
Annals of Mathematics and Artificial Intelligence 24 (1998) 225–248 225

Nonmonotonic reasoning with multiple belief sets

Joeri Engelfriet a, Heinrich Herre b and Jan Treur a

a Faculty of Sciences, Department of Artificial Intelligence, Vrije Universiteit Amsterdam,
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

E-mail: {joeri,treur}@cs.vu.nl
b University of Leipzig, Department of Computer Science, Augustplatz 10-11, 04109 Leipzig, Germany

E-mail: herre@informatik.uni-leipzig.de

In complex reasoning tasks it is often the case that there is no single, correct set of
conclusions given some initial information. Instead, there may be several such conclusion
sets, which we will call belief sets. In the present paper we introduce nonmonotonic belief set
operators and selection operators to formalize and to analyze structural aspects of reasoning
with multiple belief sets. We define and investigate formal properties of belief set operators
as absorption, congruence, supradeductivity and weak belief monotony. Furthermore, it is
shown that for each belief set operator satisfying strong belief cumulativity there exists a
largest monotonic logic underlying it, thus generalizing a result for nonmonotonic inference
operations. Finally, we study abstract properties of selection operators connected to belief
set operators, which are used to choose some of the possible belief sets.

1. Introduction

In a broad sense, reasoning can be viewed as an activity where an agent, given
some initial information (or set of beliefs) X, performs some manipulation to this
information and arrives at a new state with different information. So a (partial) view
on a situation (in the domain the agent is reasoning about) is transformed to another
partial view. In general the mechanism may be non-deterministic in the sense that
multiple possible views on the world can result from the reasoning process. In the
current paper we present an approach to formalize and to analyze structural aspects of
reasoning of an agent with multiple belief sets.

If we want to formalize reasoning in this way, we must describe the input-output
behavior of the agent’s reasoning process. We propose to use belief set operators for
this purpose. A belief set operator is a function B which assigns to a set of beliefs
(information) X, given in some language L, a family of belief sets B(X), described
in the same language.

Different modes of reasoning give rise to different kinds of belief set operators.
If we consider exhaustive classical propositional reasoning, a set of propositional be-
liefs X is mapped to the set Cn(X) of propositional consequences of X, which is
unique; so in this case there is only one belief set: B(X) = {Cn(X)}. However,
if we look at nonmonotonic logics such as Autoepistemic Logic or Default Logic,
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an initial set of beliefs X may have none or more than one possible expansion (or
extension).

In these two cases, the reasoning is conservative: the resulting belief sets extend
the set of initial beliefs. But there are also modes of reasoning in which beliefs are
retracted. This is the case in, for instance, contraction in belief revision, in which the
contraction of a belief from a belief set is not uniquely determined. Also, when the
set of initial beliefs is contradictory, and we want to remove the contradiction, one can
select a consistent subset; this again can be done in more than one way.

Even though we have argued that in general a reasoning process may have mul-
tiple possible outcomes, an agent which has to act in a situation must commit itself
somehow to one set of conclusions by using the information in the possible belief sets.
In nonmonotonic logics, two different approaches to this problem are well-known: the
credulous approach, where the agent believes anything from any possible extension
(thus taking the union of the possible belief sets), and the sceptical approach, in which
it only believes those facts which appear in all of the possible belief sets (taking their
intersection).

A third approach is based on the situation where the agent has additional (control)
knowledge allowing it to choose one of the possible belief sets as the “preferred” one.
(Many nonmonotonic formalisms such as Autoepistemic Logic, Default Logic and
Logic Programming have a prioritized or stratified variant.) As the different belief sets
are usually based on different assumptions, and may even be mutually contradictory,
we feel the credulous approach is not very realistic. Looking at belief revision in the
AGM framework [1], when we retract a sentence ϕ from a belief set K, the maximally
consistent subsets of K which do not contain ϕ (denoted K ⊥ ϕ ), in a sense play the
role of the possible belief sets. Contraction with ϕ is always the result of intersecting
a number of these belief sets. Special cases of contraction are full meet contraction, in
which all elements of K ⊥ ϕ are intersected (analogously to sceptical inference), and
maxi-choice contraction, in which just one element of K ⊥ ϕ is selected (analogously
to prioritized nonmonotonic logics).

In earlier work [12] we described the following hierarchy of five levels of ab-
straction for the specification of nonmonotonic reasoning.

1. Specification of a set of intended models.
Specification of the global set of possible (intended) worlds and the beliefs that hold
in them, abstracting from the specific underlying (multiple) belief states, the specific
reasoning patterns that lead to them and the specific reasoning system generating
these reasoning patterns.

2. Specification of a set of intended multiple belief states.
Specification of the possible belief states for the agent abstracting from the specific
reasoning patterns that lead to them and the specific reasoning system generating
these reasoning patterns.
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3. Specification of a set of intended reasoning patterns.
Specification of the reasoning patterns that lead to the intended possible belief states,
abstracting from the specific reasoning system generating these reasoning patterns.

4. Specification of a reasoning system.
Specification of an architecture for a reasoning system that when executed (by use
of heuristic control knowledge) can generate the intended reasoning patterns.

5. Implementation.
At this level an implemented reasoning system is described in any implementation
environment (implementation code).

Of course, there exist connections between the levels in the sense that from a
specification of a lower level of abstraction in an unambiguous manner a specification
of each of the higher levels can be determined. One could say the specification at
a lower level gives in some sense a refinement or specialization of the specification
at the higher level (as in the case of conventional software specifications at different
levels of abstraction). Given specifications of two different levels, relative verification
is possible: to establish whether the lower level one indeed refines the higher level
one. At a lower level different specifications can refine the same higher level speci-
fication. As a parallel one may think of development of programs using the method
of (top down) stepwise refinement, e.g., according to Dijkstra’s approach. Note how-
ever that other methods (other than top down stepwise refinement) are possible as
well.

On the second level of abstraction, nonmonotonic reasoning is described by giv-
ing, for a set of initial facts, a set of belief states (the semantical counterpart of belief
sets). The current paper, which extends the work reported in [13], can be viewed as
an exploration of (the syntactical side of) the second level of this hierarchy.

