior to stabilize the network.

19

2.5. CONCLUSION

We can also create a functionquery live nodes(a,b)which will return any live processes between
a andb, provided the two parameters are not too far apart. Such a function can be used fruitfully in
redesigning thestabilize()function ofChord.

% periodically verify n’s immediate successor,
% and tell the successor about n
n.stabilize()

x = query live nodes(successor,n);
if x != nil

successor = x;
successor.notify(n);

Note that the functions are to be used when the range between the two parameters is small. Else the
time taken to return will be enormous. We can alternatively returnnil in such cases. Also we donot do
away with thefinger tables used inChord. Our design simply enhances it and makes the system more
fault-tolerant and fast. This brings us to the following lemma.

Lemma 2.4.5. In a sparse network or a network where the rate of leaves and crashesfar outweighs that
of joins, our system reduces to that ofChord.

Proof. All our functions returnnil in case the ranges are large. Moreover, in a sparse network, a small
number of iterations off() will return no live processes. This forces the system to rely solely on the
traditionalfinger tables used inChord. This proves our lemma.

Lemma 2.4.6. If normal system operations are measured over a suitably large time interval, the rate of
leaves and crashes cannot exceed the rate of joins to the system.

Proof. Assume that the rate of leaves and crashes exceed that of joins. In that case, the membership of
the system is declining and soon it will reduce to nil. This is against our assumption of a system which
is constantly online.

We can know whether the rate of leaves outweighs that of joins, by just checking the activity in the
tables of “reusable” id’s. If the tables keep growing faster over time, thenit means a high rate of leaves.
This condition can arise in modern day systems due to major WAN disturbances like, for example, onset
of a worm such asSlammer. But generally these conditions are temporary and normal order soon gets
established.

2.5 Conclusion

Using successor and predecessor functions, we have demonstrated how to create highly responsive and
fault tolerant, rings and P2P networks. A good feature of this method is thatwe can always fall back on
the more traditional means of routing and communication, should conditions not be ideal for applying
these functions. Our worst-case performance is the same as that ofChord, while in normal situations it
would far exceedChord. In the coming chapter we seek to improve upon this method and come up with
even more robust and faster networks. While the basic principles remain thesame, we utilize some more
assumptions.

20

3
A Special Case

There have been many studies conducted on P2P systems which mainly test thehomogeneity (or lack
thereof) of the various peers and measure the connectivity, latency andsharing ratios between them. We
combine the ideas listed in the earlier chapter along with the results published in [9]. One of the important
findings of [9] has been that the “best”1 20% of peers in two popular P2P networks had the best up-times
also. This very clearly proves thatnotall the peers participating in the P2P system are homogeneous. We
seek to leverage this vital information and come up with a new P2P system, which takes into account this
issue. We assume the very basic of information to start with. The P2P system designer need to have only
a rough idea of the size of the user pool and the percentage of the “best”peers in the system.Our goal
is to come up with a system which takes into account this inherent non-homogeneity and yet is stable,
fault-tolerant and very fast.

3.1 Related Work

Our design can be classified as a OneHop peer-to-peer system. OneHoppeer-to-peer systems have been
the subject of intense research in recent times. There have been studieswhich explore its scalability and
robustness especially under heavy churn [2, 5]. The current notionis that OneHop is preferable toChord
in cases of up to 3000 nodes under heavy churn. OneHop or O(1) networks are more suitable compared
to Chord when the network is relatively stable. In cases of networks with many ephemeral nodes2,
Chord and other similarO(logN) networks are the preferred choice [7]. Our approach resembles the one
adopted in [5]. Conceptually our design has been realized by exploiting theideas listed in the previous
chapter and we give proof sketches, which show our network providing constant lookup time, close to
O(1) even under heavy churn. We hope that our design can ultimately help to bridge the performance
gap between currentO(1) andO(logN) systems.

3.2 Basic System Design

Our system consists of two types of nodes, as shown in figure 3.1.Primary nodesrepresent peers which
have high speed connectivity and are up most of the time. They are also the ones that contribute most of
the shared data. In [9] the percentages of these peers is shown to be around 20%, which means for every
primary node, there are five other nodes which are poorly equipped. Membership of the primary nodes
is not fixed of course. Rather, at any time we can only expect a certain percentage of peers to fit in the
profile of primary nodes.

