
Branching Time Semantics for
the Dynamics of Reasoning by Default

Joeri Engelfriet  and  Jan Treur1

Vrije Universiteit Amsterdam
Department of Mathematics and Computer Science

De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands
Email: treur@cs.vu.nl

URL: http://cs.vu.nl/~treur

Abstract.  In this paper we formalize default reasoning using branching time temporal
models, in which an information state at a certain point in time describes what has been
derived up until that moment. The branching character of the models reflects the fact that at
a certain point in the reasoning process there might be a number of (conflicting) default
rules which can be selected to be applied. We show how one can construct a branching time
model, in which all possible reasoning patterns are brought together, making explicit the
time points at which choices have to be made. The semantics of default reasoning is
defined using this model.

1  Introduction

An important characteristic of default reasoning is that usually there are different lines

of reasoning possible, each leading to a set of conclusions. In default logic these

conclusion sets are described by (Reiter) extensions. In common examples this leads to

a variety of extensions. In logic one is used to express semantics in terms of models that

represent consistent descriptions of the world and semantic entailment relations based

on a specific class of this type of models. These notions are not really adequate to

describe alternative conclusion sets for default reasoning. Sometimes one introduces

sceptical entailment (what is true in all conclusion sets) or credulous entailment (what is

true in some conclusion set). From a semantic point of view both notions only give a
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limited description: they only indicate global upper and lower bounds for the conclusion

set of particular lines of reasoning. In this paper we formalize default reasoning

processes by temporal models. This enables us to integrate process aspects of the

reasoning in the semantics in an explicit manner. Our approach extends the one

introduced in [ET93, ET98], where it was shown how one line of default reasoning

corresponds to one linear time model. In the current paper the branching character of the

reasoning processes is described by a branching time temporal model. Each line of

reasoning corresponds to a branch in the temporal model. We show how (under a

particular topological condition, called extension completeness) one branching time

model can be constructed in which precisely all possible lines of reasoning (and the

resulting conclusion sets) can be represented (even though they might be mutually

contradictory). The semantics of the default theory can be defined on the basis of this

single model. In particular, we show how sceptical and credulous entailment relations

can be defined as well on the basis of this model.

In Section 2 we will define the temporal logic we will use later. Section 3 begins

with a brief introduction of Reiter's Default Logic and gives an interpretation of a

default theory in temporal logic. Section 4 describes the construction of branching time

models reflecting extensions. In Section 5 we describe entailment relations based on

these models. The special case of normal default theories is treated in Section 6, after

which conclusions follow in Section 7. A preliminary version of this work appeared as

[ET96].

2   Branching Time Temporal Logic

In this section we introduce the temporal logic that we have defined to satisfy our

requirements. The base language will consist of all classical propositional formulae of a

certain signature  
� ���
, an ordered sequence of atom names. The formulae in propositional

logic based on  
� ���

 will be called propositional formulae.

Definition 2.1 (Information State)

a) An information state, or shortly state, is a non-empty closed set of propositional

models, that is, there is a consistent set of formulae of which it is the model class.

The truth of a propositional formula  � ���   in an information state M , denoted  M � ��� � ��� ,  is

defined by:
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M � ��� � �������� m � ��� � ���     for all  m � ��� M

b) The theory of a state  M , denoted  Th(M)   is defined by  Th(M) = { � ��� | M � ��� � ��� }.

c)  We call the state N a refinement of the state M , denoted by M � ���  N, if  M � ��� N.

d)  For a set of formulae S, the set of models of S is denoted by  Mod(S).

e)  For a set of formulae S, the deductive closure of S is denoted by  Cn(S).

f)  The set of information states is denoted  IS.

Note that for a consistent set  S,  Mod(S)  is an information state, and if  S � ��� T  then

Mod(S) � ��� Mod(T) .

We will now temporalize (see [FG92]) these states to temporal models, based on

some flow of time.

Definition 2.2  (Flow of time)

A flow of time is a pair  (T, <)  where  T  is a non-empty set of time points and  <  is a

binary relation over  T, called the immediate successor relation. Here for  s, t in  T

the expression  s < t denotes that  t  is an (immediate) successor of  s, and that  s  is an

(immediate) predecessor of  t. In this paper we only consider forward branching

structures:  (T, <)  viewed as a graph has to be a forest, that is a disjoint union of

trees, satisfying successor existence: each time point must have at least one

successor. Furthermore the transitive (but not reflexive) closure  «  of  <  is

introduced. A flow of time is called linear if  «  is a total ordering. A time point

without predecessor is called a root. A branch in a forest is a branch of any of its

trees, that is an infinite path starting at a root.

Definition 2.3  (Temporal model)

Let  
� ���

 be a signature and (T, < )  a flow of time.

a)  A (propositional) temporal  model  of signature  
� ���

 and flow of time  (T, <)  is a

triple (M, T, < )  where (T, <)  is a flow of time and  M   is a mapping    M : T  � ���   IS,

called the state assignment.

