

Temporal Semantics of Compositional Task

Models and Problem Solving Methods

Frances Brazier, Jan Treur, Niek Wijngaards and Mark Willems

Vrije Universiteit Amsterdam, Department of Artificial Intelligence

De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

Email: {frances, treur, niek}@cs.vu.nl

URL: http://www.cs.vu.nl/~wai

Keywords: compositional, task model, problem solving method, dynamics, temporal semantics,

knowledge-based systems.

Abstract Task models and problem solving methods can be specified informally or formally. In

recent years various approaches have formalized their notion of task model or problem solving

method. Most modelling approaches concentrate on the form of a task model or problem solving

method rather than on their precise semantics; a formalisation is often only a syntactical

formalisation. A more precise definition of the semantics requires explication of the control of a

system’s behaviour. In this paper temporal semantics is defined for a compositional modelling

approach to task models and problem solving methods. The semantics is a description of a

compositional system’s behaviour; a temporal approach provides a means to describe the

dynamics involved. The formalisation of the semantics is based on compositional three-valued

temporal models. The compositional structure of information states, transitions and reasoning

traces provides a transparant model of the system’s behaviour, both conceptually and formally.

1 INTRODUCTION

Complex tasks in which reasoning plays an important role, such as design or diagnostic tasks,

are most often extremely dynamic. The aim in knowledge engineering is to model such

complex behaviour. The common approach is to model complex functionality by means of

task composition; a complex task is composed of a number of smaller, less complex tasks.

Most knowledge engineering approaches take such a task oriented approach; e.g.,

MIKE/KARL [3], [4], 16], CommonKADS [33], VITAL [34], PROTÉGÉ-II [30], TASK [28] and

MILORD [1]. Within knowledge engineering the ability to formally describe the behaviour of

models (of complex tasks) contributes to modelling, design, evaluation, maintenance,

validation and verification, and reuse of models [17], [37]. As such, formal methods provide

a means to formally describe a complex task thereby providing a common ground for

informal models of the same complex task.

A framework that allows conceptual and formal specification of such models should be

powerful enough to capture such behaviour in an explicit and transparent manner. Early work

on formalisation of task models and problem solving methods can be found in [5], [24], [38].

These formalisations only address the syntax of the models. A number of the current

approaches to modelling complex reasoning tasks, in which formal specification plays an

important role, are MIKE/KARL [3], [16], CommonKADS/(ML)2 [2], [19], VITAL [34], TASK

[28] and MILORD [1]. Also these approaches include a formal syntax for the specification

language, but the formal semantics of such systems from a dynamic perspective are often not

defined in detail; for a description that is detailed, see [16].

Both a conceptual and formal definition of the temporal semantics of behaviour is especially

of importance for dynamic tasks. Formal semantics not only provides a basis for validation

and verification of system behaviour, but specifications of components at different levels of

abstraction with well-defined semantics also provide a means to enable automated support for

re-design of task models and components. Automated support for re-design, for example,

often requires explicit formulation of requirements on system behaviour, based on well-

defined semantics. The temporal approach to semantics described in this paper assumes

sequential processing, as do all other approaches to modelling of tasks and problem solving

methods mentioned above (in contrast to multi-agent systems, where parallel processing is

assumed; e.g., [7]).

Temporal modelling and temporal reasoning is often applied in the context of reasoning

about a dynamic world (e.g. patient data) cf. [35]. Another application of temporal modelling

is reasoning about the order in which certain operators need to be applied, cf. [13], [14]. In

contrast this paper addresses temporal semantics of reasoning tasks themselves.

Section 2 provides an overview of the knowledge modelled and specified in task models. In

Section 3 the perspective on temporal semantics is introduced and the basic concepts are

defined. In Section 4 definitions of the concepts required to formalise compositional

information states are introduced, followed by definitions of concepts directly related to

transitions between (hierarchical) component information states in Section 5. The

formalisation of the resulting compositional behaviour is defined in terms of the temporal

approach in Section 5 and discussed in Section 6. Further discussion of applications for

which this approach has been successfully applied extends beyond the scope of this paper:

see, for example [21].

2 COMPOSITIONAL MODELLING OF TASKS AND PROBLEM SOLVING

METHODS

Using the development method DESIRE problem solving behaviour in complex tasks in

knowledge-intensive domains is modelled explicitly in a compositional manner. The

resulting products are specifications of reflective (knowledge based) compositional

architectures (including task and domain knowledge) and specifications of problem

description and design rationale. To this end a problem description, a design rationale, and

three levels of design are distinguished: conceptual design, detailed design, operational

design, as shown in Figure 1.

Conceptual
Design

Detailed
Design

Operational
Design

P
ro

bl
em

 D
es

cr
ip

tio
n

D
es

ig
n

R
at

io
na

le

Fig 1. Problem description, levels of design and design rationale

The relations between these levels of design are well defined. The detailed specification, for

example, always preserves the structures defined at the conceptual level of specification.

However, at the detailed level of design, additional structures (and details) are added. At the

level of operational design the formal semantics of the level of detailed design are

‘operationalised’. It is not necessary for an operational design to have a structure preserving

relationship with the detailed level of design; although structure preservation enhances

transparancy, prototyping and tracing. Current prototyping tools preserve structure between

detailed design and operational design. The design rationale contains all decisions,

underlying assumptions, reasons, etc., upon which the conceptual, detailed and operational

design are based.

To acquire specifications of complex (reasoning) systems extensive interaction between

knowledge engineers and experts is required. The purpose of such interaction, within DESIRE,

is to acquire a shared (agreed) task model: a model on which both the knowledge engineers

and the experts agree [9]. Existing compositional task models, usually generic task models,

are most often used to initially structure knowledge acquisition. Which models are used,

depends on the initial description of a task or task components: in interaction with one or

more experts existing models are examined, discussed, rejected, modified, refined and/or

instantiated. Compositional generic task models provide a means to specify problem solving

methods (independent of domain onotologies and domain knowledge). Such compositional

task models are generic in two senses: they are a description of the problem solving method

used in the task both at an abstract level and application domain independent. Initial abstract

descriptions of tasks can be used to generate a variety of more specific task descriptions

through refinement and composition (existing descriptions can be employed) in interaction

with experts.

During knowledge acquisition, knowledge of the application domain itself is also acquired:

such application specific knowledge is modelled independently in knowledge structures, and

is included in task models by reference to such structures. Knowledge structures are also

shared models: models of the domain. Which techniques are used for knowledge elicitation is

not predefined. Techniques vary in their applicability, depending on the situation, the

resources, the task, the type of knowledge on which the knowledge engineer wishes to focus,

etc.

A shared task model is, in fact, a mediating model [18]. It mediates between a knowledge

engineer and an expert, but also between a knowledge engineer and system design. Within

DESIRE task models provide the basis for system architecture. Tasks are mapped onto

components, interactions between tasks are mapped onto information links between

components. Domain knowledge is mapped onto structures which are included and

referenced in specifications of components. The goals pursued and the roles of the parties

involved in relation to the goals are defined. A description of the situation in which such

goals can be pursued, and of the assumptions with respect to task performance are made

explicit.

The result of analysis is a conceptual specification of knowledge of:

1. process composition

• identification of tasks at different abstraction levels

• task delegation

• information exchange between tasks

• task sequencing

2. knowledge composition

• information types

• knowledge bases

3. relation between process composition and knowledge composition

One of the tasks distinguished in a task model for elevator configuration [8] is used to

illustrate the conceptual representation of these types of knowledge.

2.1 Identification of tasks at different levels of abstraction

Identification of tasks and their abstraction levels includes knowledge of a task hierarchy,

knowledge of the types of information required as input and resulting as output, and

knowledge of the reflective nature of tasks with respect to other tasks.