In the current paper, in section 2 some basic background notions are introduced.
In section 3 the notion of belief set operator is introduced, some illustrative examples
are described (default logic, belief revision) and a number of properties of belief set
operators are discussed. Section 4 links belief set operators to underlying monotonic
logics and discusses semantical variants. In section 5 results are obtained on the se-
mantics of a belief set operator in terms of the semantical notion of belief state operator.
Moreover, results are obtained on the existence of a greatest underlying (monotonic)
deductive system. In section 6 the notion of selection operator is introduced, formal-
izing an agent’s commitment to some of its belief sets. Selection functions applied
to the results of a belief set operator provide a set of (selective) inference operations.
Such a set of inference operations can be viewed as an alternative formalization of
multiple belief sets. Some formal relationships between sets of inference operations
and belief set operators are established. Properties of selection operators are related
to properties of the belief set operator and the inference operations resulting after se-
lection. In section 7 conclusions are drawn and perspectives on further research are
sketched.
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2. Background and preliminaries

Let L be a nonempty language whose elements are denoted by φ,ψ,χ; P(X) de-
notes the power set of the set X. An operation C :P(L)→ P(L) is called an inference
operation, and the pair (L,C) is said to be an inference system. The operation C repre-
sents the notion of logical inference. An inference system (L,CL) is a closure system
and CL a closure operation if it satisfies the following conditions: X ⊆ CL(X) (inclu-
sion), CL(CL(X)) = CL(X) (idempotence), X ⊆ Y ⇒ CL(X) ⊆ CL(Y ) (monotony).
An inference operation CL satisfies compactness if φ ∈ CL(X) implies the existence of
a finite subset Y ⊆ X such that φ ∈ CL(Y ). A closure system (L,CL) is a deductive
system if CL satisfies compactness; then CL is said to be a deductive (inference) op-
eration. A set X ⊆ L is closed under CL if CL(X) = X. The investigation of logics
on the abstract level of inference operations was proposed and motivated by A. Tarski
in [37]. The classical example of a deductive system is the inference system denoted
by L0 = (L0, Cn) which is based on classical propositional logic. Here L0 is the set of
propositional formulas based on a set of propositional variables Var and Cn(X) can be
defined as the smallest subset of L0 containing the set X∪Ax, where Ax is a suitable set
of axioms, and which is closed with respect to the rule of modus ponens (see [3,23]).

A semantics for a closure system (L,CL) can be defined by a model-theoretic
system. A model-theoretic system (L,M , |=) is determined by a language L, a set
(or class) M whose elements are called worlds and a relation of satisfaction |= ⊆
M × L between worlds and formulas. Given a model-theoretic system (L,M , |=),
we introduce the following notions. Let X ⊆ L, Mod|=(X) = {m: m ∈ M and
m |= X}, where m |= X if for every φ ∈ X: m |= φ. Let K ⊆ M , then
Th|=(K) = {φ: φ ∈ L and K |= φ}, where K |= φ if for all m ∈ K: m |= φ.
C |=(X) = {φ: Mod|=(X) ⊆ Mod|=(φ)}, X |= φ if φ ∈ C |=(X). Obviously, (L,C |=) is
a closure system and if C |=(X) = X then Th|=(Mod|=(X)) = X. (L,M , |=) is said to
be compact if the closure operation C |= is compact. The inference system (L,CL) is
correct (complete) with respect to the model-theoretic system (L,M , |=) if CL(X) ⊆
C |=(X) (CL(X) = C |=(X)). In case of completeness we say also that (L,M , |=)
represents (or is adequate for) (L,CL). The model-theoretic system (L0,M , |=) of
classical propositional logic is defined by the set M = {m | m : Var → {0, 1}} of all
interpretations, V ar being the set of propositional variables, and the relation m |= F
which means that the formula F is satisfied by the interpretation m.

The study of the general properties of inference operations C :P(L)→ P(L) that
do not satisfy monotony is well-established (see, e.g., [28]). A condition on inference
operations is said to be pure if it concerns the operation alone without regard to its
interrelations to a deductive system (L,CL) representing a monotonic and compact
logic. The most important pure conditions are the following:

• X ⊆ Y ⊆ C(X)⇒ C(Y ) ⊆ C(X) (cut),

• X ⊆ Y ⊆ C(X)⇒ C(X) ⊆ C(Y ) (cautious monotony),

• X ⊆ Y ⊆ C(X)⇒ C(X) = C(Y ) (cumulativity).



J. Engelfriet et al. / Multiple belief sets 229

Some impure conditions are: C(X)∩C(Y ) ⊆ C(CL(X)∩CL(Y )) (distributivity),
CL(X) 6= L⇒ C(X) 6= L (consistency preservation).

An inference operation C is said to be supraclassical if it extends the consequence
operation Cn of classical logic, i.e., Cn(X) ⊆ C(X) for all X ⊆ L. If we assume an
arbitrary deductive system (L,CL) (where CL is not necessarily Cn), then this condition
can be generalized to the condition of supradeductivity: CL(X) ⊆ C(X). A system
IF = (L,CL,C) is said to be an inference frame if L is a language, CL is a deductive
inference operation on L, and CL(X) ⊆ C(X) (supradeductivity) is fulfilled. The
operation C satisfies left absorption if CL(C(X)) = C(X); and C satisfies congruence
or right absorption if CL(X) = CL(Y ) ⇒ C(X) = C(Y ). C satisfies full absorption
if C satisfies left absorption and congruence. An inference frame DF = (L,CL,C) is
said to be a deductive inference frame if it satisfies full absorption. In this case C is
said to be logical over CL, and (L,CL) is a deductive basis for C.

The semantics of a deductive frame can be described by introducing a model op-
erator based on a model-theoretic system [10,21]. SF = (L,M , |=, Φ) is a semantical
frame if (L,M , |=) is a model-theoretic system and Φ :P(L) → P(M ) is a functor
(called model operator) such that Φ(X) ⊆ Mod|=(X). Let CΦ(X) = Th|=(Φ(X)).
The operator Φ is said to be CL-invariant if (∀X ⊆ L)(Φ(X) = Φ(CL(X))). An
important example of an invariant semantical frame is the frame (L0,M , |=, Φmin) of
minimal reasoning in propositional logic. Here, (L0,M , |=) is the model-theoretic
system of classical propositional logic, and Φmin(X) selects all minimal elements
from Mod|=(X) with respect to the following partial ordering on interpretations:
m 6 n ⇔ ∀p ∈ Var: m(p) 6 n(p). The model operator Φmin represents the proposi-
tional version of circumscription introduced by McCarthy (see [29]).

The inference operation CΦ satisfies supradeductivity, and hence (L,C |=,CΦ) is
an inference frame associated to SF and denoted by IF(SF ). An inference frame
I = (L,CL,C) is said to be complete for a semantical frame (L,M , |=, Φ) if (L,CL)
is complete with respect to (L,M , |=) and C = CΦ. Representation theorems for
classes of inference frames can be proved by using semantical frames based on the
Lindenbaum–Tarski construction of maximal consistent sets. We recall the ingredients
of this construction. Let (L,CL) be a deductive system. A set X ⊆ L is said to
be relatively maximal consistent (r-maximal) iff there is a formula φ ∈ L such that
φ /∈ CL(X) and for every proper super set Y ⊃ X the condition φ ∈ CL(Y ) is
satisfied. Let rmax(L) be the set of all r-maximal subsets of L. The Lindenbaum–
Tarski semantics (abbreviated by LT-semantics) is defined by the model-theoretic sys-
tem (L,M , |=) where M = rmax(L) and m |= φ iff φ ∈ m. Then C |= = CL.
We collect some elementary results that can be formulated and proved within this
framework [10].

Proposition 1. Let F = (L,CL,C) be an inference frame satisfying left absorption.
Then there exists a semantical frame SF = (L,M , |=, Φ) such that F is complete with
respect to SF , i.e., CL = C |= and C = CΦ.
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Proof. Let (L,M , |=) be the LT-semantics for (L,CL) and Φ(X) = {m: m ∈ M ,
C(X) ⊆ m}. It is easy to show that C = CΦ. �

Left absorption does not imply congruence. We get an adequateness result for
deductive inference frames by using invariant semantical frames [10].