If no confusion is expected we will often denote a temporal model by  M . Moreover,

instead of  t  is a time point in  (M, T, < )  we sometimes say  t  is a time point in  M

(or simply  t  in  M), with meaning  t � ���  T.

b)  We sometimes will use the notation  (Mt)t � ���  T  where each  Mt  is a state as an

equivalent description of a temporal model  M .
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c)  A temporal model  (B, T', <')   is called a branch of  (M, T, < )  if  (T', <')   is a branch

of  (T, < )  and  Bt = Mt  for all  t � ��� T' .

d)  If  K   is a set of propositional formulae for the signature  
� ���
,  a temporal  model  M

of signature  
� ���

 is called a model of  K   if all formulae of  K  are true in  Mt  for all

t � ���  T. This is denoted by  M  � ���  K .

e)  The refinement relation  � ���   between temporal models is defined by: M � ���  N   if they

have the same flow of time and  M(t) � ���  N(t)  for all time points  t.

The basic building blocks of our temporal language will be temporal operators applied to

propositional formulae. Using these temporal "atoms" we can build complex formulae

using the usual connectives and the temporal operators. Because our branching time

models have a more differentiated structure towards the future than in the past, there are

more operators for the future.

Definition   2.4  (Temporal language)

The temporal language  L T  is the smallest set closed under:

 i) If  � ���   is a propositional formula, then  O� ���  � ��� L T  for  O � ��� { � ��� F, � ��� F, � ��� G, � ��� G, P, C };

ii) If  � ��� , � ��� � ��� L T  then  � ��� � ��� , � ����� ��� � ��� , � ����� ��� � ��� , � ��� � ��� � ��� , O� ��� � ��� L T for  O � ��� { � ��� F, � ��� F, � ��� G, � ��� G, P, C }.

We will now give the semantics of our temporal logic. In these definitions, (M, t) � ���  � ���

means that in the model  M   at time point  t  the formula  � ���   is true and  (M, t) � ���  � ���   means

that this is not the case. For uniformity in notation we will also define this for

propositional formulae.

Definition 2.5  (Semantics)

Let a temporal model  M   and a time point  t � ���  T  be given, then:

a)  For a propositional formula  � ��� :

(M, t) � ��� � ��� ⇔    Mt � ��� � ���

b)  For  � ���   either propositional or in  L T:

(M, t) � ���   � ��� F � ��� ⇔ ∃ s � ���  T  [ t « s  &  (M, s) � ���   � ��� ]

(M, t) � ���   � ��� F� ��� ⇔  for all branches through  t  there exists an  s in that

branch such that [ t « s  &  (M, s) � ��� � ��� ]

(M, t) � ��� � ��� G � ��� ⇔ � ���  s � ��� T     [ t « s  	 			   (M, s) � ��� � ��� ]

(M, t) � ���  � ��� G � ��� ⇔  there exists a branch through  t  such that for  all  s in

that  branch [ t « s  	 			   (M, s) � ��� � ��� ]
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(M, t) � ��� P� ��� ⇔ ∃ s � ���  T  [ s « t  &  (M, s) � ���  � ��� ]

(M, t) � ���  C� ��� ⇔  (M, t) � ��� � ���

c)  For  � ��� , � ��� � ��� L T:

(M, t) � ��� � ��� ∧ � ��� ⇔ (M, t)  � ��� � ��� and  (M, t) � ��� � ���

(M, t) � ���  � ��� � ��� ⇔ (M, t) � ���   � ���

d)  For a temporal model  M , by  M � ���   � ���   we mean  (M, t) � ���   � ���   for all t � ���  T  and by

M � ���  K   we mean  M � ���  � ���   for all  � ��� � ��� K , where  K  is a set of temporal formulae. We

say that  M   is a model of  K.

e)  For a set  K   of temporal formulae, we say that a temporal model  M   is a minimal

model of  K  if  M � ���  K   and whenever a model  N � ��� M   is a model of  K  then  N = M .

f)  If  T  is a temporal theory, then by  LLTT (T)  we denote the set of all minimal linear

time models of  T.

Note that the case of negation in this definition does not hold for propositional formulae.

Suppose we want to express the fact that a propositional formula  � ���   should never be

true in a model (meaning that it should be true in none of the information states at any

point in time). Using the formula  � ��� � ���   will ensure that  � ��� is never true, but also that  � ��� � ���

is always true (in each information state). However, if we use the formula  � ��� C� ���   then in

no information state will  � ���   be true. This does not enforce  � ���  � ���   to be true: the

information state may contain models in which  � ���   is true (as long as it contains at least

one model in which  � ���   is false). This explains the use of the  C  operator.

If an element  t  lies in a tree with root  r , the length of the unique path of  r   to  t  is
called the depth of the element  t. This defines a mapping from the flow of time to the

natural numbers; in the case of a branch this mapping is a successor relation

isomorphism. We can identify a branch with a model based on the natural numbers as

flow of time.

What is still interesting about a reasoning process, is of course its set of final

conclusions. To be able to talk about final  conclusions, we have to assume that the

reasoning is conservative, which means that once a fact is established, it will remain true

in the future of the reasoning process. In that case a fact is a final conclusion of a

process if it is established at the branch representing the process at any point in time. So,

besides reasoning paths also the conclusions they result in are defined in a branching

time model in the following manner:
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Definition 2.6  (Limit models of a conservative model)

Let  M   be a temporal model.

a)  M   is conservative  if  Mt � ���  Ms  whenever  t « s.
b)  The set of branches of the model  M   is denoted by  BB(M) .

c)  Let  B  be a branch of  M , and identify its flow of time with the natural numbers.