Secondary nodesshown in the figure comprise those processes which join the P2P system from time
to time. They have little uptime and comparatively poor connectivity. These represent the bulk of the
activity. Normally they do not contribute much of the data and are mostly interested in downloading

1Those stable with high speed connectivity. Normally they have more data to share also.
2nodes which have a short lifespan in the system

21

3.2. BASIC SYSTEM DESIGN

Figure 3.1: Proposed P2P system

only. We assume that nodes which join the system are aware of the identity theywill assume and the
distinction of roles.

Here we come to the first major question. How do weapriori determine which processes qualify as
“primary” and which as “secondary”? There is no satisfactory way of doing so. One way is to measure
the upstream and downstream bandwidths of the participating processes (expecting the participating
process to reliably provide this information won’t work, as [9] has shownthat most peers falsely report
this information). Nodes with hi-speed connectivity qualify for being a primary node, else they are
relegated to secondary role. This is obviously not a fool-proof method, but it will suffice most of the
time. The authors in [9] list methods to develop tools which can accomplish the bandwidth measurement
economically.

3.2.1 Structure of the System

We assume that a suitable symmetric encryption algorithm,Kp(), has been used to generate the process
id’s in the core ring. Starting from a random value (start id), a set of id’sis generated by repeatedly
applying Kp to it. We are assuming a wrap-around ring here, so after a finite number of iterations
it returns back to the start id. Primary nodes are given any of the id’s from this set, depending on
availability. Primary nodes leaving the system will make available their id for reuse. This scheme is a bit
flexible. If we desire to increase the number of primary nodes, we make available a larger number of id’s
in the system, and we can also cut down id’s from the list of reusable id’s to limitthe number of primary
nodes. A node which joins the core ring is made aware of its role as a primary node. Generally we view
primary nodes as more dependable than secondary ones.

To generate the secondary nodes we use another symmetric encryption algorithm denoted byKs().
By using a totally random election procedure, weattachthe secondary node to any of the primary nodes.
Since allocation is done totally at random, we can expect every primary nodeto have an almost equal
number of secondary nodes attached to it. Going by the results in [9], for every primary node there will
be upto five secondary nodes. This would seem small and a drastic simplification. In our design though,
we assume that the number of secondary nodes assigned to a primary nodeis quite large and with no
significant limitations.

22

3.2. BASIC SYSTEM DESIGN

Let us assume that the keys and process id’s reside in a 160-bit address space, i.e.[0,2160− 1].
Initially this space is divided equally among all primary nodes. So if there areN primary nodes, each
node is responsible for 2160/N keys. Primary nodes which are voluntarily leaving the network relinquish
their share of keys to their successor in the ring. The new node replacingthe vacancy will take its share
of keys from its immediate successor. From figure 3.1 it is clear that a primarynode “manages” the
secondary nodes attached to it. This entails a simple set of operations. A secondary node gets allotted
to some primary node by a random process. It collects its id from the primary node (either a used one
or the primary can generate a new one, depending on the case). Also a certain share of keys is assigned
to the new secondary node. Each time a secondary node joins, the primary will assignx% of the keys it
has to the new node. The value ofx can be arbitrary (a good choice would require some more data about
the traffic, etc), but the important thing here is that the value ofx is known to all nodes in the network.
A secondary node will transfer its keys to the primary when it is voluntarily leaving the network. Thus
at any point, a primary node has a good idea of the number of secondary nodes it is responsible for. It
can also advertise this figure openly to the other primary nodes too. Since theallocation of secondary
nodes is done totally at random, with a high probability all nodes have about the same number of active
secondary nodes. This has important consequences, which will be detailed in later sections.