A task hierarchy defines the tasks of which a task is composed and the relations between

tasks. A one-to-many relation between tasks can, for example, be specified by means of a

table (not shown) and depicted as a tree structure or a box-in-box structure (see Figures 2 and

3).

requirement
extension

determination

extension
suitabili ty

determination

extension
method

determination

user
requirement
acquisition

default
requirement

determination

make assumptions
on candidate
parameters

determine
non candidate

parameters

determine
parameter suitable

for extension

Fig 2. Pictorial specifications of a task composition.

The task ‘requirement extension determination’ depicted in Figure 2, one of the tasks in the

elevator configuration task [8] is the task responsible for proposing extensions to a given set

of requirement parameters. To this purpose ‘extension suitability determination’ determines

which requirement parameters are best suited to be given a value, ‘extension method

determination’ decides which method to use to determine a value for the chosen requirement

parameter (by, for example, default reasoning or user consultation), ‘default requirement

determination’ assigns a value to the chosen requirement parameter, and ‘user requirement

acquisition’ obtains a value by interacting with the user, and assigns the value to the chosen

parameter.

The task of ‘extension suitability determination’ is composed of three tasks, of which the task

‘determine non-candidate parameters’ derives which parameters are not suitable candidate

parameters, the task ‘make assumptions on candidate parameters’ employs a closed-world-

assumption to determine which candidate parameters are still eligible for extension, and the

task ‘determine parameter suitable for extension’ selects one of these eligible parameters as

the suitable parameter. The task ‘extension suitability determination’ as a whole is non-

monotonic: it does not conserve its output when more input is available (not retracting

already known input). Each of the tasks of which the task ‘extension suitability

determination’ is composed, however, is monotonic.

Conceptually, for each task, the types of information required as input or generated as output

of a task, are specified. Names are defined for information types (names chosen by the

knowledge engineer and the expert(s)) and relations expressing how such information is

related to a tasks’ output and/or input. In a pictorial representation, each task can be

annotated with information regarding the types of information of its input and output, for

example, with input to the left and output to the right as shown in Figure 3.

extension suitability determination

determine
non candidate
parameters

make assumptions
on candidate
parameters

determine parameter
suitable for extensionParameters of

Configuration
Non Candidates

for Extension

Epistemic Info on
Non Candidates for

Extension

Assumptions on
Candidates for

Extension

Candidates for
Extension

Suitable for
Extension

Fig 3. Input and output information types of task ‘extension suitability determination’.

The reflective nature of tasks is another important element of a task composition emphasised

in DESIRE. A clear distinction between object-level reasoning about a domain and meta-level

reasoning about the state and goals of a system is essential for a transparent specification of a

system. This object-meta distinction between tasks can be specified explicitly as an object-

meta relation, an example is shown in Table 1.

object with respect to meta

determine non

candidate parameters

 make assumptions on

candidate parameters

determine parameters

suitable for extension

 make assumptions on

candidate parameters

Table 1. Object-meta distinction between tasks.

2.2 Information exchange between tasks

Knowledge of information exchange between (sub-)tasks defines the types of information

transferred between tasks. More specifically, the relations expressing information exchange

between tasks are explicitly specified and named, in particular to control the information flow

(see Section 2.3).

extension suitability determination

determine
non candidate

parameters

make assumptions
on candidate
parameters

Parameters of
Configuration

determine parameter
suitable for extension

Non Candidates
for Extension

Epistemic Info on
Non Candidates

for Extension

Assumptions on
Candidates for

Extension

Candidates for
Extension

Suitable for
Extension

Fig 4. Information exchange among sub-tasks and between sub-tasks and the task of ‘extension suitability determination’.

In Figure 4 examples of two kinds of relations are shown in a pictorial representation: private

information exchange between the output information type of one sub-task and the input

information type of another sub-task, and mediating information exchange between the

output information type of a sub-task and the output information type of its task (and vice

versa).

Not only are the types of information to be transferred from one task to the next defined, but

also the grounds upon which the ‘decision’ to forward this information are based. Explicit

evaluation criteria, specified for this purpose are discussed in the next section.

2.3 Task sequencing

Knowledge of sequencing of task and information exchange defines temporal relations

between tasks (and information transfer): which tasks must (directly) precede other tasks and

which information exchange is required. Task sequencing knowledge specifies under which

conditions which tasks and information links are activated. These conditions, preconditions

for task activation, may, for example, include evaluation criteria expressed in terms of the

evaluation of the results (success or failure) of one or more of the preceding tasks. The

evaluation criteria, the result and the name of the next task(s) to be activated can be specified

in an (incomplete) pictorial representation where ‘control’ arrows are labelled with the

evaluation criteria (– for failure and + for success), as shown in figure 5, for example.

Non Candidates
for Extension

Epistemic Info on
Non Candidates

for Extension

Assumptions on
Candidates for

Extension

Candidates for
Extension

Suitable for
Extension

extension suitability determination

determine
non candidate

parameters

make assumptions
on candidate
parameters

determine
parameter suitable

for extension
Parameters of
Configuration

start stop

+
–

–

+

–
+

Fig 5. Pictorial representation of task sequencing in ‘extension suitability determination’.

In a detailed specification, task control knowledge is expressed in temporal rules. Current

research focuses on suitable alternative representations.

2.4 Task delegation

In complex situations often a number of autonomous systems and/or users are involved.

Knowledge of task delegation refers to the division of tasks amongst participants: minimally

which tasks are to be performed by the system and which by one or more users. In more

complex situations often more participants are involved. Task delegation is defined by a set

of participants (i.e. agents) and a relation between tasks and sub-sets of the set of agents. See

Table 2 for an example in which two agents, the user and the system, are responsible for task

performance.

task agent(s)

RQS Extension Determination System, User

Extension Suitability Determination System

Extension Method Determination System

Default Requirement Determination System

User Requirement Acquisition User

Determine Non-Candidate Parameters System

Make Assumptions on Candidate Parameters System

Determine Parameters Suitable for Extension System

Table 2. Task delegation of tasks of ‘RQS Extension Determination’.

A pictorial representation can be obtained by placing the (sets of) agents in the tree

representing the task hierarchy.

2.5 Knowledge structures and relation to tasks

Knowledge of knowledge structures entails specification of additional knowledge needed for

task performance: for input and output information structures but also internal knowledge

bases used for reasoning. For each task the names of the associated internal information types

are shown in an example below.

task internal information type

Determine Non-Candidate Parameters Det-Non-Cand-Param Info Type

Make Assumptions on Candidate Parameters Make-Ass-on-Cand-Param Info Type

Determine Parameters Suitable for Extension Det-Param-Suit-for-Exten Info Type

Table 3. Internal information types for tasks within ‘Extension Suitability Determination’.

Information types can be composed of sub-information types as shown in Table 4.

information type sub-information type

Det-Non-Cand-Param Info Type Parameter Dependencies Info Type

 Parameters in Current RQS Info Type

Table 4. Hierarchy of information types.

The knowledge bases associated with each task are depicted below in Table 5.

task knowledge base

Determine Non-Candidate Parameters Determine Non-Candidate Parameters Knowledge

Make Assumptions on Candidate Parameters Make Assumptions on Candidate Parameters Knowledge

Determine Parameters Suitable for Extension Determine Parameters Suitable for Extension Knowledge

Table 5. Relation between knowledge bases and tasks within ‘Extension Suitability Determination’.