Proposition 2.

1. Let F = (L,CL,C) be a deductive inference frame. Then there exists a seman-
tical frame S = (L,M , |=, Φ) such that Φ is an invariant model operator and S
represents F .

2. If Φ is an invariant model operator for the logical system (L,M , |=) then
(L,C |=,CΦ) is a deductive inference frame.

Proof. 1. Let (L,M , |=) be the LT-semantics for (L,CL) and Φ(X) = Mod|=(C(X)).
Left absorption implies CΦ = C. Invariance of Φ follows from right absorption: since
C(CL(X)) = C(X) we have

Φ(X) = Mod|=
(
C(X)

)
= Mod|=

(
C
(
CL(X)

))
= Φ

(
CL(X)

)
.

2. Let (L,C |=,CΦ) be a semantical frame and Φ an invariant model operator. By
definition, CΦ(X) = Th|=(Φ(X)). Hence, CL(CΦ(X)) = CΦ(X). By invariance of Φ
we have Φ(X) = Φ(CL(X)), hence CΦ(X) = CΦ(CL(X)), i.e., CΦ satisfies right
absorption. �

3. Belief set operators

Usually, there can be many different sets of beliefs that can be justified on the
base of a set X of given knowledge. A set of such belief sets will be called a belief
set family. In this section we adapt and generalize the framework of deductive and
semantical frames to the case of belief set operators.

Definition 3. A belief set operator B is a function that assigns a belief set family to
each set of initial facts: B :P(L)→ P(P(L)).

1. B satisfies inclusion if (∀X) (∀T ∈ B(X)) (X ⊆ T ).

2. B satisfies non-inclusiveness if (∀X) (∀UV ∈ B(X)) (U ⊆ V ⇒ U = V ).

3. The kernel KB :P(L)→ P(L) of B is defined by KB(X) =
⋂
B(X).

We collect several examples of belief set operators.

Example 4 (Default logic). Let D be a set of defaults. For X ⊆ L, and ∆ = (X,D)
let E(∆) denote the set of (Reiter) extensions of the default theory ∆. The belief set
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operator BD can be defined as follows: BD(X) = E(∆). The kernel of BD gives the
sceptical conclusions of a default theory.

Example 5 (Belief revision). Let ϕ be a sentence. For a deductively closed belief
set K, define K ⊥ ϕ = {T | T ⊆ K\{ϕ}, T = Cn(T ) and T is maximal with respect
to these properties}. These maximal subsets can play the role of possible belief sets
resulting from the contraction of ϕ from K. Define a belief set operator B−ϕ by
B−ϕ(X) = Cn(X) ⊥ ϕ if Cn(X) ⊥ ϕ is not empty, and B−ϕ(X) = Cn(X) otherwise
(this only occurs if ϕ is a tautology). The kernel of this operator yields a special
contraction function, called a full meet contraction function.

Example 6 (Poole systems). Let Σ = (D,E), D∪E ⊆ L; the elements of D are called
defaults, the elements of E are said to be constraints. A set δ ⊆ D is a basis for X ⊆ L
if the set X∪δ∪E is consistent and δ is maximal with this property. Let ConsΣ(X) =
{δ: δ ⊆ D and δ is a basis for X}. Then define BΣ(X) = {Cn(X∪δ): δ ∈ ConsΣ(X)}.
Obviously, BΣ is a belief set operator.

Structural properties of inference operations (like monotony, cut or cautious
monotony) can be generalized to properties of belief set operators, usually in more
than one way. The simplest way is to relate everything to the kernel. For instance,
we could say that B is monotonic if and only if its kernel KB is. But this definition
does not at all consider the structure of the belief sets, and we can define more refined
versions of such properties that do take into account the structure of the belief sets.

In order to define these properties, it will be convenient to introduce an informa-
tion ordering on belief set families. For belief sets there is already a natural notion of
degree of information (a belief set T contains more information than a belief set S if
S ⊆ T ). Using this new ordering of information, the properties of belief set operators
resemble their counterparts for inference operations.

Definition 7. Let A, B be belief set families. We say B contains more information
than A, denoted A � B, if (∀T ∈ B) (∃S ∈ A) (S ⊆ T ). We write A ≡ B if A � B
and B � A.

If one of the arguments in the above definition is a singleton belief set family,
we will often omit the parentheses and write X � A instead of {X} � A. Thus,
we can also write X � Y instead of X ⊆ Y . So in words this definition says that
a belief set family B is considered to have more information than A if any of the
sets of B extends some of the sets of A. This also means that it may happen that a
belief set in A has no extending belief set in B. One can think of the belief sets as
(partial) possible worlds: the less possible worlds the agent considers, the more sure
she is of the state of affairs of the outside world. So the more possibilities, the less
knowledge an agent has. On the other hand, the possible states in B must contain
more information than their counterparts in A. Note that this condition implies that
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A ⊆

⋂
B. We introduce the following formal properties of belief set operators

capturing essential features of a rational agent.

Definition 8. Let B be a belief set operator.

1. B satisfies belief monotony if (∀X∀Y ) (X � Y ⇒ B(X) � B(Y )).

2. B satisfies weak belief monotony if (∀XY ) (X � Y � B(X)⇒ B(X) � B(Y )).

3. B satisfies belief transitivity if

(∀XY S)
(
S ∈ B(X) and X ⊆ Y ⊆ S ⇒ KB(Y ) ⊆ S

)
.1

4. B satisfies belief cut if (∀XY ) (X � Y � B(X)⇒ B(Y ) � B(X)).

5. B satisfies belief cumulativity if it satisfies weak belief monotony and belief cut.

6. B satisfies strong belief cumulativity if it satisfies belief cumulativity and belief
transitivity.

7. B satisfies strong belief cut if

(∀XY S)
(
S ∈ B(X) and X ⊆ Y ⊆ S ⇒

(
∃T ∈ B(Y )

)
(T ⊆ S)

)
.

It is easy to check that strong belief cut implies belief cut and belief transitivity.
In [38] a belief set operator B satisfying inclusion is said to be cumulative if it

satisfies belief transitivity and the following condition that we call in the present paper
local belief monotony: (∀XY S) (S ∈ B(X) and X ⊆ Y ⊆ S ⇒ B(Y ) ⊆ B(X)).
A weaker form of this notion is defined by the following condition: (∀XY S) (S ∈
B(X) and X ⊆ Y ⊆ S ⇒ B(X) � B(Y )). All these properties are generalizations
of the notion of cautious monotony for inference operations to the case of belief set
operators. Similarly, there are alternative versions of the generalization of cut and
cumulativity to belief set operators. There is not yet a complete analysis of these
properties and their interrelations. The following holds:

Proposition 9. Let B be a belief set operator satisfying inclusion.

1. If B is belief monotonic then KB is monotonic.

2. If B satisfies belief transitivity or belief cut then KB satisfies cut.

3. If B satisfies weak belief monotony then KB satisfies cautious monotony.

Proof. 1. X ⊆ Y ⇒ B(X) � B(Y )⇒
⋂
B(X) ⊆

⋂
B(Y ).