3.2.2 Dynamic Operations

We have covered the question of joins and leaves of the various componentsof the system in the earlier
section. We now turn our attention to crashes. A primary node, by assumption, is not prone to frequent
crashes. Unfortunately it is impossible to provide a 100% guarantee. The moment a crash is detected
(presumably its neighbors on the ring or its secondary nodes find the crashed node unresponsive over a
long period), other primary nodes are informed (for instance by gossiping), and the vacancy in the core
ring is advertised. The successor of the crashed node assumes responsibility for the keys covered earlier
by the crashed node. A leave by a primary node is more graceful. It just transfers its share of keys and
information about the number of secondary nodes to its successor. All messages from the secondary
nodes to the departing primary node are now diverted to this successor. We always strive to aggressively
fill in any vacancies caused by crashes or departures in the core ring.Crashes of secondary nodes are less
of a concern. The primary node responsible for that section comes to know sooner or later, and it will
take care over the keys residing in the earlier crashed node, and also add the id of the secondary node in
its list of reusable id’s. Leaves among secondary nodes proceed in a similar manner, except that keys are
handed over to the concerned primary node and the primary node again adds the id of the departing node
to its list of re-usable id’s. Note that there is no re-assignment of keys in theevent of a crash/leave of a
secondary node. The concerned primary node will simply take over the management of the keys which
used to reside in the departed node. Our logic behind this is that in a highly dynamic system, vacancies
are filled as fast as they are generated.

The information available to each type of node is very limited. Both types of nodes know to which
class they belong, whether primary or secondary, the values of keys used (Kp/Ks), and system related
information likex and the size of the primary ring. Secondary nodes know their id, the rangeof the
id’s responsible by its primary node, and possibly the number of iterations ofK() they are from the
primary node. Primary nodes know a bit more. They know their own id, the number of secondary nodes
they possess, and the full range of id’s they are responsible for.We do not propose to use finger tables,
routing maps, neighbor tables and such in our construction. There is no elaborate background protocol
for stabilization of the network. The only information a node can possess has been listed above.

23

3.3. ANALYSIS

3.3 Analysis

We now proceed to demonstrate how we can achieve fast routing using oursystem. The following
theorems are applicable only to a fault-free environment. The situation with faulty environments will be
dealt with later.

Theorem 3.3.1. Given a key k, any node can always determine the identity of the primary process
responsible for the key.

Proof. By our construction, any node knows the identity of its primary node and the range of keys
that fall under the responsibility of its primary node. Furthermore, the number of primary nodes in the
system is a design parameter and known to all participating processes. Given this information, it is easy
to compute the number of hops away from the current primary process, thenew key would be residing3.
The id of the primary node can then be computed by applyingKp() or K−1

p () on the id of the node’s
primary process, the desired number of times.

Theorem 3.3.2.Assume that a secondary process is i hops or i-iterations away from its primary node in
a chain of j nodes. It can resolve all keys belonging to other primary nodes, in O(1) and keys residing
in other secondary nodes in O(1), but with a probability of i/ j.

Proof. The allocation of secondary nodes is done totally at random. So every primary process has almost
the same number of secondary nodes at any given time. Thus a given secondary node can assume that
with high probability other primary nodes have approximately the same number ofsecondary nodes,
namelyi. By theorem 3.3.2, a secondary node can point out the primary processresponsible for that
particular key. This will be done inO(1). Furthermore with high probability we can assume thati ×x%
of the id’s residing in the given primary have been shifted to its secondary nodes4. Now with a probability
of i/ j the given id resides in the firsti nodes, and our secondary node will be able to resolve it (by
applyingKs() that many number of times on the id of the primary node). If the given key doesnot reside
in the first i nodes, then the secondary node will assume that the primary is still in controlof that key,
which is erroneous.

Corollary 3.3.3. If a secondary node knows the total number of secondary nodes in its own chain, then
it can resolve most queries in O(1).

Proof. The crucial fact here is that almost all primary processes in the ring haveapproximately the same
number of secondary processes at any given time. By theorem 3.3.2 we can calculate the id of the primary
process responsible for that key, and then work out if the key residesin the any of the secondary nodes
(note that secondary nodes keep takingx% of the keys from the primary always), or if the primary is still
holding the desired key. This completes the proof.

Corollary 3.3.4. A primary process can resolve most queries in O(1) with high probability.

Proof. A primary process will always know the number of secondary nodes it has and by our assumption
the number of secondary nodes every other (primary) process has. By theorem 3.3.2 it can now resolve
most queries inO(1).

Corollary 3.3.5. A random secondary process can successfully resolve any given query in O(1) with a
probability just over0.5.

3We can do a simple computation for this. If the number of primary processes is a power of 2, say 2k and the total address
space is again 2j , then every primary node is responsible for 2j−k entries. Right shifting the given key(j −k) times till we get
0 will reveal the number of the primary node responsible for the key

4Without loss of generality assume that the id’s are leeched from the startingrange of id’s the primary is responsible for.