Knowledge bases can be composed of sub-knowledge bases as shown in Table 6 for the

knowledge base ‘Determine Non-Candidate Parameters Knowledge’.

knowledge base sub-knowledge base

Determine Non-Candidate Parameters Knowledge Parameters in Current RQS Knowledge

 Parameter Dependency Knowledge

Table 6. Kknowledge bases at different levels of abstraction.

The relations between information types and knowledge bases for tasks within “Extension

Suitability Determination” are shown in Table 7.

knowledge base information types

Determine Non-Candidate Parameters Knowledge Parameters of Configuration

Det-Non-Cand-Param Info Type

Non-Candidates for Extension

Make Assumptions on Candidate Parameters Epistemic info on non-candidate for extension

Make-Ass-on-Cand-Param Info Type

Assumptions for Candidates for Extension

Determine Parameters Suitable for Extension Candidates for Extension

Det-Param-Suit-for-Exten Info Type

Suitable for Extension

Table 7. Relation between knowledge bases and information types.

2.6 Detailed specification

Specification of a system is most often an iterative process: during knowledge acquisition

more detailed knowledge is acquired and modelled. The types of knowledge described during

conceptual analysis have a (unique) counterpart in the specification. The types of knowledge

become more explicit, and are defined more precisely. Often a conceptual design is adapted

during the process of system design, as the result of more detailed analysis of a task.

Each task is mapped onto a component. Each component has a uniform structure (see Figure

6), that distinguishes task control information and kernel information. The kernel information

of a primitive component is, in fact, a knowledge base. The kernel of a composed component

contains components and information links. Another distinction in the uniform structure of a

component is the distinction between public and private information, a distinction which is

essential to information hiding.

task contro l
input

kernel
input

kernel
ou tput

task
control

kernel

task control information

kernel information

public
input

interface

private
contents

public
output

interface

task control
ou tput

�

Fig 6. Uniform structure of a component.

During detailed specification, (primitive) processes or tasks are mapped onto (primitive)

components, information exchange onto information links, and task sequencing knowledge

onto task control knowledge. Moreover, the input, output, and internal information types are

detailed. This entails:

• extending the process composition to include references to the information types

required for input and output, and to include specifications of the meta/object

distinctions.

• defining the information links between and within components at the level of the

ground atoms within the interfaces of the components.

• specifying the sequencing of component and information link activation and the

conditions under which components and links are to be activated.

• defining the information structures and knowledge to which the conceptual

description referred: (object and/or meta-level) information types for input and output,

and knowledge bases for primitive components.

The detailed specification is reflected in the syntax of DESIRE. Closely related to syntax is the

formal semantics that gives it formal meaning. This will be addressed in Sections 3, 4 and 5.

2.7 Comparison to other approaches

The formal specification language of DESIRE has been shown in a comparison of

specification languages to be more flexible in modelling reasoning patterns [17]. In terms of

expressive power, declarativeness, adequacy to specify dynamic aspects of reasoning

patterns, possibility to specify multi-level architectures, adequacy to specify non-classical

reasoning, executability and availability of formal semantics, the formal specification

framework DESIRE is to some extent comparable [10] to other formal specification

frameworks such as CommonKADS/(ML)2 [2] VITAL [34], TASK [28], and MIKE/KARL [3],

[4]. DESIRE differs from these other approaches in that specifications are executable and

agents and integrated systems can be specified. The formal specification languages differ in

expressiveness of control knowledge [37], 17], [31].

Task control knowledge within DESIRE is located within each composed task (or

component); i.e. distributed control. In (ML)2 and KARL task control knowledge is expressed

in a separate layer [31]. Also the ability to perform reflective reasoning (both upward and

downward reflection) is a major difference, enhancing DESIRE’s flexibility in modelling

reasoning patterns.

2.8 Example task model

In Section 2.1 part of the task model for elevator configuration [8] that is the task

‘requirement extension determination’ is described. This task proposes extensions to the

current set of requirements (on parameters). In Figure 7 the task model is shown; components

and information links are depicted in addition to part of the task control knowledge.

This specific task model is used throughout the remainder of this paper for illustrative

purposes.

requirement extension determination

…
if previous_component_state(extension_suitability_determination, active)
 and component_state(extension_suitability_determination, idle)
 and evaluation(extension_suitability_determination, all_output, any, succeeded)
then next_component_state(extension_method_determination, active)
 and next_link_state(epistemic_info_on_suitable_for_extension, uptodate);
…

extension
method

determination

extension
suitability

determination

default
requirement

determination

user
requirement
acquisition

T
A
S
K

K
E
R
N
E
L

C
O
N
T
R
O
L

parameters of
configuration

epistemic info on suitable for extension

suitable for
extension

epistemic info on suitable for
extension

user
extended
parameter

default
extended
parameter

Fig. 7. Example task model of ‘requirement extension determination’.

3 TEMPORAL SEMANTICS OF REASONING BEHAVIOUR

This section elaborates on the temporal semantics of tasks and problem solving methods. In

this paper a state-based semantics is chosen where each component has a three-valued

information state. Partial models [6], [27] are used to formalise three-valued information

states, representing (incomplete) world descriptions (e.g., [26]). To define formal semantics

of reasoning behaviour in (hierarchical) compositional architectures, a recently developed

approach based on (partial) temporal models is adopted [12], [20], [36]. Within this approach

the semantics of a complex reasoning process is formalised by a set of (alternative) reasoning

traces. A reasoning trace is formalised by a partial temporal model, i.e., a sequence of partial

models. Behaviour is formalised as sequences of information states in which truth-values are

assigned to elements that together describe the domain in which a component reasons. The

current state of a component is reflected by the current assignment of truth-values. The

behaviour of a compositional architecture is mirrored in its successive (overall) information

states, each defined by the composition of the information states of its components.

The elements used to describe the states (the ground atoms) are expressed in a language

defined by an information type. Each component within a compositional architecture has an

information state describing the truth values (false (0), true (1) and undefined (u)) of atoms of

the component.

Definition 3.1 (information type, information state) An information type Σ is a

structure of symbols defining a set of ground atoms At(Σ). An information state for an

information type Σ is a mapping from the set of ground atoms At(Σ) to the set of

truth values {0, 1, u}; i.e., a (partial) model M : At(Σ) → {0, 1, u}. The set of all

information states of information type Σ is denoted by IS(Σ).

An example of a structure that defines an information type is a tuple of (sub-)sorts, constants,

functions, and predicates of a order-sorted predicate logic, used in the DESIRE specification

below, as is the use of referenced information types for importing known information types.

information type RequirementParameter

sorts

RequirementParameter

objects

car_cab_height, … : RequirementParameter;

end information type

information type NonCandidateReqParm

information type RequirementParameter;

relations

non_candidate: RequirementParameter;

end information type

The set of ground atoms defined for NonCandidateReqParm is defined as follows:

< non_candidate(car_cab_height), …, non_candidate(car_phone), …, non_candidate(platform_width) >

Formalising information states as partial models makes it possible to model the reasoning

behaviour of common inference mechanisms, such as chaining or unit-resolution, in terms of

all ground literal conclusions that have been derived up to a certain moment in time.

Information states can be given a structure similar to the structure of the task model. This

composed information state facilitates the compositional definition of behaviour.

Behaviour is the result of transitions from one information state to another. Transitions are

defined within the compositional structure of the information states they manipulate: a

transition only changes the information state in one of its components.

Definition 3.2 (transition) A transition between information states is a pair of partial

models; i.e., an element < S, S’ > (also denoted by S → S’) of IS(�� x IS(�). A

transition relation is a set of these transitions, i.e. a relation on IS(Σ) x IS(Σ).