The limit  model of  B, denoted by  limB M, is the information state defined by:

limB M  =  
  i=0

∞

I Bi

If  B = M, we will simply write lim M .

Note that the intersection of a decreasing sequence of information states is indeed an

information state, and that  Th(lim B M ) = 
  i=0

∞

U Th(Bi).

3  Interpreting Default Logic in Temporal Logic

We will first give a brief overview of Reiter's default logic, restricted to a propositional

language. A default rule is an expression of the form (� ���  : � ��� ) / � ��� , where  � ��� , � ���   and � ���   are

propositional formulae. A default theory  � ���   is then a pair  < W, D >  where  W  is a set of

sentences (the axioms of  � ��� ), and  D  a set of default rules. We will not give Reiter's

original definition of an extension (see [Be89], [Re80]), but a slight variation of it,

which in [ET93, ET98] has been shown to be equivalent.

Definition 3.1 (Reiter Extension)

Let  � ���   =  < W, D >  be a default theory of signature  
� ���
, and let  E  be a set of sentences

for  
� ���
.  Then  E  is a Reiter extension of  � ���   if  E =  

  i=0

∞

U Ei  where  E0 = Cn(W), and for

all  i ≥ 0:    Ei+1 = Cn(Ei � ���  { � ���  | (� �������� � ��� ) / � ���   � ��� D, � ��� � ��� Ei  and    � ��� � ���  � ��� E })

If  E  is a Reiter extension, then throughout the paper by  Ei  we will denote the subsets

of  E  as defined in this lemma.

We will establish an interpretation mapping from default theories to temporal

theories. Under this interpretation the Reiter extensions of a default theory and temporal

models which obey a number of rules correspond to each other. The correspondence we

are aiming at will be such that the propositional formulae true in a branch  B  of the

temporal model at depth  i   will be exactly those which are element of  Ei  and the
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formulae in  E  will be those true in the limit model of a branch  B  in  M :   Th(Bi) = Ei

and Th(limB M) = E,  or  Bi = Mod(Ei)  and  limB M = Mod(E)

We will investigate what requirements should be imposed on the temporal model  M .

Firstly, since the  Ei  are non-decreasing, our model should be conservative. If we define  

C' = { P( � ��� ) � ���  C(� ��� ) | � ���   propositional  formula}

it can easily be shown that  M � ���  C'   if and only if  M   is conservative. Next we will try to

see which rules will ensure in the model the effect of application of the default rules. To

this end we have to look at how a default rule is used in our definition of an extension.

The meaning of a default rule  (� ���  : � ��� ) / � ���  is that if  � ���  � ���  Ei, and  � ���   � ���  � ���  E, then  � ���   has to be

in  Ei+1, and consequently in  Ej   for all  j > i . The requirement  � ���  � ���  � ���  E  is equivalent to

� ���  � ���  � ���  Ei  for all  i � ���  NN, and as  the sets  Ei  are non-decreasing, it is equivalent to  � ���  � ���  � ���  Ej

for all  j > i.  If we want to enforce a corresponding effect of the use of defaults in our

temporal model, we have to make sure that at all times, if  � ���   has become true in the

past, and there is at least a reasoning path where  � ��� � ���  is not true at any point in the

future, then  � ���   has to be true in the current state. This leads us to the rule:

P� ���   � ���   � ���  ∀F � ���  � ��� � ��� C� ��� , which has to be true in the model at all time points. As the semi-

construction of an extension starts with  W, all formulae of  W  should be true in all roots

of  M . As the theory  C'  ensures conservativity, this is equivalent to saying that  the

formulae of  W  should be true in  Ms  for all  s � ��� T.

Now we can define a temporal interpretation of  � ���   as a temporal theory associated to

� ���  . As we do not want any extra conclusions in the corresponding model than those

which have to be drawn, we will take the minimal models with respect to  � ��� .

Definition 3.2  (Temporal interpretation of a default theory)

Let  � ���  = < W, D >  be a default theory of signature  
� ���
. Define

C'     =  { P� ���  � ���  C� ���  | � ���   propositional formula }

D'     =  { P� ��� � ��� � ��� � ��� F� ��� � ���  � ���  C� ��� | (� ��� : � ��� ) / � ��� � ��� D }

W'    =   { C � ���  | � ��� � ���  W }

The temporal interpretation of  � ��� is the temporal theory  T � ���  =  C' � ���  D' � ���  W' .  The set

of minimal linear time models of  T � ���   is denoted by  LLTT (� ��� ).

This temporal interpretation enables us to attribute semantics to default reasoning based

on temporal models. In a previous publication [ET93] it has been shown how a linear

time partial temporal model of (a temporal interpretation of) a default theory can

describe one line of reasoning (i.e., can play in a sense the role of a Reiter extension of



8

the default theory). In [ET93] we gave a treatment restricted to the linear time case,

using three-valued partial models (in which an atom may have truth-value true, false or

unknown) instead of information states, and a slightly different translation, but the result

is easily  transferred (see the proof in [ET98]):

Theorem 3.3

Let   � ���  = < W, D >  be a default theory.

a)  If M   is a minimal linear time temporal model of  T � ��� , then  Th(lim M)   is a Reiter

extension  E  of  � ��� . Moreover,  Ei = Th(Mi)  for all  i � ��� NN.

b)  If  W is consistent and  E  a Reiter extension of � ��� , then the temporal model  M

defined by  M  = (Mod(Ei))i � ��� NN  is a minimal  linear time temporal model of  T � ���   with

Th(lim M) =  E.