2. Suppose B satisfies belief cut, and suppose X ⊆ Y ⊆ KB(X), then certainly
X � Y � B(X), so B(Y ) � B(Y ) whence

⋂
B(Y ) �

⋂
B(Y ). Now suppose B

satisfies belief transitivity, and suppose X ⊆ Y ⊆ KB(X). Let T ∈ B(X), then
X ⊆ Y ⊆ T so

⋂
B(Y ) ⊆ T . It follows that

⋂
B(Y ) ⊆

⋂
B(X).

1 This property is called cumulative transitivity in [38].
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3. If X ⊆ Y ⊆
⋂
B(X) then X � Y � B(X) so B(X) � B(Y ). It follows that⋂

B(X) ⊆
⋂
B(Y ). �

So all of the properties of definition 8 are generalizations of the correspond-
ing properties of inference operations. Given a belief set operator B with desirable
properties, the associated inference operation KB has analogous properties.

Given an inference operation C, there are of course in general many belief set
operators B such that KB = C, the most trivial being B(X) = {C(X)}. One could
ask whether there are non-trivial belief set operators B with KB = C which have
interesting structural properties, and if there is a general way of obtaining them. The
results in [28], building on results in [25], show that this can be done using preferential
models. We will briefly sketch this. A preferential model is a triple 〈M , |=,<〉
where M is a set of states, |= is any relation between states and formulas and < is a
relation between models. A state m ∈ M preferentially satisfies a set of formulas A,
denoted m |=< A, if m |= A and there is no n ∈ M such that n < m and n |= A.
An inference operation C< can then be defined by C<(X) = {ϕ ∈ L | ∀m ∈ M ,
m |=< X ⇒ m |= ϕ}. A preferential model is called smooth, if for any X ⊆ L
and m ∈ M such that m |= X, there exists a state n ∈ M such that n 6 m
and n |=< X. The basic result of [25], proved independently by [27], is that for any
cumulative inference operation C, there is a smooth preferential model 〈M , |=,<〉 such
that C = C<. But this also gives rise to a belief set operator, in the sense that the theory
of each state preferentially satisfying X can be seen as a belief set. If we set (in the
notation of [28]) Em = {ϕ ∈ L | m |= ϕ} for each m ∈M , then a belief set operator B
can be defined by B(X) = {Em | m |=< X}. It is easy to see that KB = C<.
Moreover, this belief set operator satisfies the properties defined in definition 8.

Proposition 10. Given a cumulative inference operation C, there exists a non-trivial
belief set operator B satisfying all the properties in definition 8 such that KB = C.

Proof. Given C, let B be defined as above. Then B satisfies weak belief monotony:
suppose X � Y � B(X). Let Em ∈ B(Y ), then m |=< Y so m |= X, and by
smoothness there exists n 6 m such that n |=< X. As Y � B(X) we have n |= Y , so
n = m. We have found En ⊆ Em and En ∈ B(X) so B(X) � B(Y ). Furthermore,
B satisfies strong belief cut. Suppose Em ∈ B(X) and X ⊆ Y ⊆ Em, then m |= Y
so there exists n 6 m such that n |=< Y . Since X ⊆ Y we have n |= X so n = m.
We have found En ∈ B(Y ) such that En ⊆ Em. These two properties imply all the
other ones. �

4. Belief frames

We now connect a belief state system with a compact monotonic logic which can
be considered as a deductive basis. Many non-classical forms of reasoning are built
‘on top of’ a monotonic logic (L,CL).
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Definition 11.

1. A system BF = (L,CL,B) is said to be a belief set frame if the following conditions
are satisfied:

(a) L is a language and CL is a deductive inference operation on L.

(b) B is a belief set operator on L satisfying non-inclusiveness and inclusion.

2. B satisfies belief left absorption iff CL(T ) = T for every T ∈ B(X), and B satisfies
belief congruence or CL-invariance iff CL(X) = CL(Y ) implies B(X) = B(Y ).
B satisfies full absorption iff B satisfies belief left absorption and congruence.

3. A belief set frame DF = (L,CL,B) is said to be a deductive belief set frame if it
satisfies full absorption. In this case the system (L,CL) is called a deductive basis
for B.

Proposition 12. Let BF = (L,CL,B) be a belief set frame satisfying strong belief
cumulativity. Then BF satisfies belief left absorption and belief congruence, i.e., BF
is a deductive belief set frame.

Proof. From belief transitivity it follows that for every T ∈ B(X) the condition
KB(T ) ⊆ T is satisfied, hence KB(T ) = T . By supradeductivity we get CL(T ) ⊆
KB(T ), thus CL(T ) = T .

Assume CL(X) = CL(Y ). Since KB :P(L) → P(L) is cumulative it follows
that (L,CL,KB) is a deductive frame, hence KB(X) = KB(Y ). It is sufficient to
prove B(X) = B(KB(X)), because this condition implies B(X) = B(Y ).

Let S ∈ B(X), by belief cut there is an extension T ∈ B(KB(X)) such that
T ⊆ S. By weak belief monotony there exists an S1 ∈ B(X) satisfying S1 ⊆ S.
Because the sets in B(X) are pairwise non-inclusive we get S = S1, which implies
T = S, hence S ∈ B(KB(X)).

Let T ∈ B(KB(X)); by weak belief monotony there is an S ∈ B(X) such that
S ⊆ T . By the previous proved condition this implies S ∈ B(KB(X)), hence by
non-inclusiveness of B we get T = S. �

Further important impure properties of inference frames can be generalized to
belief set frames.

Definition 13. Let (L,CL,B) be a belief set frame.

1. B satisfies belief distribution if

(∀XY S)
(
S ∈ B

(
CL(X) ∩ CL(Y )

)
⇒
(
S ∈ B(X) or S ∈ B(Y )

))
.

2. B satisfies belief consistency preservation if

(∀X)
(
CL(X) 6= L⇒ B(X) 6= {L} and B(X) 6= ∅

)
.
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In the last condition, both when B(X) = {L} and when B(X) = ∅, the input can
be considered ‘nonmonotonically inconsistent’. Both possibilities occur in for instance
default logic: there are default theories with just one inconsistent extension, and there
are default theories without extensions.

The following proposition holds.

Proposition 14.

1. If B satisfies belief distribution then KB satisfies distributivity.

2. If B satisfies belief consistency preservation then KB satisfies consistency preser-
vation.

Proof. 1. Suppose B satisfies belief distribution. Take any S ∈ B(CL(X) ∩CL(Y )),
then S ∈ B(X) or S ∈ B(Y ) so

⋂
B(X) ⊆ S or

⋂
B(Y ) ⊆ S. In both cases we have⋂

B(X) ∩
⋂
B(Y ) ⊆ S. It follows that KB(X) ∩KB(Y ) ⊆

⋂
B(CL(X) ∩ CL(Y )).

2. Suppose CL(X) 6= L, then B(X) 6= {L} and B(X) 6= ∅ from which we
immediately get

⋂
B(X) 6= L. �

The semantics of a belief set is a set of models. Since there can be many belief
sets we have to take into consideration functors associating to sets of assumptions sets
of sets of models. Such functors are called belief state operators.