If a transition relation is functional then it specifies deterministic behaviour. By applying

transitions in succession, sequences of states are constructed. These sequences, also called

traces (and interpreted as temporal models), formally describe behaviour. They adhere to the

compositional structure: a trace describes a composed information state that changes in time

(see Figure 8).

Definition 3.3 (trace and temporal model) A trace or partial temporal model of

information type Σ is a sequence of information states (Mt)t ∈ N in IS(Σ). The set of all

partial temporal models is denoted by IS(Σ)N, or Traces(Σ).

A set of partial temporal models is a declarative description of the semantics of the behaviour

of the system; each temporal model can be seen as one of the alternatives for the intended

behaviour.

Time

IS
(C

)tc
IS

(C
)k

er

…
IS

(D
)tc

IS
(D

)k
er

…

In
fo

rm
at

io
n

S
ta

te

Fig. 8 Compositional information states in time.

4 COMPOSITIONAL INFORMATION STATES

The compositional structure of composed tasks is reflected in composed information states,

as shown in Figure 8. The information state of a component changes as a result of (1) input

received from other component, or (2) the execution of the corresponding task.

The execution of the corresponding task changes both the internal information state of the

component (private information) and the output information made available to other

components (public information). The private information is based on internal information

types and information types in the public input and output interface; during execution inputs

are taken from the input interface and outputs are transferred to the output interface. The

distinction between public and private information within a component is shown in Figure 6.

Also the distinction between task (control) related information and kernel related information

is shown in Figure 6.

In this section, components may be either composed or primitive, unless explicitly specified.

Definition 4.1 (public kernel information) Each component C is assigned an information

type, called the public kernel information type of C, denoted by ΣC,pubker. The input and

output parts are sub-information types, denoted by ΣC,inker and ΣC,outker. The public kernel

information state for C is the information state for information type ΣC,pubker and the fixed

set of public kernel information states for C is denoted by ISpubker(C).

Kernel information states can be either primitive or composed. The atoms that define the

basis of a primitive kernel information state are those specified within the kernel of a

primitive component (e.g., the information type of a knowledge base). The kernel

information state of a composed component is a combination of the kernel information states

of the components within the composed component.

Definition 4.2 (kernel information state) Let D be a component.

a) If D is primitive, then its set of private kernel information states is defined by:

 ISprivker(D) = IS(ΣD,privker)

In this definition ΣD,privker is the overall private information type assigned to D: it combines

both internal elements and copies of information types of public (input and output) interface.

b) If D is composed and its set of children components is denoted by Ch(D), the set of

private kernel information states for D is recursively defined by:

 ISprivker(D) = ∏C ∈ Ch(D) ISker(C)

c) For any component D the set of kernel information states is the combination of public

and private information states

 ISker(D) = ISprivker(D) x ISpubker(D)

In this combination there is still a distinction between public information states (see

definition 4.1) and private information states.

An example of a composed information state is shown in Figure 12, where each of the

columns depicts a composed information state.

The private part of the information state of the task control of a component can be

constructed in a similar manner. Task control knowledge is used to supervise the activation

of the kernel (both sub-components and information links). Task control information includes

specification of sets of goals and requests, exhaustiveness of search, etc: the additional

information required to execute a task.

Definition 4.3 (task control information state) The task control of a component D is

modelled as a primitive component. Similar to definitions 4.1 and 4.2 an information state is

defined.

a) For any component D the set of public task control information states is defined by:

 ISpubtc(D) = IS(ΣD,pubtc)

that, in turn, is split into input and output information state.

b) For any component D the set of private task control information states is defined by:

 ISprivtc(D) = IS(ΣD,privtc)

c) For any information link I the set of (public) task control information states is denoted

by: IStc(I)

d) The task control information state of a primitive component C is defined as

 IStc(C) = ISpubtc(C) x ISprivtc(C)

e) If a component D is composed, the set of composed task control information states of the

component D is defined as the composition of all task control information of children

components C and kernel links I of D (formally defined in Section 5.1):

 IScom,tc(D) = ∏C ∈ C(D) IStc(C) x ∏I ∈ KL(D) IStc(I)

f) The task control information state of a composed component D is defined as

 IStc(D) = ISpubtc(D) x ISprivtc(D) x IScom,tc(D)

Definitions d) and f) combine all parts of a component that contain control information and at

the same time distinguish the interface (public) control information from private control and

possibly the control of each subcomponent.

Knowledge about the private task control is specified explicitly in DESIRE; the information

types used are generic (including relations such as previous_component_state,

previous_link_state, next_component_state, next_link_state, ...), see Section 5.2.

The kernel and the task control together define the information state of components.

Definition 4.4 (component information states) Let D be any component.

The set of information states of D is defined as:

 IS(D) = ISker(D) x IStc(D)

This definition reflects the distinction between kernel and control information defined in

every component. Note that a component information state defines a rich information

structure: it includes information states for all of its sub-components. For a given component

information state, to focus on the state of a sub-component, a projection can be made on this

sub-component, which leaves out all information of other states. In contrast, to abstract from

the sub-components and their states, they simply can be left out, which leaves an information

state at the abstraction level of the component.

In Figure 9 a component is shown with a trivial composition. The information state of

component C is depicted in the component D where the possible sets of information states

are identified.

TASK

KERNEL

CONTROL

component D

component C

IS
tc

(D)

IS
tc

(D
)

pu
b,

in

IS
tc

(D
)

pu
b,

ou
t

IS
ke

r
(D

)
pu

b,
in

IS
ke

r
(D

)
pu

b,
ou

t

IS
ker

(D)
priv

IS
ker

(D)

priv
IS

tc
(D)

priv
IS

tc
(C)pub

IS
tc

(C)

pub
IS

ker
(C)

pub
IS

tc
(C)

pub
IS

ker
(C)

priv
IS

ker
(C)α1 α2

(α)1
IS

tc 2

IS
com,tc

(D)

IS
tc

(C)

IS
ker

(C)

IS
tc

(D)pub

IS(D)

(α)IS
tc

IS
ker

(D)pub IS(C)

Fig. 9. Pictorial representation of an information state in a component.

Another distinction in the structure of the information state can be made. The kernel input

and output interface are not merely a collection of information types, but are viewed as a

combination of information types, where information types are grouped in levels, and levels

are ordered in an object/meta/meta-meta/…-relation. In the context of compositional

structures and for the specification of detailed process information the notion of levelled

information types is important. The specification of more detailed dynamics is modelled

through (meta-level) reasoning of one level about the state of the process of the level below.

5 COMPOSITIONAL BEHAVIOUR DESCRIPTIONS

The notion of a transition relation can be generalised for the compositional case, defining a

compositional transition relation. A binary relation is defined between a tuple of information

states (left hand side, precondition of the transition) and another tuple of information states

(right hand side, result of the transition). This transition relation between one part of a

compositional state and another part of a compositional state induces a transition relation for

the compositional state as a whole.

Transition relations exist both within and between components. An information state of a

component can have changed either because a component has been active and generated new

information itself, or because information has been transferred/exchanged from one

component to another. Transitions between components are specified by information links as

defined below. Transitions within components are either transitions within the kernel,

transitions within the task control, or transitions between task control and the kernel. Traces

are generated as a result of such transitions. These traces can be interpreted as the behaviour

of the system.

5.1 Transitions between components

To enable information exchange between components, information links are specified:

between two components (private links) or between (the interfaces of) a component and one

of its sub-components (a mediating link), as shown in Figure 10. These mediating links

provide the means to connect two different levels of abstraction: the component and its

components.

parent component

…

… A

…

… B

…

…private linkmediating link mediating link

…

…

…

…

…

…

mediating link

(1) (2)

(3)

Fig. 10 Kernel information links.