24

3.4. CONCLUSION

Proof. By theorem 3.3.2, in a chain ofj-secondary nodes, thei-th secondary node will resolve all queries
successfully with a probability ofi/ j. Thus on an average, a secondary node can successfully resolve a

given query with probability
∑ j

i=1
i
j

j
=

1
2 j(j+1)

j2 = 1
2·

j+1
j .

Now we turn our attention to faulty environments. A primary node can crash witha low probability,
but no such assumption can be made about the secondary nodes. The mainpoint of interest is that the
keys residing in crashed or departed secondary nodes get transferred to the primary in finite time. Also
the successor of a crashed or departed primary node will take over the responsibility of its neighbor as
long as the vacancy remains unfilled. Finally since the secondary node prior to joining has to pick up an
id from the concerned primary node, we can safely assume that the primarynode has a good idea about
the number of active secondary nodes that it is responsible for.

Theorem 3.3.6. In our given P2P system, most queries are resolved in O(k) where k is a small, finite
number.

Proof. A secondary node can find the query to the concerned primary node inO(1). The primary node
knows the number of secondary nodes it is responsible for, and basedon this can decide whether the
given id resides in one of its secondary nodes or with itself. Finally, it routes the query again to the
concerned secondary node or to itself in the next step. This completes the proof.

The bulk of the theorems from the earlier chapter will also apply here, especially relating to joins
and leaves. A process is guaranteed a successful join as long as the primary node it is attached to does
not crash during the join process. In case a crash in the primary occurs, a node can always apply to join
another primary (usingKp() over the initial primary node id will give the address of the next id on the
chain), or it can wait a finite time for the primary node to return. We are guaranteeing aprogressproperty
here. The same is the case with leaves. The fault tolerant nature of the system is very important. Since
we directly home in to the concerned nodes, even if the bulk of the nodes on the way have crashed or are
crashing, it will not affect our progress. This is a trait missing in other comparable systems. The more
the number of steps in routing, the less fault-tolerant the system becomes.

3.4 Conclusion

Using the concepts from the earlier chapter and some more assumptions, we have shown a special case of
P2P networks which guarantees fast routing. The remarkable fact of our design is the complete absence
of neighbor maps, finger tables and such. There is very little backgroundstabilization of the network. In
fact, we have exploited the inherent non-homogeneity of modern day P2P systems to our advantage. We
can speed up our network if extra functionality like routing tables or neighbor maps and such is added.
But the base design is sufficient and robust enough. So adding more complexity to the network should
not be required. To lessen the computational load on the nodes, we can distribute pre-computed tables of
Kp() andKs(). This should help in reducing the computational workload in all the nodes.

We hope to conduct future experiments to test the performance of the networks listed in this and
the previous chapter. There are numerous parameters of this system which need to be empirically de-
termined, prominent among these is the average distance between two nodes when the system is under
heavy churn. Also it is very important to fix the limits for the percentages of crashed nodes (as opposed
to those leaving gracefully). Crashed nodes would take some time to get reincarnated. Nodes departing
voluntarily get their id added to the “available” list more or less instantaneouslybut it would take some
time for nodes to realize that one of its neighbors has crashed. If we imaginea network under heavy
churn and crashes far outweighing voluntary leaves, then there is a possibility of the system performance
degrading. Thus it is important to determine the extent of crashes a system can gracefully handle. We

25

3.4. CONCLUSION

need to experimentally determine the limits that the network can scale up to, and the speed ups realized,
and compare it to the existing simulations done onChord andO(1) networks. We plan to mainly use
the popular network simulatorns-2 for this work. We hope to simulate both kinds of networks,O(1)
andO(logN), but built using our ideas. Currently there are simulators existing forChord. But right
now, we are unable to say definitely, whether any of the existing simulators can be modified to suit our
design. Furthermore, we hope to construct a rich set of API’s on the system. We expect that interest-
ing functionalities like caching and replication can be built in a robust and scalable manner with our
construction.

26

4
A Partial Geometric Solution

In this chapter we seek to provide apartial geometric solution to the problem of designing fault tolerant
rings and networks. The solution is not complete as there are many open questions, but the approach
looks promising and has therefore been added to this work. Hopefully, future research would answer
some of these questions. The whole idea in this chapter and the previous two chapters have been to come
up with designs of networks with very fast routing. This automatically leads to more fault tolerance, since
with fewer nodes hindering it, two active processes will always be able to communicate. We continue in
much the same vein here. We begin by constructing a network in which two nodes have a multitude of
paths to communicate with each other. Just by knowing their id and the destinationid, we can guarantee
communication.