Proof

We will only make some remarks about the different translation. In [ET93] and

[ET98], only linear temporal models are considered, and a default rule  (� ��� : � ��� ) / � ���  is

translated into the rule  C� ��� � ��� � ���  F � ���  � ��� � ��� G � ��� , where  F � ���   means "sometimes in the future

� ��� ", and  G � ���   means "always in the future  � ��� ". It is easy to see that on linear models,

� ���  F � ���  � ���   is equivalent to  � ��� � ��� F� ��� � ��� . We will show that any conservative linear model

satisfies  C� ���  � ���  � ���  F � ���  � ���  � ���  G � ���   if and only if it satisfies  P� ��� � ��� � ��� � ��� F� ��� � ���  � ���  C� ��� . Suppose

M � ���  C� ���  � ���  � ���  F � ���  � ���  � ���  G � ���   and that for some  t � ��� NN,  (M, t) � ��� P� ��� � ��� � ��� � ��� F� ��� � ��� . Remark that

(M, t) � ��� P� ���   implies that  t > 0. Then it easily follows (given conservativity) that

(M,  t -1) � ��� C� ���  � ���  � ���  F � ���  � ��� , so  (M,  t -1) � ��� G� ���   whence  (M, t) � ��� C� ��� . Now suppose that

M � ���  P� ��� � ��� � ��� � ��� F� ��� � ���  � ���  C� ���   and for some  t � ��� NN,  (M, t) � ��� C� ���  � ���  � ���  F � ���  � ��� . Then

(M, t+1) � ���  P� ��� � ��� � ��� � ��� F� ��� � ��� , so (M, t+1) � ���  C� ���  . With conservativity it follows that

(M, t) � ���  G � ��� .

For the case of lines of default reasoning that do not stabilize after a finite number of

steps, topological properties of the space of reasoning patterns become relevant. Before

defining a metric on the space of linear time models, we recall the following definitions.

A sequence  (ai) i � ���  NN    in a metric space  X  with metric  d  is called convergent with limit

a � ��� X  if for each  � ���  > 0  there exists an  N � ���  NN  such that for all i ≥ N  it holds  d(ai, a) < � ��� . A

subset  Y  of  X  is called closed if for every convergent sequence  in  X  with  all  ai  in Y,

its limit is included in  Y.
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Definition 3.4  (Metric)

Define the following metric  d  on the set  of linear time models  LT : for  M, N  linear

models:

d(M, N) = 0  if  M = N

2-i,  where  i = sup{ j � ��� NN | � ��� k � ��� j : M k = Nk }, otherwise

It is easy to see that the metric space  (LT, d)   is complete, i.e., that every

Cauchy-sequence has a limit. The following definition will play an important role in the

next section:

Definition  3.5 (Extension complete)

A default theory  � ���   is called extension complete if  LLTT (� ��� )  is a closed subset of the

metric space (LT,  d).

Proposition 3.6

Every default theory with a finite set of defaults is extension complete.

Proof

A default theory  � ���   with a finite set of defaults has finitely many extensions (this

follows easily from the fact that every extension is the propositional closure of  W

and the set of generating defaults, see [Re80]), so by Theorem 3.3  LLTT (� ��� )  is finite. In

a metric space, all finite sets are closed.

As an example of a default theory which is not extension complete, let

W = {a0 } � ��� { b � ���  ai | i � ��� NN  }  and

D = { :b/b } � ��� { ai : ai+1 /ai+1 | i � ��� NN  } � ��� { ai : � ���  ai+1 / � ��� ai+1 | i � ��� NN  }.

This (normal) default theory has infinitely many extensions: F  = Cn(W � ��� {b})  and for

each  n � ��� NN, E(n) = Cn(W � ��� { ai | i � ��� n } � ��� { � ���  an+1 }). In this example the linear time models

corresponding to these extensions form a convergent sequence in  (LT, d) , but its limit is

the model (M t)t � ���  NN , with  M t = Mod(W � ��� { ai | i � ��� NN }), which is not in  LLTT(� ��� )  (See

Figure 1). In Figure 1, we have indicated the (non-trivial) formulas that are true in the

various time points, where a formula is not repeated if it was true earlier.
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a0 b, ai

a0 � ��� a1 , � ��� b

a0 a1 � ��� a2 , � ��� b

a0 a1 a2 � ��� a3, � ��� b

a0 a1 a2 a3 � ��� a4, � ��� b

a0 a1 a2 a3 a4 a5
M

Figure 1. Not extension complete theory

4  Joint Embeddings of Linear Time Models of Default Theories

In the previous section we summarized results showing a correspondence between the

set of Reiter extensions of a default theory   � ���   and the set of minimal linear time models

of its temporal interpretation. These results provide semantics for default reasoning in

the form of a set of linear time models that represent the possible default reasoning

patterns. An alternative manner of representing these reasoning patterns is by means of

one branching time model, where each branch represents one alternative reasoning

pattern (with a Reiter extension as its limit).  This would provide semantics for default

reasoning in the form of one "standard" model. The aim of this section is for any given

default theory to indeed construct such a branching time model, under certain conditions

(extension completeness). To this end we apply some algebraic (category-theoretic)

techniques developed in [ET02] to the model theory of the temporal translation of

default theories.
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Subsequently  M   and  M'   will be temporal models based on the flows of time  (T, <),

(T', <')   respectively.