Information links are the basis for information exchange between components. The interface

of every component consists of one or more (meta-)levels as explained above. Activation of a

link from component C1 to component C2 causes a change in the information state of C2

on the basis of information available in C1. This change is a refinement or (for updates) a

non-conservative modification of the information state of C2. In effect it implies an

extension, update, or revision of the information state. A (relative) principle of conservation

is assumed: all information that is not explicitly changed by an activation of a link will

remain available (a specific frame assumption). The task control component controls the

activation of the various links.

An information link is defined on the basis of semantic units: atoms and their truth values. It

relates a semantic unit of a component C1, defined by a pair < a, tv1 > of a ground atom a

of one information type and a truth value tv1 to a semantic unit of another component C2,

defined by a pair < b, tv2> with b of another information type. Atoms which refer to the

same entities in the world may be named differently within different components, in which

case an information link defines the “translation” of atom names.

Definition 5.1 (semantic unit, kernel information link)

Let D be a complex component and C, C1 and C2 its components. The set of public

semantic units of level x for the kernel of a component C is defined by

 SU(x)(C) = At(ΣC,pubker,(x)) x {0, 1, u}.

SU(x)in(C) resp. SU(x)out(C) denotes the restriction of this set to the input resp. output of

component C.

a) A private kernel link of D, I from level x of C1 to level y of C2 is a binary relation

 I : SU(x)out(C1) x SU(y)in(C2)

b) Likewise, the mediating kernel links are defined as

 I : SU(x)in(D) x SU(y)in(C)

 I : SU(x)out(C) x SU(y)out(D)

 I : SU(x)in(D) x SU(y)out(D)

An example of a mediating link of the first type listed in Definition 5.1.b) is link 1 in Figure

10, an example of the second type is link 2, and of the third type link 3. A trivial standard

example of an information link is when the sets of semantic units have a common subset U,

and for < a, tv1 > ∈ SU(x)out(C1), < b, tv2 > ∈ SU(y)in(C2) the identity relation I is defined by

I(< a, tv1 >, < b, tv2 >) if < a, tv1 > = < b, tv2 > ∈ U. The amount of information transferred is

regulated by the set U, this set can be defined to its maximum size (transferring all possible

semantic units), reduced to empty (transferring no semantic units at all), or defined as any

size in between these extremes (transferring a specific subset of semantic units).

In the example below, the name of the parameter to be deduced is passed to the component

that deduces an additional value. The transfer specified by a private link translates poss_ass(

likely_candidate(X: RequirementParameter)) to the meta-statement assumption(candidate(X:

RequirementParameter), pos) which translates within the input interface into the object level

statement candidate(X: RequirementParameter).

private link pass_to_deduce_reqparm: object-assumption

domain make_assumptions_on_candidate_parameter

output output_1

co-domain determine_parameter_suitable_for_extension

input input_2

sort links

(RequirementParameter, RequirementParameter)

(Value, Value)

object links identity

term links identity

atom links

(poss_ass(likely_candidate(P: RequirementParameter)),

assumption(candidate(P: RequirementParameter), positive)):

< <true, true>, <false, false>, <unknown, false> >;

end link

The dynamic semantics of such information links can be expressed by the notion of transition

introduced in Section 3. Note that a simple transition between one or more factors of a

cartesian product can be extended in a canonical manner to a relation on the whole cartesian

product. Thus any transition relation

 �: (A x B) x (B x C) �ZLWK��� (< a, b >, < b’, c’ >)

induces the relation * : (A x B x C) x (A x B x C)

that is
���D��E��F�!����D
��E
��F
�!�� with a’ = a

 whenever � ���D��E�!����E
��F
�!�

Factors that are not influenced by the transition can be added on the left hand side or left

unchanged in the transition (conservation).

Definition 5.2 (information link transition) Suppose E1 and E2 are components and I is

an information link from level x of E1 to level y of E2.

A transition relation for the information link I is a relation

 ����,6x(E1) x ISy(E2) x IStc(I)) x (ISy(E2) x IStc(I))

such that for all M1, M2, N, M’2, N’ with ���01, M2 , N >, < M’2, N’ >)

 and for any atom b

 M’2(b) = M2(b) (conserved) or

 I(< a, M1(a) >, < b, M’2(b)>) for some atom a (changed by the link)

5.2. Transitions due to task control

Task control is specified explicitly in DESIRE; the information types used are generic. In the

example below the task control of the component requirement extension determination is

specified: this task can be activated to determine a parameter (indicated by the evaluation

criterion in the condition), terminating when a default value has been determined.

task control requirement_extension_determination

task control knowledge

.......

if previous_component_state(extension_suitability_determination, active)

and component_state(extension_suitability_determination, idle)

and evaluation(extension_suitability_determination, all_output, any, succeeded)

then next_component_state(extension_method_determination, active)

and next_link_state(epistemic_info_on_suitable_for_extension, uptodate);

.......

if previous_component_state(default_requirement_determination, active)

and component_state(default_requirement_determination, idle)

and evaluation(default_requirement_determination, assign_default, any, succeeded)

then stop

and next_link_state(default_extended_parameter, uptodate);

........

end task control

Definition 5.3 (task control transition) A task control transition relation for a component

C is a relation associating task control information states for C to task control information

states for C; i.e., a relation ���,6tc(C) x IStc(C) where each transition is induced by the task

control specification.

The task control information must, in some way, be transferred between the task control of

the parent component and the task control information of the sub-components. Three kinds of

task control links are discerned: upward task control links, and downward task control links

that connect the private task control to the sub-component and sub-link task control, and

thirdly the mediating task control links that communicate the private task control to the

public task control and vice versa (see Figure 11).

parent component

A B

DTCL

UTCL

…

… …

…

…

…

…

…

…

…

…

…

DTCL DTCL UTCLUTCL

private task control

Fig. 11 Task control links

Formally, task control links are defined as follows. For example, each component C has a

downward link defined by the pair < next-component-state(C, active), 1 >, < component-

state(active), 1 >.

Definition 5.4 (task control link) Let D be a composed component and let the set of

semantic units SUprivtc be defined by SUprivtc(D) = At(ΣD,privtc) x {0, 1, u}.

a) A (combined) downward task control link (denoted by DTCL) is a set consisting, for

each component C, of a relation on

 I : SUprivtc(D) x SUintc(C)

 where SUintc is defined by SUintc(C) = At(ΣC,pubtc) x {0, 1, u}

b) A (combined) upward task control link (denoted by UTCL) is a set consisting, for each

component C, of a relation on

 I : SUouttc(C) x SUprivtc(D)

 where SUouttc is defined by SUouttc(C) = At(ΣC,pubtc) x {0, 1, u}

c) A (combined) mediating task control link (denoted by MTCL)is a set of relations

 I : SUintc(D) x SUprivtc(D) or I : SUprivtc(D) x SUouttc(D)

Note that in the specification language within DESIRE these task control links are implicit. In

contrast to kernel links, it is not necessary to specify these control links.

Definition 5.5 (task control link transition) Let D be a composed component.

a) A transition relation for the upward task control link UTCL is defined as a relation

 UTCL : (IScom,tc(D) x IStc(D)) x IStc(D)

such that for all N1, N2, N’2 in� UTCL (<N1, N2>, N’2) it holds that for any atom b :

 N’2(b) = N2(b) (conserved) or

 I(< a, N1(a) >, < b, N’2(b)>) for some atom a (changed by a link).

b) A transition relation for the downward task control link DTCL is defined as a relation

 DTCL : (IStc(D) x IScom,tc(D)) x IScom,tc(D)

such that for all N1, N2, N’2 in� DTCL (<N1, N2>, N’2) it holds that for any atom b :

 N’2(b) = N2(b) (conserved) or

 I(< a, N1(a) >, < b, N’2(b)>) for some atom a (changed by a link).