Definition 15.

1. A belief state operator Γ is a function Γ :P(L)→ P(P(M )).

2. The tuple (L,M , |=, Γ) is said to be a belief state frame.

3. Γ satisfies non-inclusiveness if ∀KJ ∈ Γ(X): J ⊆ K ⇒ K = J .

4. Γ satisfies inclusion if (∀X) (∀K ∈ Γ(X)) (K ⊆ Mod(X)).

5. Γ satisfies left absorption, or L-invariance, if Γ(X) = Γ(CL(X)) for all X ⊆ L.

For a given belief state operator Γ the following belief set operator BΓ can be
introduced: BΓ(X) = {Th(K): K ∈ Γ(X)}. The notion of a belief state operator is a
generalization of the notion of a model operator.

The following examples summarize some types of belief state operators associated
to belief set operators investigated in the literature.

Example 16 (Default logic, continued). Remember that we associated a belief set
operator BD with a set of defaults D. Then (L, Cn,BD) is a deductive belief set
frame. Then also the following belief state operator can be defined for X ⊆ L:
ΓD(X) = {Mod(E): E ∈ E(∆)}.
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Example 17 (Poole systems, continued). Let Σ = (D,E), D ∪ E ⊆ L be a Poole
system and ConsΣ(X) = {δ: δ ⊆ D and δ is a basis for X}. Let BΣ(X) = {Cn(X ∪
δ): δ ∈ ConsΣ(X)}. A belief state operator ΓΣ providing a semantics for BΣ can be
introduced by ΓΣ(X) = {Mod(T ): T ∈ BΣ(X)}. Obviously, ΓΣ is Cn-invariant.

Example 18 (Generalized belief revision). Let A ⊆ L be an arbitrary fixed consistent
deductively closed set and X ⊆ L an arbitrary set. Define Cons(A,X) = {Y : Y ⊆ A,
Y ∪ X is consistent and Y is maximal with this property}. Let B(X) = {Cn(Y ∪
X): Y ∈ Cons(A,X)}. If A ∪X is consistent then B(X) = {Cn(A ∪X)}. If A ∪X
is inconsistent then B(X) contains all complete extensions of X. This can be shown
using a generalization of results in [20]. To get belief set operators derived from A,
subsets from Cons(A,X) have to be selected. Let S :P(L) → P(P(L)) satisfying
S(X) ⊆ Cons(A,X) such that S(X) 6= ∅ if Cons(A,X) 6= ∅. Then the following
belief set operators BS can be introduced: BS(X) = {Cn(Y ∪ X): Y ∈ S(X)}.
Again, we may introduce a belief state operator ΓS for BS by defining ΓS(X) =
{Mod(T ): T ∈ BS(X)}.

Example 19 (Stable generated models of logic programs). Generalized logic programs
were introduced in [22]. A generalized logic program P is a set of open sequents, where
an open sequent is an expression of the form F1, . . . ,Fm ⇒ G1, . . . ,Gn, where Fi,
Gj are open first-order formulas. In [22] the notion of a stable generated model for
generalized logic programs was proposed. Then the following system (Lseq,M , |=, Γ)
is a belief state frame: Lseq is the set of open sequents, M the set of all Herbrand
interpretations, |= the classical satisfiability relation and Γ(P ) = {{I} | I is a stable
generated model of P}.

5. Representation theorems

The methods described in section 2 can be generalized to the case of belief set
operators and belief set frames. In particular, there is a canonical method to introduce
a semantics for a given belief set frame.

Proposition 20. Let F = (L,CL,B) be a belief set frame satisfying belief left absorp-
tion. Then there exists a belief state frame SF = (L,M , |=, Γ) such that L = (L,CL)
is complete with respect to (L,M , |=) and B = BΓ. If F is a deductive belief set
frame then SF can be taken to be L-invariant.

Proof. Let F = (L,CL,B) be a belief set frame satisfying belief left absorption. We
construct a belief state frame SF = (L,M , |=, Γ) such that CL = C |= and B = BΓ.
Let (L,M , |=) be the LT-semantics for (L,CL), and define Γ(X) = {Mod|=(T ) | T ∈
B(X)}. Then BΓ = B. BΓ(X) = {Th(Mod|=(T ) | T ∈ B(X)}, and since CL(T ) = T

for T ∈ B(X) it follows Th(Mod|=(T )) = T , hence BΓ(X) = B(X).
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Now assume that F is a deductive belief set frame. Then CL(X) = CL(Y )
implies B(X) = B(Y ). We show that the above defined belief state operator is
invariant. Since CL(X) = CL(CL(X)), and by congruence B(X) = B(CL(X)),

Γ(X) =
{

Mod|=(T ) | T ∈ B(X)
}

= Γ
(
CL(X)

)
=
{

Mod|=(T ) | T ∈ B
(
CL(X)

)}
. �

The question arises whether a belief set operator B can be extended to a de-
ductive belief set frame (L,CL,B). Of course, there is the following trivial solution:
CL(X) = X, which cannot be considered as adequate. It is reasonable to assume
that the desired logic for B should be as close as possible to KB; i.e., CL should be
maximal below KB with respect to the following partial ordering between inference
operations C1,C2: C1 6 C2 ⇔ (∀X ⊆ L) (C1(X) ⊆ C2(X)).

Proposition 21. Let B be a belief set operator on L satisfying strong belief cumula-
tivity. Then there exists a deductive system (L,CL) such that following conditions are
satisfied:

1. (L,CL,B) is a deductive belief set frame.

2. If (L,C1,B) is a deductive belief set frame then C1 6 CL, i.e., CL is the greatest
deductive system for (L,B).

Proof. Since B is strongly cumulative the inference system (L,KB) is cumulative.
By the main result in [9] there exists a largest deductive operation CL 6 KB such
that (L,CL,KB) is a deductive inference frame. Since BF = (L,CL,B) is a strong
cumulative belief set frame it follows by proposition 12 that BF is a deductive belief
set frame. BF satisfies the desired properties. �

The semantical approach presented here can be summarized as follows. We start
with a belief set operator B on a language L; in the next step we construct a belief
set frame (L,CL,B) such that the compact logic (L,CL) satisfies additional proper-
ties, e.g., maximality. Then for (L,CL,B) we may introduce the standard semantics
indicated in proposition 20 (see figure 1).

Finally, we return to the connections between deductive frames and deductive
belief set frames. Obviously, as mentioned before, deductive frames (L,CL,C) can

Belief set system
(L,B)
⇓

Deductive belief set frame
(L,CL,B)
⇓

Belief state frame
(L,M , |=, Γ)

Figure 1. Standard semantics of belief set operators.
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be considered as a special case of belief set frames by taking BC(X) = {C(X)}. On
the other hand, for every deductive belief set frame (L,CL,B) there exists exactly
one deductive frame defined by the kernel KB . The converse is not true: for a
given deductive inference frame there can be many deductive belief set frames with
the same kernel. Belief set frames can be understood as specializations of deductive
inference frames and a deductive inference frame can be interpreted as an abstract
representation of a family of deductive belief set frames. To make this view precise
let F = (L,CL,C) be a deductive inference frame and let Ω(F) = {B: (L,CL,B) is
a consistency preserving deductive belief set frame such that C = KB}. The binary
relation � between belief set operators in Ω(F) is defined as follows: B1 � B2 if (∀X)
(B1(X) � B2(X)), and B1 ≡ B2 iff B1 � B2 and B2 � B1. Let BF(F) = (Ω(F),�)
and Max(X) = {S: S is a maximal consistent extension of X}; B ∈ Ω(F) is said to
be a maximization operator iff (∀X ⊆ L) (B(X) ⊆ Max(C(X))).