Definition 4.1  (Homomorphism)

a) A mapping  f : T � ���  T'  is called a homomorphism of  M   to  M'   (also denoted

f : M  � ���  M' ) if

  (i)  s < t  	 			  f(s) <' f(t)  for all  s, t � ���  T

 (ii)  M(s) = M'(f(s))  for all  s � ���  T

(iii)  If  s  is a root of  T  then  f(s)  is a root of  T' .

b) A homomorphism  f : T � ���  T'   is called branch-surjective if for every branch  B'  of

M'   there exists a branch  B  of  M   such that  f[B] = B' .

Note that a branch-surjective homomorphism is always surjective.
The coproduct  * C = (M, T, < )  of a set  C  of temporal models is a temporal model

which can be constructed by taking  (T, < )  as the disjoint union of the flows of time of

the models in  C, and the union of the respective state assignments as  M . (See [ET02]

for motivation and more properties of the coproduct.) This construction preserves

minimal models:

Proposition 4.2

Let  K   be a temporal theory and let  BB  be a set of models. Then all models in  BB  are

minimal models of  K   if and only if  *BB  is a minimal model of  K.

Proof

Suppose  BB  is a set of minimal models of a temporal theory  K , and let  *BB  be its

coproduct. Since the evaluation of a formula in a point depends only on the

connected component in which it lies, it is easy to see that  *BB  is a model of  K . Now

suppose that there is a smaller model  M   of  K . Then there is a point  s  in  M   such

that  Ms < (*BB)s. This point  s  is an element of one of the models  N  in  BB. Now let’s

look at the model  M'   which is the restriction of  M   to the flow of time of  N. It is

easy to verify that  M' < N   and that  M'   is a model of  K, contradicting the

assumption that  BB  contains only minimal models of  K . Thus, *BB  is a minimal

model of  K . For the other direction, suppose  BB  contains a model  M   which is not a

minimal model of  K . If it is not a model of  K , then it is easy to see that  *BB  can not

be a model of  K . Otherwise there is a model  N < M  which is a model of  K .
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Consider  BB' = ( BB  \ {M} ) � ��� {N} . Then  *BB' < *BB  and  *BB'  is a model of  K, so  *BB  is

not a minimal model of  K .

As we want to study minimal models of  T� ���   and  connections between them, the

following proposition is useful:

Proposition  4.3

Let   � ��� be a default theory. If  M   is a minimal model of  T � ���   and  f : M � ���  M'   is

branch-surjective then  M'   is also a minimal model of  T � ��� .
Proof

a) Suppose  M   has flow of time  (T, < )  and  M'  has flow of time  (T', <' ) . First we

will show that  M'   is a model of  T � ��� . Take a point  s' � ��� T' . Then  s'  lies on at least

one branch, say  B'. As  f  is branch-surjective, there must be a branch  B  in  M   such

that  f[B] = B' . Note that  B'  is an isomorphic copy of  B. It follows that  (M', s') � ��� W'

and  (M', s') � ��� C'.

Now take a rule  P� ��� � ��� � ��� � ��� F� ��� � ���  � ���  C� ���   in  D', and suppose  (M',  s') � ���  P� ��� � ��� � ��� � ��� F� ��� � ���  .

This means that there must exist a branch  B'  in  M'   such that  s'  lies  on  B', there is

a  t' � ��� B'  with  t' « s'  and  M' t' � ��� � ��� , and for all  u' � ��� B': if  s' « u'  then  M' u' � ��� � ��� � ��� . Since

f  is  branch-surjective, there is a branch in  M   with   f[B] = B' . Thus, there is a

(unique)  s � ��� B  with  f(s) = s', and it is easy to verify that  (M, s) � ��� P� ��� � ��� � ��� � ��� F� ��� � ��� . But

then  (M, s) � ��� C� ��� , as  M   is a model of  T � ��� , and therefore  (M, s) � ���  C� ��� . We have proved

that  M'  is a model of  T � ��� .
Suppose that  M'   is not minimal, then there exists a model  N' < M' , such that

N' � ���  T � ��� . We will define a model  N  of  T � ���   which is smaller than  M , contradicting

the hypothesis that  M   is minimal. Let  N  be based on the flow of time  (T, <), and

define  Ns = N'f(s). Then  Ns = N'f(s) � ��� M' f(s) = Ms, and there is at least one point  u' � ��� T'

such that  N'u' � ��� M' u' . But as  f  is surjective, there is a  u � ��� T  with  f(u) = u', so we

have that  Nu � ��� Mu. Take a point  s � ��� T, then the path from the root of the tree in

which  s  lies is mapped isomorphically to the path from a root to  f(s), so since  N'  is

a model of  C'  and  W' , it is easy to see that  (N, s) � ��� C' � ��� W' . Now take a rule

P� ���  � ���  � ���  � ��� F� ��� � ���  � ���  C� ���   in  D' and suppose  (N, s) � ��� P� ���  � ���  � ���  � ��� F� ��� � ��� . This means that there is

a branch  B  in  N  on which  s  lies, such that there is a  t « s  with  Nt � ��� � ���   and for all

u � ��� B  with  u » s,  Nu � ��� � ��� � ��� . But then  f[B]  is a branch in  N'  with f(t) « f(s)  and

N' f(t)  � ���  � ��� , and for all  u' � ��� B'  with  u' » s  it must be the case that  u' = f(u)   for some

u � ��� B  with s « u, so Nu = N' f(u) � ��� � ��� � ��� . As  N'  is a model of  D', we have  N' f(s) 
� �������� , so
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that  Ns 
� �������� . Thus  N  is a model of  D', so it is a model of  T � ���   in contradiction with

the hypothesis that  M   was a minimal model of  T � ��� . We have proved that  M'   is a

minimal model of  T � ��� .