4.1 Overview

Assume ahyper-ringsystem as shown in figure 4.1. Basically by anhyper-ringwe mean a system of
concentric rings which are interconnected with each other. A single ring can hold a maximum ofrs

nodes, and there can be a total ofR rings in the system. Both these parameters are system dependent and
should be defined appropriately by the system designer.

Figure 4.1: A hyper-ring system

A node in the interior ring can have a maximum of four neighbors. Nodes which reside on the ring(s)
on the extremes of the network can only have three immediate neighbors. We use aN size namespace
(= R× rs), with id’s represented in baseb. The most significant bit of the process id would represent the

27

4.2. ANALYSIS

ring it belongs to. Let us assume a single ring with slots forN nodes. So we can distribute nodes with
id’s a, ar, ar2, ar3 and so on tillarN−1. Basically the node id’s will form a geometric progression. Any id
≤ a will be mapped to the first node, those greater thana and≤ ar to the second node and so on. This is
only one possible arrangement, but we can always try others too1. Disused id’s are recycled back into the
system to make it denser. In case there are no id’s left to be reused, thennodes prior to joining run a local
algorithm at their end which will throw back any (free and unused) id at random. Using this they proceed
to join the network. In case the id has already been taken, we revert to running the algorithm again.
Leaves are also handled in a similar fashion. It hands over the keys it is responsible for to its successor,
and puts up its id for re-use. Neighbors of the departed node will then break the existing link and instead
connect to its successor to keep the network topology intact. In this networkwe assume that all peers are
reasonably homogeneous to each other and are liable to crash or departwith equal probability2.

4.2 Analysis

How fast can such a network route? In case the network is dense and more or less adheres to the topology
in figure 4.1, it is trivial to show that all routing will happen inO(1). But the performance deteriorates as
soon as sparsity sets in. This forces us to use neighbor maps in much the samemanner as inTapestry.
Each node in the network can have a maximum of four neighbors. Assume that it keeps a neighbor map
which shows the node responsible for particular positions in its own ring, and the rings above and below
it. Thus the size of the map would be 3× rs.

Theorem 4.2.1. If the given network is sparse, then normal time for routing to a given key is around
O(R/2), where R is the number of rings in the hyper-ring.

Proof. We use the neighbor map each node has and navigate ring by ring. Assume that the nodes in a
single ring can be numbered from 0, 1, 2,. . ., R− 1. From the given key we can determine the node
which is responsible for it (since the ideal distribution pattern is known beforehand) and the ring on
which the node belongs (this is from the most significant bit of the key). Assume that the key resides
in node i in ring number j. We first navigate to ringj, and then proceed to find the nodei (or the
corresponding responsible node in casei does not exist) in that particular ring, using the neighbor maps
already constructed. The average number of hops would then be

1
R

R

∑
i=1

[

1
2

R

∑
j=1

[Rj −Ri +1]

]

This is equal toR/2 and completes our proof.

The routing performance of our network does not compare favorably with the other networks dis-
cussed in earlier chapters. But if the size of neighbor maps is increased toencompass more rings, then
the routing performance will increase correspondingly. This comes at a cost though. The bigger the
size of the map, the larger the cost for background maintenance (in terms ofmessages, complexity of
joins/leaves and computational overhead).

4.3 Problems

The network analyzed has a number of significant problems, which we detail below.

1This is in fact one of the open questions.
2This need not always be true, as detailed in the earlier chapter.

28

4.4. CONCLUSION

• Apriori information To get this idea working properly, we need to know beforehand an accurate
figure for the membership expected. This is needed most importantly to determinethe size of the
rings. It is also important that the rate of joins and leaves closely match each other. If membership
figures are over-reported, then we will end up with more rings than required, and a lesser figure
would be equally disastrous for performance. The same is the case if the rate of joins and leaves
are mis-matched. Note that none of the earlier networks discussed had this kind of limitations.