5.3. Compositional Transitions and Traces

For primitive reasoning components, kernel transitions are induced by inferences on the basis

of knowledge in the knowledge base. Compositional transitions define the dynamic

semantics of hierarchical compositional systems.

Definition 5.6 (kernel transitions) Let C be a component. A kernel transition relation for a

component C (or private component transition relation) is a relation associating information

states for C to information states for C; i.e., a relation

 ���,6ker(C) x ISker(C)

where each transition is induced by either a kernel transition relation of a (child) component

or by a transition of an information link.

Definition 5.7 (compositional transitions) Let D be a composed component with sub-

component C. A compositional transition relation for the D is a transition relation

 ���,6priv(D) x ISpriv(D)

where each transition is induced by a transition of one of the following types:

(1) a kernel transition,

(2) a task control link transition,

(3) a task control transition.

In Figure 12 the three subtypes of compositional transitions are shown. The information

states change according to the specifications given of kernel contents (above), task control

contents (Section 5.2), and the implicit task control links.

All information states depicted in Figure 12 are information states of the component extension

suitability determination (see Figures 3, 4, and 5 for more details). In the original information

state IS0 the task control of the parent component has information that the parent is currently

‘starting’, and that inspection of the state of its components revealed that the component

extension suitability determination is currently idle. Note that in this trace of information states

per default conservatism holds: partial truth values are only changed by means of explicit

transitions.

In Figure 12 the sets of atoms depicted on the left have a structure that is identical to the task

composition. Note that several knowledge rules are specified: this is for the purpose of

explaining the trace. In the trace changes to an information state with respect to the previous

information state are emphasized by a bold typeface. The transitions to each information state

are described below.

• The transition to the next information state IS1 is induced by a (3) task control

transition. The task control of the parent component has inferred that in the next

information state the state of the component extension suitability determination should

become active.

• The transition to IS2 is induced by a (2) task control link transition (downward) in

which the start atom of the component extension suitability determination is made true.

At the same time, the state of this component is changed from idle to active.

• The transition to IS3 is induced by a (2) task control link transition (upward), in

which the current state of the component is transferred to the parent component

(which also then revises its previous conclusions, also taking into account the step in

time; e.g., what was current becomes previous). Note that when a component is

active, it automatically is no longer idle.

• The transition to IS4 is induced by a (1) kernel transition: by the knowledge base of

the component determine parameter suitable for extension it has been inferred that the

atom suitable_for_extension(car_phone) holds. This also causes the success of the

evaluation criterion all_output to hold (i.e. become true) under the extent of any.

• The transition to IS5 is induced by a (2) task control transition (upward), in which the

current state of the component is transferred to the parent component. In the task

control of the parent component it is now known that previously the component

extension suitability determination was active, currently it is idle, and a particular

evaluation criterion of that component has succeeded.

• The transition to IS6 is induced by a (3) task control transition. The task control of

the parent component has inferred that in the next information state the link pass

suitable for extension needs to become uptodate. This is then illustrated in the transition

to the next information state.

• The transition to IS7 is induced by two transitions. An information link has become

uptodate via a (2) task control transition (downard). (Partial) truth-values are

transferred from their source to their destination via a (1) kernel transition. This

implies that, in the output interface of the parent component, now also the atom

suitable_for_extension(car_phone) holds.

if previous_component_state(make_ass_on_cand_param, active)

and component_state(make_ass_on_cand_parm, idle)
and evaluation(make_ass_on_cand_parm, defaults, any, succeeded)

and component_state(extension_suitability_determination, idle)
then next_component_state(extension_suitability_determination, active)

…
if previous_component_state(extension_suitability_determination, active)

and component_state(extension_suitability_determination, idle)
and evaluation(extension_suitability_determination, all_output, any, succeeded)

then next_link_state(pass_suitable_for_extension, uptodate)
…

…
start

component_state(active)
evaluation(all_output, any, succeeded)

…

…
if candidate_for_extension(car_phone)

then suitable_for_extension(car_phone)
…

link_state(uptodate)

…
suitable_for_extension(car_intercom)

suitable_for_extension(car_phone)
…

extension_suitability_determination

determine_parameter_
suitable_for_extension

kernel

task control

ke
rn

el
ta

sk
 c

on
tr

ol

••
•

1
1
1
1
u

0
1
0
u

0
0
0
…

…
1
u
…

0

…
u
u
…

••
•

1
1
1
1
1

0
1
0
u

0
0
0
…

…
1
u
…

0

…
u
u
…

••
•

1
1
1
1
1

0
1
0
u

1
1
0
…

…
1
u
…

0

…
u
u
…

••
•

0
1
1
1
u

1
1
1
1

0
0
1
…

…
1
1
…

0

…
u
u
…

••
•

0
1
1
0
u

0
0
0
u

0
1
0
…

…
1
u
…

0

…
u
u
…

••
•

0
1
1
0
u

0
0
0
u

0
0
1
…

…
1
1
…

0

…
u
u
…

IS0 IS1 IS2 IS3 IS4 IS5

(3)

(2)

(2)

(3)

(1)
••

•

in
pu

t
ou

tp
ut

••
•

••
•

••
•

••
•

••
•

••
•

••
•

ou
tp

ut

in
te

rf
ac

e

••
•

0
1
1
1
u

1
1
1
1

0
0
1
…

…
1
1
…

1

…
u
1
…

IS6

••
•

(3)

(1)

••
•

••
•

••
•

••
•

••
•

••
•

••
•

••
•

pass_suitable_
for_extension

IS7

••
•

0
1
1
1
u

1
1
1
u

0
0
1
…

…
1
1
…

0

…
u
u
…

••
•

••
•

(2)

(2)

Fig. 12 A trace of information states.

The following definition shows how traces generated by iteratively applying a transition

function on the current information state can be interpreted as temporal models. These

temporal models provide a declarative description of the semantics of the behaviour of the

system; they can be viewed as the intended (behavioural) models of the system.

Definition 5.8 (compositional trace) Let D be a component.

a) A trace of a component D is a sequence of information states (Mt)t ∈ N in IScom(D). The

set of all traces is denoted by IS(D)N, or Traces(D).

b) An element (Mt)t ∈ N ∈ Traces(D) is called a temporal model of D if for all time points t

the step from Mt to Mt+1 is defined in accordance with a compositional transition of the

system. The set of temporal models of D forms a subset BehMod(D) of Traces(D).

A temporal model describes a trace representing possible (intended) behaviour of the

reasoning. One view is that the trace is generated by the (execution of) transition functions,

given initial input information. From every initial information setting a trace can be

generated by the transitions. Together the generated traces form the set BehMod(D). A

slightly different view is that the transition relations define a set of (temporal) axioms or

constraints BehTheory(D) on temporal models in Traces(D). The possible behavioural

alternatives are given by the set of the temporal models satisfying these temporal constraints:

 TempMod(D) = { M ∈ Traces(D) | M |= BehTheory(D) }

where M |= BehTheory(D) holds iff each formula from the set BehTheory(D) has truth value

true at every time point in the temporal model M. This second view provides a formalisation

of the intended behavioural patterns in the form of the (intended) models of a logical

(temporal) theory in a specific type of temporal logic, giving a declarative (Tarski) semantics.

The formal semantics of the behaviour is defined by the set of models TempMod(D). The first

view corresponds to the notion of an executable temporal logic. Both views co-exist:

executing a temporal theory is a useful technique to construct a model of this theory.