Sometimes properties of branching time temporal models can be related to properties of

the linear time models that are their branches. In our case we have the following results

for the property of being a minimal model of  T � ��� .

Theorem  4.4

Let   � ��� be a default theory.

a)  If  M   is a (branching time) temporal model such that  BB(M) � ���   LLTT (� ��� ), then  M   is a

minimal model of  T � ��� .
b)  Suppose � ���   is extension complete and  BB � ��� LLTT (� ��� ). If  f : *BB � ���  M   is a surjective

homomorphism, then  M   is a minimal model of  T � ��� .
Proof

a) Suppose  BB(M) � ���   LLTT (� ��� ). By definition, LLTT (� ��� )  are (linear) minimal models of  T � ��� ,
so the same holds for  BB(M) . By Proposition 4.2, the coproduct  *BB(M)   is a minimal

model of  T � ��� . Now define the function  f: *BB(M) � ��� M   mapping every branch in

*BB(M)  into  M . It is easy to see that  f  is a branch-surjective homomorphism, so by

Proposition 4.3, M   is a minimal model of  T� ��� .
b) We will show that  BB(M) � ���   LLTT (� ��� ), from which the desired result follows by part

a). Take any branch  D  of  M , and assume (without loss of generality) that it has the

natural numbers as flow of time. Now take an arbitrary  n � ��� NN. Since  f  is surjective,

there must be a point  s  in  *BB  such that  f(s) = n. This point  s  must lie on a branch

D'  of  *BB, and this  D'  is a linear time model in  BB. From the definition of

homomorphism, it follows that  f  maps this branch up to point  s  isomorphically

onto  D  (up to point  n). This means that  d(D, D') � ��� 2-n. As  n  was chosen arbitrarily,

we can find a sequence of linear time models in  BB    that have  D  as their limit. The

models of  BB  are in  LLTT (� ��� ), which is closed as  � ���   is extension complete. This means

that  D � ��� LLTT (� ��� ). By a) we have that  M   is a minimal model of  T � ��� .

It can easily be shown that in general minimal models of  T � ��� can have branches that are

not in  LL TT(� ��� ). Consider the default theory  � ���  = < W, D >  with  W = � ���   and  D = { :a / a,

:c / b, a : c / c, a : � ��� c / � ��� c }, and the following model  M :
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a, b

c

� ��� c

c

� ��� c

...

...

Figure 2. Minimal model with non-minimal branches

In Figure 2, we have again indicated the (non-trivial) formulas that are true in the

various time points, where a formula is not repeated if it was true earlier (so in the points

labelled c, also  a  and  b  are true). It can easily be checked that  M   is a model of  T � ��� ,
and that it is minimal (if any true formulae are deleted anywhere, the result is not a

model of  T � ��� ). However, the lower branch is not a minimal linear time model of  T � ��� .
This can be seen either by considering the smaller model where  b  is deleted from the

second point onwards (which would still be a model of  T � ��� ), or by verifying that its limit

model (in which  a, b  and  � ���  c  are known), does not correspond to an extension of  � ��� .
The equivalence of these two methods follows from Theorem 3.3.

Given the set of linear time minimal models  LLTT(� ��� )  of a temporal interpretation T � ���
of a default theory, these models can be jointly embedded in their coproduct  *LL TT(� ��� ),

which also is a minimal model of T � ��� . This provides one model to describe the complete

semantics of the default theory. However, this model may contain a lot of redundant

information: all branches at least have the same starting point, but in the coproduct a

copy is included of this (actually identical information state) starting point for every

branch. Moreover, branches can contain longer initial subsequences that are identical. In

a coproduct these are not shared but present in a copy for each of the branches. A more

compact form of a joint embedding of the minimal linear time models can be obtained if

all these copies are identified with each other in order to share these (sub)structures. For

this construction based on identification of equal substructures homomorphisms can be

used. This can be stated in other words as follows: we want to find a model which

"contains" all minimal linear time models as a submodel, and which is as small as

possible in the sense that its image under any surjective homomorphism is isomorphic to

the model itself. This last property is called closedness (see also [ET02]):
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Definition 4.5  (Closed model)

A model  M   is called closed if one of the following equivalent conditions is

satisfied:

(i) For all  t, u  roots or with a common immediate predecessor :

Mt = Mu  implies  t = u.

(ii) Every homomorphism  f : M � ��� M'  is injective.

In [ET02] we established the following result.

Proposition  4.6

Every branching time model  M   can be mapped by a surjective homomorphism onto

a closed branching time model, which is unique up to isomorphism.