Proposition 22. Let F = (L,CL,C) be a deductive inference frame. Then BF(F) =
(Ω(F),�) is a partial ordering.

Proof. Obviously, the relation � satisfies reflexivity and transitivity. We show anti-
symmetry. Assume B1 � B2 and B2 � B1 for B1,B2 ∈ Ω(F). Let U ∈ B1(X), by
assumption there is a V ∈ B2(X) such that V ⊆ U ; since B1(X) � B2(X) there is
a set W ∈ B1(X) satisfying W ⊆ V . Non-inclusiveness of B1(X) implies U = V ,
hence U ∈ B2(X). Analogously one shows B2(X) ⊆ B1(X). �

Proposition 23. Let F = (L0, Cn,C) be a deductive inference frame over classical
logic (L0, Cn). The system BF(F) has a least element and a least maximization
operator. A belief set operator B ∈ BF(F) is a maximal element with respect to � if
and only if B is a maximization operator such that for every X ⊆ L and T ∈ B(X)
the following condition (∗) C(X) 6=

⋂
(B(X)− {T}) is satisfied.

Proof. Let F = (L0, Cn,C); the least element Bmin of Ω(F) is defined by
Bmin(X) = {C(X)}, and the least maximization operator is determined by Bmax(X) =
Max(C(X)). Now, let B be a maximal element. We firstly show that B is a maxi-
mization operator. Assume this is not the case. Then there is a belief set T ∈ B(X)
(for a certain set X ⊆ L0), such that T is not maximal. We define a new operator B1

as follows: B1(Y ) = B(Y ) for all Y 6= X, and B1(X) = (B(X) − {T}) ∪ Max(T ).
It is easy to show that B � B1, but not B1 � B. Now we will show (∗). Suppose
there exist X ⊆ L0 and T ∈ B(X) such that C(X) =

⋂
(B(X) − {T}). Then define

B1 by setting B1(Y ) = B(Y ) for all Y 6= X, and B1(X) = B(X) − {T}. Then
B � B1 ∈ BF(F), contradicting maximality of B. Conversely, assume that B is a
maximization operator satisfying the condition (∗). Suppose B is not maximal. Then
there is an operator B1 ∈ BF(F), such that B(X) � B1(X), but B(X) 6= B1(X).
Since every T ∈ B1(X) is an extension of a belief set of B(X) and every belief set
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in B(X) is a maximal extension of C(X) it holds that B1(X) ⊆ B(X). Hence, by
condition (∗) it follows

⋂
B1(X) 6= C(X). This gives a contradiction. �

A belief set operator B ∈ Ω(F) satisfies C-congruence iff (∀XY ⊆ L)(C(X) =
C(Y )⇒ B(X) = B(Y )). The following observation is obvious.

Proposition 24. Let F = (L0, Cn,C) be a cumulative deductive inference frame.
Then every C-congruent belief set operator in Ω(F) satisfies belief cumulativity, i.e.,
weak belief monotony and belief cut. Furthermore, the least maximization operator
satisfies C-congruence.

Remark. Concerning the structure of Ω(F) there is the following question. Let P be a
property on belief set frames, and F is a cumulative deductive inference frame. Does
there exist an element in Ω(F) which is maximal with respect to the property P ?
Examples of such properties are distributivity or strong belief cumulativity.

6. Selection operators

In the previous sections we concentrated on the multiple belief set view. The
kernel of a belief set operator represents the most certain inferences the agent can make.
But there is also another way in which the agent can handle the multiple views, and
that is by selecting one (or a subset) of the possible views and focusing on this view.
In the area of design, given some requirements a designing agent may have multiple
(partial) descriptions of objects that do not contradict the requirements. It may have
one of these descriptions (views) in focus, which it will try to complete. Here the
selection indicates which view is in focus. On the other hand, for many nonmonotonic
formalisms in which a theory can have multiple extensions (or expansions), a prioritized
or stratified version exists, in which control knowledge (such as a preference ordering
on the nonmonotonic rules) is used to designate one of the extensions as the most
preferred one [2,8,24,36]. This focusing mechanism can be studied abstractly through
selective inference operations for a given belief set operator which choose one of the
sets of beliefs.

Definition 25. Let B be a belief set operator. A selective inference operation for B
is an inference operation C such that ∀X ⊆ L: C(X) ∈ B(X).

We consider a typical example of a selective inference operation for the belief
set operator based on default logic.

Example 26 (Prioritized default logic [8]). Let D be a countable set of normal de-
faults, denoted by a/c, and let X be a set of formulas. According to example 4 we
may define the belief set operator BD(X) collecting all Reiter-extensions of X with
respect to D. If X is consistent then, since D contains only normal defaults, the set
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BD(X) is non-empty. For every well-ordering � of D we define a selective inference
operation C� for BD as follows. A default δ = a/c is said to be active in a set Z of
formulas if a ∈ Z, c /∈ Z, and ¬c /∈ Z. Let a set X be given and define a sequence
{Ei: i < ω} as follows. E0 = Th(X) = {φ: X |= φ},

Ei+1 =


Ei, if no default is active in Ei,

Th(Ei ∪ {c}), otherwise, where c is the consequent of the �-least default
that is active in Ei.

We define C�(X) =
⋃
i<ω Ei. It can be shown that C�(X) ∈ BD(X) [8]. The

extension
⋃
i<ω Ei is called the prioritized extension of (D,X) generated by �.

One may argue that the concept of a selective inference operation is already cov-
ered by the notion of a usual inference operation as discussed in section 2. Obviously,
this is not the case because a selective inference operation is always connected with
a belief set operator as a separate notion. As an example imagine an agent A which
acts under incomplete information in a dynamic environment. It is important for A to
have an appropriate basic space of different belief sets and an additional mechanism
to choose and generate one of them to adapt his behavior to a particular situation.2

In principle, this idea can also be realized by a suitable family of usual inference
operations and a choice mechanism. To structure the connections between belief set
operators and selective inference operations, we give the following definition:

Definition 27.

1. Let a belief set operator B be given. The family of selective inference operations
for B, denoted by CB is defined by

CB = {C | C is a selective inference operation for B}.