In a compositional trace, information states for components at all levels of abstraction of a

compositional system are included. To abstract from the lower levels of abstraction, all

information states of sub-components can be left out of the states of the trace. The remaining

trace shows the behaviour at the abstraction level of the system as a whole. For transitions

that are hidden from this high abstraction level, stuttering steps will be found in the abstract

trace.

5.4. Temporal semantics of task control

The temporal semantics of the task control can now easily be defined. The behaviour of a

system (i.e., the tasks in the kernel of a component) results in a trace of information states.

The predicates (defined in a generic manner) in the task control of the encompassing

component refer to two of such information states: the current information state and the

previous information state. All conclusions drawn by the task control refer to the next

information state, i.e. what is to happen.

Figure 13 depicts this for an example task control rule. As time passes, different information

states are produced. The current information state is always the latest information state that is

produced. This then automatically defines the previous information state.

if previous_component_state(extension_suitability_determination, active)

 and component_state(extension_suitability_determination, idle)

 and evaluation(extension_suitability_determination, all_output, any, succeeded)

 then next_component_state(extension_method_determination, active)

 and next_link_state(epistemic_info_on_suitable_for_extension, uptodate);

timecurrentprevious next

Fig. 13. Temporal semantics of an example task control rule.

The statements derived about the next information state restrict which component and

information link will become active with particular control settings. Of course no

“predictions” are made about the success or failure of a task in the next information state.

On the operational side, it is not too difficult to make sure that whatever is derived in the task

control about the next state, happens in the next information state. This facilitates the

operationalisation of an entire task model, and thus enables automatic generation of prototype

implementations.

6 DISCUSSION AND CONCLUSIONS

The compositional development method DESIRE is based on the assumption that dynamic

aspects are essential for modelling complex tasks and processes. The temporal semantics

approach to the description of a compositional system’s behaviour presented provides a

means to describe the dynamics of compositional task models and problem solving methods.

The state of a composed component, at any given point in time, is described as a combination

of the states of the composed component’s sub-components and the state of the task control.

The compositional structure of information states, transitions and reasoning traces provides a

transparant model of the system’s behaviour, both conceptually and formally. Such a model

of a system’s behaviour serves as the basis for temporal reasoning on the control of the

behaviour of the system.

Another knowledge engineering method that supports hierarchical task structures is

MIKE/KARL [3], [4] in which inference actions can be defined in terms of other (more

primitive) inference actions. This language is related to the KADS methodology [33] with its

three independent (hierarchically organised) layers. In KADS, hierarchical composition is

only available at the task layer. The introduction of hierarchical composition at the inference

layer in KARL is an extension of KADS. In KARL the composition of the inference layer is in

a one to one correspondence to the composition of the task layer. Similar to the approach

here the semantics attributed to a composed inference action takes into account the related

control structure at the task layer and the primitive inference actions included. A difference is

that in our specification this related control structure is included in the composed component

itself and not separated at a distinct (task) layer. This implies that in our case the specification

document mirrors the compositional structure more explicitly, in the sense of ‘hiding’ the

control inside the composed component.

Moreover, in KARL the temporal aspects are not explicitly covered by the formal semantics

that assigns a ‘static’ (input-output) semantics, based on dynamic logic [17]. In particular, for

applications in which the interaction between components that reason and act autonomously,

such as co-operative (human-computer) systems and multi-agent systems, the dynamics of

interactions is crucial. These interactions take place in a dynamically controlled manner and

can be modelled in our temporal framework by transitions between states. As KADS is based

on a different conceptual model, in which the notions of state and transition are left implicit,

KADS languages like KARL and (ML)2 have difficulty expressing dynamically controlled

interactions between autonomous components in an adequate manner. In this respect TASK

[28] allows for more dynamics and therefore is closer to DESIRE.

A formal basis to the conceptual phase of complex system design, supporting knowledge

acquisition and within which behaviour can be explicitly modelled, is presented in this

document. Reuse of formally specified components of a system is possible. The behaviour of

the components in interaction with other components can be well-defined. In current research

multi-agent situations, in which agents are modelled as interacting components, are being

explored; e.g., [7].

Given compositional descriptions of complex dynamic systems, together with well-defined

semantics, validation and verification of system behaviour should be possible. Initial research

in this area is promising [15], [23] .

ACKNOWLEDGEMENTS

This research was partly funded by the Netherlands Organization for Scientific Research

(NWO) within the REVISE project “Evolutionary design in knowledge-based systems”

(project number 612-322-316) and the ESPRIT III Basic Research project 6156 DRUMS II.

REFERENCES

1. Agusti, J., Esteva, F., Carcia, P., Godo, L., Lopez de Mantaras, R., Murgui, Ll.,

Puyol, J., and Sierra, C. (1992). Structured Local Fuzzy Logics in MILORD, In:

Zadeh, L., and Kacprzyk, J. (eds.) Fuzzy Logic for the Management of Uncertainty,

John Wiley & Sons, Inc.

2. Akkermans, J.M., Harmelen, F. van, Schreiber, A.Th., and Wielinga, B.J. (1992). A

formalisation of knowledge-level models for knowledge acquisition. Int. J. Of

Intelligent Systems.

3. Angele, J., Decker, S., Perkuhn, R. and Studer, R. (1996). Modelling Problem-

Solving Methods in New KARL. In: Gaines, B.R., and Musen, M.A. (eds.),

Proceedings of the 10th Banff Knowledge Acquisition for Knowledge-based

Systems workshop (KAW’96), Calgary: SRDG Publications, Department of

Computer Science, University of Calgary, pages 1/1-1/18.

4. Angele, J., Fensel, D., and Studer, D. (1996). Domain and Task Modelling in MIKE.

Proceedings of the IFIP WG 8.1/13.2 Joint Working Conference, Domain

Knowledge for Interactive System Design. Geneva, Switzerland, May 8-10th, 1996.

5. Balder, J., Akkermans, H. (1990). StrucTool: Supporting Formal Specifications of

Knowledge-level Models. In: [39], pp. 60-77

6. Blamey, S. (1986). Partial Logic. In: D. Gabbay and F. Günthner (Eds.), Handbook

of Philosophical Logic. Vol. III, pp. 1-70, Reidel, Dordrecht.

7. Brazier, F.M.T., Dunin-Keplicz, B., Jennings, N., and Treur, J. (1995). Formal

Specification of Multi-Agent Systems: a Real-World Case, Proceedings First

International Conference on Multi-Agent Systems, ICMAS’95, pp. 25-32. An

extended version appeared as: DESIRE: modelling multi-agent systems in a

compositional formal framework, in: International Journal of Cooperative

Information Systems, vol. 6 (no. 1), M. Huhns, M. Singh, (eds.), special issue on

Formal Methods in Cooperative Information Systems: Multi-Agent Systems, 1997,

pp. 67-94.

8. Brazier, F.M.T., Langen, P.H.G. van, Treur, J., Wijngaards, N.J.E. and Willems, M.

(1996). DESIRE: Designing an elevator configuration. In: Schreiber, A.Th., and

Birmingham, W.P. (eds.), Special Issue on Sisyphus-VT. International Journal of

Human-Computer Studies, 1996, Volume 44, pp. 469-520.

9. Brazier, F.M.T., Treur, J. and Wijngaards, N.J.E. (1996). The acquisition of a shared

task model. In: Shadbolt, N., O’Hara, K., and Schreiber, A.Th. (eds.). Advances in

Knowledge Acquisition; 9th European Knowledge Acquisition Workshop,

EKAW’96, Lecture Notes in Artificial Intelligence, Volume 1076, Springer Verlag,

pp. 278-289.

10. Brazier, F.M.T., and Wijngaards, N.J.E. (1997). A Purpose Driven Method for the

Comparison of Modelling Frameworks. In: [29], pp. 323-328.