The required homomorphism identifies all common initial subbranches.

Definition 4.7 (Closure and joint closure)

a)  Let  M   be a branching time model. The unique closed model on which  M   can be

mapped by a surjective homomorphism is called the closure of  M , denoted by cl(M) .

b)  Let  MM  be a set of models. The closure of the coproduct *MM    is called the joint

closure of MM, denoted by  jcl(MM).

In [ET02] a more direct, but equivalent definition of the notion of joint closure in

general category-theoretic terms is given. The following was proved there.

Proposition 4.8

A closed model is the joint closure of its branches.

Definition 4.9

The joint closure  jcl(LLTT (� ��� ))  of  LLTT (� ��� )   is shortly denoted by  LT* � ��� .

Theorem 4.10

a)  Let  � ���   be a default theory and  SS � ���  LLTT (� ��� )  a set of minimal linear time models of

T � ��� . Then the joint closure  jcl( SS)  of  SS  is a closed minimal temporal model of  T � ��� . If
SS  is closed (in  (LT, d) ), then  BB(jcl(SS)) = SS.
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b)  This holds in particular for the set LLTT(� ��� )   of all minimal linear time models of

T � ��� : the model  LT* � ���   is a minimal model of  T � ��� and if  � ��� is extension complete,

then  BB(LT* � ��� ) = LLTT (� ��� ).

Proof

The joint closure  jcl( SS)  is closed by definition, and the (unique) homomorphism  f

mapping *SS   into  jcl( SS)  is surjective, so  jcl( SS)  is a minimal model of  T� ���   by

Theorem 4.4b). Now suppose  SS    is closed. Using a similar argument as in the proof

of Theorem 4.4b), one can show that every branch of  jcl( SS)  can be approximated by

elements of  SS, which is closed and therefore contains such a branch. If  � ���   is

extension complete, then by definition   LLTT (� ��� )  is closed.

The aim of this section was to find a branching time model containing just the Reiter

extensions of  � ��� as limits of its branches. The following theorem shows that for an

extension complete default theory  � ��� the model  LT* � ���  indeed fulfils this requirement.

Theorem 4.11

Let  � ���  = < W, D, >  be an extension complete default theory with  W  consistent.

a)  For every minimal linear time model of  T � ��� there is a unique homomorphism into

LT* � ��� ; this homomorphism is injective.

b) There is a bijection from the set  EE(� ��� )  of all Reiter extensions of  � ���   onto the set

BB(LT* � ��� )  of branches of LT* � ��� .
More precisely, the mapping   

� ���
:  EE(� ��� ) � ���  BB(LT* � ��� ) defined by

� ���
(E)  = (Mod(Ei)) � ��� � ���   NN ,  has the inverse  � ���  :  BB(LT* � ��� ) � ���  EE(� ��� )  defined by � ��� (B)  =

Th(lim B LT* � ��� )

Furthermore, for every  � ��� � ���  NN  it holds  � ��� (B)i = Th(Bi)

Proof

a) Every model  M   of  LLTT (� ��� )  is mapped by inclusion (which is a homomorphism)

into *LLTT (� ��� )  which is mapped into  LT* � ��� . The composition of these two

homomorphisms is again a homomorphism. If there are two homomorphisms  f, g   

mapping  M   into  LT* � ��� , then  f[M]   and  g[M]   are two isomorphic branches in a

closed model, so these images must coincide by (the first condition) in

Definition 4.5. But this means that  f  and  g  are equal. It can easily be checked that a

homomorphism from a linear model is always injective. Note that extension

completeness is not needed here.
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b) From Theorem 4.10 we have that  BB(LT* � ��� ) = LLTT (� ��� ), and Theorem 3.3 established a

bijection between  LLTT (� ��� )  and  EE(� ��� ).

For the existence of a closed temporal model containing as branches just the minimal

linear time models of a given default theory, the condition of extension completeness is

not only sufficient, but also necessary, as is shown in the following proposition.

Proposition 4.12

For any default theory  � ��� the following are equivalent:

 (i)   � ��� is extension complete.

(ii)   There exists a closed model  M  with  BB(M) =  LLTT(� ��� ).

Proof

From (i) to (ii) is easy: the required model is  LT* � ��� . For the other direction, suppose

we have a closed model  M  with  BB(M) =  LLTT(� ��� ). Take a converging sequence

{ B1, B2, ... }  of models  in  LLTT (� ��� ), with limit  B. The models in the sequence are all

present as branches in  M , and as  M   is closed, if two models in the sequence have an

initial common subbranch, then these are mapped onto the same subbranch in  M .

Take any initial subbranch of  B, then we can find a model  Bi   with the same initial

subbranch, the image of which is in  M . If we extend this initial subbranch by one

point, then we can again find a model  Bj   with this initial subbranch. Its image in  M

then extends the image of the subbranch of  Bi , as  M   is closed. In this fashion we

find that  B  is a branch of  M , and therefore is in  LLTT (� ��� ).

So if a default theory  � ���   is not extension complete, then  LT* � ���   contains a branch which

is not a member of   LLTT(� ��� ).  Such a branch does not correspond to an extension. This

means that the use of a temporal model construction as introduced here heavily depends

on the topological properties of the given default theory: constructions fulfilling the

requirements we imposed are not possible for non-extension complete default theories.