2. Let C be a family of inference operations. Define the belief set operator BC by
BC(X) = {C(X) | C ∈ C}.

A selective inference operation for a belief set operator will in general be more
informative than the associated kernel: KB(X) ⊆ C(X). But even if the belief set
operator is well-behaved, a selective inference operation can be badly behaved. The
question arises whether a well-behaved selective inference operation always exists.
That is, given a belief set operator B, the question is whether there exists a C ∈ CB with
certain structural properties. This is a very hard question. Sufficient conditions can be
found, for instance for monotony: ∀Y ∃T ∈ B(Y ) ∀X ⊆ Y ∀S ∈ B(X): S ⊆ T . But
this condition implies (in the presence of non-inclusiveness) that B(X) is a singleton
for all X. Necessary conditions are easier to find, but quite trivial. For a belief set

2 It seems that this kind of non-determinism is an essential assumption for realizing intelligent behavior
in a changing environment.
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operator B and a selective inference operation C for B we have the following. If C
satisfies cut then

(∀X)
(
∃S ∈ B(X)

)
(∀Y )

(
X ⊆ Y ⊆ S ⇒

((
∃T ∈ B(Y )

)
(T ⊆ S)

))
. (*1)

If C satisfies cautious monotony then

(∀X)
(
∃S ∈ B(X)

)
(∀Y )

(
X ⊆ Y ⊆ S ⇒

((
∃T ∈ B(Y )

)
(S ⊆ T )

))
. (*2)

If C satisfies cumulativity then

(∀X)
(
∃S ∈ B(X)

)
(∀Y )

(
X ⊆ Y ⊆ S ⇒

((
∃T ∈ B(Y )

)
(S = T )

))
. (*3)

If C satisfies monotony then

(∀XY )
(
X ⊆ Y ⇒

((
∃S ∈ B(X)

) (
∃T ∈ B(Y )

)
(S ⊆ T )

)
. (*4)

The preceding paragraph pertains to the situation when a belief set operator B is given,
and we want to study CB. Questions about the second item in definition 27 are easier
to answer. We will say a family C of inference operations satisfies one of the properties
of cut, cautious monotony, cumulativity and monotony if all of the inference operations
in C satisfy this property. Then we have:

Proposition 28. Let C be a family of inference operations.

(1) If C satisfies monotony then BC satisfies belief monotony.

(2) If C satisfies cautious monotony then BC satisfies weak belief monotony.

(3) If C satisfies cut, then BC satisfies both belief transitivity and (strong) belief cut.

(4) If C satisfies cumulativity, then BC satisfies strong belief cumulativity.

Proof. (1) Suppose C satisfies monotony, and suppose X � Y . Take any C(Y ) ∈
BC(Y ), then C(X) ⊆ C(Y ) and C(X) ∈ BC(X). We have BC(X) � BC(Y ).

(2) Suppose X � Y � BC(X). Take a C(Y ) ∈ BC(Y ), then X ⊆ Y ⊆ C(X)
(since Y � BC(X)), so C(X) ⊆ C(Y ). It again follows that BC(X) � BC(Y ).

(3) Suppose C satisfies cut. We only have to prove that BC satisfies strong belief
cut. So suppose C(X) ∈ BC(X) and X ⊆ Y ⊆ C(X). Then C(Y ) ⊆ C(X) and
C(Y ) ∈ BC(Y ).

(4) If C satisfies cumulativity, it satisfies cautious monotony and cut, so by (2)
and (3), BC satisfies weak belief monotony, belief cut and belief transitivity, hence it
satisfies strong belief cumulativity. �

One way of defining selective inference operations for a given belief set operator
is through selection operators. Given a set of views, such a selection operator selects
one (or some) of them:
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Definition 29. A selection operator is a function s :P(P(L)) → P(P(L)) such that for
all A ⊆ P(L): s(A) ⊆ A, and s(A) 6= ∅ if A 6= ∅. A selection operator s is single-
valued iff for all non-empty A ⊆ P(L): card(s(A)) = 1. A single-valued selection
operator s can be understood as a choice function s :P(P(L)) → P(L) satisfying
s(A) ∈ A for all non-empty A.

Using selection operators we can generate inference operations:

Definition 30. Let a belief set operator B and a selection operator s be given. We
define the inference operation CBs by CBs (X) =

⋂
s(B(X)).

We will give some examples of belief set operators with selection operators.

Example 31 (Autoepistemic logic and parsimonious expansions). It is well known
that in autoepistemic logic it may happen that the objective (i.e., non-modal) part
of a stable expansion is contained in the objective part of another stable expansion.
The easiest example is the theory {Lp → p}, which has two stable expansions: the
(unique) stable set with objective part Cn(∅), and the stable set with objective part
Cn({p}). Given a modal language Lm we can define the belief set operator Bael which
assigns to each set I of modal formulas the set of stable expansions of I . But an agent
may want to keep only those expansions with a minimal objective part (these are
called parsimonious expansions in [11]). We could define the selection operator sp by
sp(A) = {X ∈ A | there is no Y ∈ A such that the objective part of Y is included in
the objective part of X}. Then sp(Bael(I)) is the collection of parsimonious expansions
of I , and CBael

sp gives the (skeptical) conclusions based on these expansions.

Example 32 (Prioritized default logic, continued). In example 26, a single extension
was selected from the set of all extensions on the basis of a well-ordering � on the
set of defaults D. Often, the priority information will be partial, and we can select
the extensions which comply with this partial information (see [8]). Given a partial
ordering < on D, we can define a selection operator that selects those extensions
of (D,X) which are generated by a well-ordering � that extends < (meaning that
d1 < d2 implies d1 � d2).

Example 33 (EKS: Ecological Knowledge System). Nature conservationists are in-
terested in a number of so-called abiotic factors of terrains. These factors, examples of
which are the moisture, acidity and nutrient value, give an indication of how healthy a
terrain is. As these factors are difficult to measure directly, a sample of plant species
growing on a terrain is taken. For each species, the experts have knowledge about the
possible values of the abiotic factors of a terrain on which the species lives. So it may
be known, for example, that a certain species can only live on medium to very acid
terrains. Combining such knowledge for each of the plant species observed on a terrain
leads to conclusions about the abiotic factors of the terrain. During the development
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of a knowledge-based system, EKS, to automate this classification process, however,
it turned out that the samples of species taken were often incompatible. That is, there
was at least one abiotic factor for which no value could be found that was permissible
for all species. This is not due to errors in the knowledge of abiotic factors needed
by species to live, but due to other effects. For example, a terrain may lie on the
transition of a dry and a wet piece of land. Some of the observed species may occur
on the drier, and others on the wetter side. This can also be due to the presence of
ponds in an otherwise dry terrain. Also transitions of a terrain over time, or vertical
inhomogeneity may be causes.

If the sample of species is incompatible, one can consider maximal compatible
subsets of the sample. Each of these subsets defines a possible view on the terrain,
with possible values for the abiotic factors. This gives rise to a belief set operator
BEKS that assigns to each sample of species, the set of maximal compatible subsets.
The knowledge-based system, EKS, implements this operator. The user can input the
species found in the sample, and the system presents the maximal compatible subsets.
After that, the user can select one of these possible views on the terrain. The (ecologist)
user makes this selection using additional knowledge (for instance about the history of
the terrain, or about vertical inhomogeneity). This selection process can be formalized
by a (single-valued) selection operator suser. The final conclusions of the system contain
the possible values of the abiotic factors for the chosen subset. It is intended to also
automate this selection process. Presentation of the maximal compatible subsets was
much appreciated by the users of the system, and helps them to classify the terrain.
Separation of the generation of possibilities and the selection was a crucial step in the
development of the system. It also allows different users to select different sets (from
the possibilities generated by the system) and argue about which one is the right one.
Thus, one could distinguish different selection functions sA, sB, . . . for the same belief
set operator, corresponding to the choice of different users A,B, . . . . The interested
reader is referred to [5] for more information on the system EKS, and to [6] for the
formalization of the reasoning task of the system (in terms of a belief set operator and
selection function).