11. Brazier, F.M.T., Treur, J., Wijngaards, N.J.E., and Willems, M. (1995). Formal

specification of hierarchically (de)composed tasks. In Gaines, B.R. and Musen,

M.A. (eds.), Proceedings of the 9th Banff Knowledge Acquisition for Knowledge-

Based Systems Workshop, KAW ’95, Volume 2, pp. 25/1-25/20. Calgary: SRDG

Publications, Department of Computer Science, University of Calgary.

12. Engelfriet, J. and Treur, J. (1994). Temporal theories of reasoning. In: MacNish, C.,

Pearce, D., and Pereira, L.M. (Eds.), Logics in Artificial Intelligence, Proceedings of

the 4th European Workshop on Logics in Artificial Inteligence, JELIA’94, Springer-

Verlag, volume 838 of Lecture Notes in Artificial Intelligence, pages 279-299.

13. Cesta, A. and Oddi, A. (1996). A Representation Language for Domain Knowledge

in Planning Architectures. In: Gaines, B.R. and Musen, M.A. (Eds.), Proceedings of

the 10th Banff Knowledge Acquisition for Knowledge-Based Systems Workshop,

KAW’96, Volume 1, pp. 16/1-16/15, Calgary. SRDG Publications, Department of

Computer Science, University of Calgary.

14. Chien, S.A. (1996). Knowledge Acquisition, Validation, and Maintenance in a

Planning System for Automated Image Processing. In: Gaines, B.R. and Musen,

M.A. (Eds.), Proceedings of the 10th Banff Knowledge Acquisition for Knowledge-

Based Systems Workshop, KAW’96, Volume 1, pp. 17/1-17/19, Calgary. SRDG

Publications, Department of Computer Science, University of Calgary.

15. Cornelissen, F., Jonker, C.M., and Treur, J. (1997). Compositional verification of

knowledge-based systems: a case study in diagnostic reasoning. In: [29], pp. 65-80.

16. Fensel, D. (1995) The knowledge acquisition and representation language KARL,

PhD. Thesis, Univ. of Karlsruhe. Kluwer Academic Publisher, Boston, 1995.

17. Fensel, D., Harmelen, F. van, (1994) A comparison of languages which

operationalize and formalize KADS models of expertise. Knowledge Engineering

Review, Volume 9, pp. 105-146.

18. Ford, K.M., Bradshaw, J.M., Adams-Webber, J.R., and Agnew, N.M. (1993).

Knowledge Acquisition as a Constructive Modeling Activity. In: K.M. Ford and

J.M. Bradshaw (Eds.), Knowledge Acquisition as Modeling, International Journal of

Intelligent Systems: Wiley and Sons, 1993, Vol. 8, Nr. 1, pp. 9-32.

19. Harmelen F. van, and Balder, J. R. (1992). (ML)2: a formal language for KADS-

models of expertise, Knowledge Acquisition Journal, vol. 4 (no. 1). Special issue:

The KADS approach to knowledge engineering.

20. Gavrila, I.S. and Treur, J. (1994). A formal model for the dynamics of compositional

reasoning systems, in Cohn, A.G. (Ed.), Proc. 11th European Conference on

Artificial Intelligence, ECAI’94 , John Wiley & Sons, Chichester, pp. 307-311.

21. Geelen, P.A., and Kowalczyk, W. (1992). A knowledge-based system for routing of

international blanc payment orders, In: Proc. of Int. Conf. on AI, Expert Systems and

Natural Language, Avignon-92, vol 2, pp. 669-677.

22. Harmelen, F. van, and Fensel, D. (1995). Formal methods in knowledge

engineering. The Knowledge Engineering Review, Volume 10(4), pp. 345-360.

23. Jonker, C.M., and Treur, J., Compositional Verification of Multi-Agent Systems: a

Formal Analysis of Pro-activeness and Reactiveness. In: [32], pp. 24.

24. Kowalczyk, W., Treur, J. (1990). On the use of a Formalized Generic Task Model in

Knowledge Acquisition, In: [39], pp. 198-221.

25. Langevelde, I.A. van, Philipsen, A.W. and Treur, J. (1992). Formal specification of

compositional architectures. In: Neumann, B. (Ed.), Proc. 10th European

Conference on Artificial Intelligence, ECAI’92, John Wiley & Sons, Chichester, pp.

272-276. Extended version: Report IR-282, Vrije Universiteit Amsterdam,

Department of Mathematics and Computer Science, 1991

26. Langen, P.H.G. van, and Treur, J. (1989). Representing World Situations and

Information States by Many-Sorted Partial Models. Technical Report PE8904,

University of Amsterdam, Department of Mathematics and Computer Science.

27. Langholm, T. (1988). Partiality, Truth and Persistence. CSLI Lecture Notes, No. 15.

Stanford University, Stanford.

28. Pierret-Golbreich, C., and Talon, X. (1997). Specification of Flexible Knowledge-

Based Systems. In: [29], pp. 190-204.

29. Plaza, E., Benjamins, R. (eds.) (1997). Knowledge Acquisition, Modelling and

Management, Proceedings of the 10th European Knowledge Acquisition Workshop,

EKAW’97, Lecture Notes in AI, vol. 1319, Springer Verlag, Berlin, 1997

30. Puerta, A.R., Egar, J.W., Tu, S.W., and Musen, M.A. (1992). A multiple-method

knowledge-acquisition shell for the automatic generation of knowledge-acquisition

tools. Knowledge Acquisition, 1992, vol. 4, pp. 171-196.

31. REVISE (project) (1996). A Purpose Driven Method for Language Comparison. In:

Shadbolt, N., O’Hara, K., and Schreiber, A.Th. (eds.) Advances in Knowledge

Acquisition. 9th European Knowledge Acquisition Workshop, EKAW’96. Lecture

Notes in Artificial Intelligence, Volume 1076, pages 66-81.

32. Roever, W.P. de, Langmaack, H., Pnueli, A. (eds.) (1998). Proceedings of the

International Workshop on Compositionality, COMPOS'97, Springer Verlag. In

press, 1998

33. Schreiber, A.Th., Wielinga, B.J. and Breuker, J.A. (eds.) (1993). KADS: A

Principled Approach to Knowledge-Based System Development. Academic Press,

London.

34. Shadbolt, N., Motta, E., and Rouge, A. (1993). Constructing Knowledge-Based

Systems. IEEE Software, November 1993, pp. 34-38.

35. Shahar, Y., Miksch, S., and Johnson, P. (1996). A Task-Specific Ontology for

Design and Execution of Time-Oriented Skeletal Plans. In: Gaines, B.R. and Musen,

M.A. (eds.), Proceedings of the 10th Banff Knowledge Acquisition for Knowledge-

Based Systems Workshop, KAW’96, Volume 1, pp. 17/1-17/19, Calgary. SRDG

Publications, Department of Computer Science, University of Calgary.

36. Treur, J. (1994), Temporal Semantics of Meta-level Architectures for the Control of

Reasoning, In: Turini, F. (ed.), Lecture Notes in Comp. Sc. 883, Springer-Verlag.

37. Treur, J. and Wetter, Th. (eds.) (1993). Formal Specification of Complex Reasoning

Systems, Ellis Horwood.

38. Wetter, Th. (1990). First Order Logic Foundation of the KADS Conceptual Model.

In: [39], pp. 356-375

39. Wielinga, B.J., Boose, J., Gaines, B.R., Schreiber, A.Th., and Someren, M.W. van

(eds.), Current Trends in Knowledge Acquisition (Proc. EKAW'90), IOS Press, 1990