• SparsityThis could lead to serious performance problems. It is evident from theorem 4.2.1 how
the performance suffers on account of sparsity setting into the network.This leads to the question
on how best to fill up the network. Expecting the full strength of members to bepresent initially
would be fallacious. There could be different schemes for filling the ring as shown in figure 4.3.
These are just a small sample of possibilities, and do not represent the onlypossible way of filling
the ring

(a) Radially filling (b) Filling it ring by ring (c) Alternate filling on rings

Figure 4.2: Sparsity issues in a hyper-ring

There are problems in each of the schemes. In case of radial filling, one or two crashes on the spoke
will disrupt the whole operation. It is not clear how we can cope with that. Onthe other hand,
filling it ring by ring will make the initial rings responsible for keys to be mapped for the other
nodes. This might lead to performance loss, and if by some chance the outerring gets disrupted
then performance would degrade rapidly.

• P2P networksHow to map P2P networks to this ring is an interesting question. There has been
some prior work done on mapping P2P systems to constructs likecube connected cyclicnetworks
(by Pandurangan et al. [6]). Possibly the same could be applied here. The main problem with the
ring is that performance degrades rapidly in case of sparsity. How to bootstrap such a network is
again an open question.

4.4 Conclusion

We have demonstrated how to construct networks based on concentric rings. The problems in such an
architecture have also been discussed. But we still maintain that it is a promising line of research. In
case node id’s are “recycled”, the network would become dense and routing could happen inO(k) (k is
some small number). Also it is trivial to prove that a dense ring would provideexcellent fault tolerance
and connectivity options. If satisfactory solutions are provided to some ofthe questions raised earlier,
then the ring could emerge as a viable architecture for many different typesof networks.

29

Bibliography

[1] M.G. Gouda.Elements of Network Protocol Design. Wiley, New York, 1998.

[2] A. Gupta, B. Liskov, and R. Rodrigues. Efficient Routing for Peer-to-Peer Overlays. InFirst
Symposium on Networked Systems Design and Implementation NSDI, 2004.

[3] Xiaozhou Li, Jayadev Misra, and C. Greg Plaxton. Concurrent Maintenance of Rings.Distributed
Computing, 19(2):126–148, 2006.

[4] D. Liben-Nowell, H. Balakrishnan, and D. Karger. Analysis of the Evolution of Peer-to-Peer Sys-
tems. InProceedings of the 21st ACM Symposium on principles of Distributed Computing, pages
233–242, 2002.

[5] A. Mizrak, Y. Cheng, V. Kumar, and S. Savage. Structured Superpeers: leveraging heterogeneity
to provide constant time lookup. InIEEE Workshop on Internet Applications, 2003.

[6] G. Pandurangan and S. Jagannathan. A Simple Churn Tolerant Structured Peer-to-Peer Scheme.
submitted, 2008.

[7] John Risson and Tim Moors. Survey of research towards robustpeer-to-peer networks: Search
methods.Computer Networks, 50:3845–3521, 2006.

[8] John Risson, Ken Robinson, and Tim Moors. Fault Tolerant ActiveRings for Structured Peer-to-
Peer Overlays. InProceedings of the 30th Annual IEEE Conference on Local Computer Networks,
pages 18–25, 2005.

[9] S. Saroiu, P.K. Gummadi, and S.D. Gribble. A Measurement Study of Peer-to-Peer File Sharing
Systems. InProceedings of Multimedia Computing and Networking (MMCN), 2002.

[10] I. Stoica, R. Morris, D.-Nowell Liben, D. Karger, F. Kaashoek,F. Dabek, and H. Balakrishnan.
Chord: A Scalable Peer-to-Peer Lookup Service for Internet Applications.IEEE/ACM Transactions
on Networking, 11(1):17–32, 2003.

[11] Gerard Tel.Introduction to Distributed Algorithms. Cambridge University Press, 1994.

30

	Problem Statement
	Current Approaches to Topology Maintenance
	Basic Definitions
	The Unidirectional Ring
	The Bidirectional Ring
	Join Protocol
	Leave Protocol

	The Combined Protocol
	Conclusion

	A General Solution
	Suitable Functions
	Methodology
	Joins/Leaves in Rings
	P2P Networks
	Joins and Leaves in P2P Systems

	Conclusion

	A Special Case
	Related Work
	Basic System Design
	Structure of the System
	Dynamic Operations

	Analysis
	Conclusion

	A Partial Geometric Solution
	Overview
	Analysis
	Problems
	Conclusion