Single-valued selection operators generate selective inference operations. A first
observation about when a selective inference operation can be generated by a single-
valued selection operator:

Proposition 34. Let a selective inference operation C for a belief set operator B be
given. Then C = CBs for some single-valued selection operator s iff

(∀X∀Y )
(
B(X) = B(Y )⇒ C(X) = C(Y )

)
.

Proof. Define s as follows: for A ⊆ P(L), if A = B(X) for some X ⊆ L, then
s(A) = {C(X)}, and if not, then s selects any set from A (and s(∅) = ∅). The
requirement ensures that s is well-defined, and it is easy to see that s is a single-valued
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selection operator. For any X ⊆ L we have CBs (X) =
⋂
s(B(X)) =

⋂
{C(X)} =

C(X). The other direction is trivial. �

We can study properties of selection operators and the relation with properties of
belief state operators and selective inference operations. Although a full treatment is
beyond the scope of this paper, we will give an example.

Definition 35. A selection operator s satisfies selection monotony if for all belief set
families A, B we have A � B ⇒ s(A) � s(B).

Then we have the following:

Proposition 36.

1. Let a belief set operator B and a selection operator s be given. If B satisfies belief
monotony and s satisfies selection monotony then CBs satisfies monotony.

2. Let a single-valued selection operator s be given. If for any belief set operator B
which satisfies belief monotony, CBs satisfies monotony, then s satisfies selection
monotony.

Proof. 1. If X ⊆ Y then B(X) � B(Y ) (belief monotony) so s(B(X)) � s(B(Y ))
(selection monotony) so CBs (X) ⊆ Cs(Y ).

2. Suppose we have two belief set families A � B. Define a belief set operator B
by B(∅) = A and B(X) = B for X 6= ∅. It is easy to see that B satisfies belief
monotony. Then as ∅ ⊆ L, we must have CBs (∅) ⊆ CBs (L), and as s is single-valued
this means that s(B(∅)) � s(B(L)) or s(A) � s(B). �

The problem with selection operators is that they are blind to the initial facts:
if B(X) = B(Y ), then we may sometimes want to make a different selection from
B(X) than from B(Y ). One option would be to define selection operators sX with
an index for the initial facts. An inference operation CBs (X) could then be defined by
CBs (X) =

⋂
sX(B(X)). This would yield results similar to the construction of BC

defined earlier.

Example 37 (Contraction functions). In [1], eight rationality postulates are given for
contraction functions. A contraction function −. is a function that given a belief set K
(satisfying Cn(K) = K) and a formula ϕ yields a new belief set K−. ϕ which is meant
to be the result of ‘removing’ ϕ from K. The function −. should satisfy the following
conditions:

1. For any sentence φ and any belief set K the set K −. φ is belief set.

2. K −. φ ⊆ K.

3. If φ /∈ K, then K = K −. φ.
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4. If 6|= φ then φ /∈ K −. φ.

5. K ⊆ (K −. φ) + φ.

6. If |= φ↔ ψ, then K −. φ = K −. ψ.

7. K −. φ ∩K −. ψ ⊆ K −. (φ ∧ ψ).

8. If φ /∈ K −. φ ∧ ψ, then K −. φ ∧ ψ ⊆ K −. ψ.

Call a selection operator sX invariant if sX = sCn(X) for all X. Then a result
from [1] can be given in our terms:

• A contraction function −. satisfies postulates 1–6 iff X −. ϕ = C
B−ϕ
s (X) for

some invariant s, where B−ϕ is as defined in example 5. Furthermore, if we
put extra conditions on the selection operator – intuitively, that it picks maximal
elements from B−ϕ given some transitive and reflexive order – then this result can
be strengthened in the sense that all rationality postulates hold.

Remark. The considerations in sections 5 and 6 reflect certain aspects of knowledge
dynamics [33]. Let X0 be a deductively closed set representing the knowledge at a
certain time point. X0 can be extended by a combined application of a belief set
operator B0 whose kernel is X0 and a generalized selection operator s0. The new
knowledge stage X1 is defined by X1 =

⋂
s0(B0(X0)). The forming of belief sets

for a knowledge base can be understood as theory formation or hypothesis building;
after new observations are performed those belief sets are left out which contradict the
observations.

7. Conclusions and future research

In research on nonmonotonic reasoning often an ambivalent or negative attitude
is taken towards the phenomenon of multiple (belief) extensions. Of course, from the
classical viewpoint it may be considered disturbing when a reasoning process may have
alternative sets of outcomes, often mutually inconsistent. A number of approaches try
to avoid the issue by adding additional control knowledge to decide which extension
is intended, thus obtaining a parameterization of the possible sets of outcomes of
the reasoning by the chosen control knowledge: for each control knowledge base a
unique outcome (e.g, [8,36]). Another approach to avoid the multiple extension issue
is to concentrate on the intersection of them: the sceptical approach. A number of
results have been developed on nonmonotonic inference operations that are a useful
formalization of this approach (e.g, [25]). However, in the sceptical approach the
remaining conclusions may be very limited, insufficient for an agent to act under
incomplete information in a dynamic environment.

In the current paper we address the multiple extension issue in an explicit manner
by introducing nonmonotonic (multiple) belief set operators and their semantical coun-
terpart: belief state operators. Many properties and results on nonmonotonic inference
operations (and model operators) turn out to be generalizable to this notion.
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Introducing alternative belief sets that can serve as the outcomes of a non-
monotonic reasoning process, the question becomes how to formalize the process
of committing to one belief set. To this end in the current paper selection operators
are introduced that formalize this process. The specification of a selection operator
expresses the strategic (control) knowledge used by an agent to choose between the
different alternatives.

Agents often construct belief sets to which they commit in a step by step manner,
using some kind of inference rules. Specification of such a nonmonotonic reasoning
process is easier to obtain if the reasoning patterns leading to the outcomes are specified
instead of (only) the outcomes of the reasoning. In related and future research the
notion of a trace for a nonmonotonic reasoning process is taken as a point of attention,
and we have used a temporal epistemic logic to specify such traces (e.g., [17], following
the line of [15,16]). Of course, a set of (multiple) reasoning traces generates a belief set
operator by considering only the start and endpoints of the traces. The dualism between
multiple outcomes and multiple reasoning traces of a nonmonotonic reasoning process
is also studied in the context of default logic, leading to a representation theory: for
which set of outcomes can a default theory be found with these outcomes (see [14,30]).
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[30] V.W. Marek, J. Treur and M. Truszczyński, Representation theory for default logic, Ann. Math.
Artificial Intelligence 21 (1997) 343–358.
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