However, recall Proposition 3.6, stating that this can only occur in the case of an infinite

set of defaults. For almost all applications of default logic, the condition of extension

completeness is fulfilled due to finiteness of the set of defaults.
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5  Semantic Entailment Relations

We can define the following minimal semantic entailment relations (where  � ���   is any

extension complete default theory):

� ���   |≈LT  � ���      � ���    � ��� M   [ M is a minimal linear time model  of  T� ���    	 			 M � ���   � ��������

� ���   |≈LT*  � ��� � ���     LT* � ��� � ���   � ���

For a certain class of formulae we can give logical relations between these entailment

relations.

Definition 5.1  (Backward persistency)

Let  f : M � ���  M'  be a homomorphism. The backward persistency property for a

formula  � ���  (under f ) is defined by

   (M, t) � ���   � ���    � ���     (M', f(t)) � ���   � ���   for all time points  t  in  T.

In  [ET02]  an overview of results on persistency is given. Here we confine ourselves to

the following:

Proposition 5.2

For any default theory  � ���   its temporal interpretation  T � ���  is backward persistent

under any homomorphism.

The following theorem gives more precise connections between the two semantic

consequence relations.

Theorem 5.3

Let  T � ���   be the temporal interpretation of an extension complete default theory  � ���   

and  � ���   any formula.

a)  If  � ���  is backward persistent under injections, then

� ���    |≈LT*  � ���   	 			 � ���    |≈LT  � ���

b)  If  � ���  is propositional, then

� ���    |≈LT*   � ��� F � ��� � ��� � ���    |≈LT  � ��� F � ���
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Proof

a) Suppose  � ���    |≈LT*  � ���   and let  M   be a minimal linear time model of  T� ��� . By

Theorem 4.11a) there is an injective homomorphism  f  mapping  M   into LT* � ��� . Take

any time point  s  of  M , then since  LT* � ��� � ���   � ��� , in particular  (LT* � ��� , f(s)) � ���   � ��� . As  � ���   is

backward persistent under injections, we have  (M, s) � ��� � ��� . This proves that  M � ��� � ��� ,

and therefore  � ���    |≈LT  � ��� .

b) If  � ���   is propositional, it is easy to see that  � ��� F � ���   is backward persistent under any

homomorphism. So the left to right direction follows with part a). For the other

direction, by Theorem 4.10 we have that  BB(LT* � ��� ) = LLTT (� ��� ). Take a point  s  in  LT* � ��� ,
and a branch  B  through  s. Then  B � ��� LLTT (� ��� ), so  (B, s) � ��� � ��� F � ��� , which means there

must be a point  t » s  with  Bt � ��� � ��� . But then also  (LT* � ��� )t � ��� � ��� . As the branch was

arbitrary, we have  (LT* � ��� , s) � ��� � ��� F � ��� . This proves that  LT* � ���  � ��� � ��� F � ��� , so  � ���    |≈LT*  � ��� F � ��� .

We will show in Theorem 5.5 how these formulae  � ��� F � ��� are related to sceptical

entailment.

The model  LT* � ��� of an extension complete default theory  � ��� gives an overview of

both all possible reasoning paths from a default theory (the branches) and the resulting

conclusion sets (the limit models). Therefore in principle it contains all information that

is relevant for an intended semantics. As a special case also sceptical and credulous

entailment relations can be based on this model.

Definition  5.4  (sceptical and credulous entailment)

Let  � ���   be an extension complete default theory and let  � ���   be a propositional

formula.

a)  We define the sceptical entailment relation by:

 � ���    |≈scep � ���       if � ���    is in all extensions of  � ��� .
b)  We define the credulous entailment relation by:

 � ���    |≈cred � ���        if � ���    is in some extension of  � ��� .
c)  We define  LT* � ��������    as the set of the limit models of all branches of  LT* � ��� , i.e.,

LT* � ��������    =  { limB LT* � ���  | B  branch of LT* � ��� }

Theorem  5.5

Let  � ���   be an extension complete default theory,  r  the root of  LT* � ���  and let  � ���   be a

propositional formula.

a)  The following are equivalent:
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   (i)   � ���    |≈scep � ���

  (ii)  LT* � ��������  � ���   � ���

 (iii)  (LT* � ��� , r)  � ���   ∀F � ���

(iv)  (L, s)  � ���   ∀F � ��� for every minimal linear time model  L  of  � ��� with root  s

b)  The following are equivalent:

  (i)   � ���    |≈cred � ���

 (ii)  limB LT* � ���   � ���   � ���    for some branch  B

(iii)  (LT* � ��� , r) � ���   ∃F � ���

(iv)  (L, s)  � ���   ∃F � ��� for some minimal linear time model  L   of  � ��� with root  s

(v)  (L, s)  � ���   ∀F � ��� for some minimal linear time model  L   of  � ��� with root  s

Proof

a) From Theorem 4.11, we know that the function  
� ���

:  EE(� ��� ) � ���  BB(LT* � ��� ) defined by
� ���

(E)  = (Mod(Ei)) � ��� � ���   NN ,  is a bijection. Now for any propositional  � ��� , we have that

� ���  � ���  E  � ��� � ��� � ���
� ���

Ei  � ��� Mod(Ei) � ��� � ���   for some  i  � ��� lim((Mod(E i))i � ��� NN) � ��� � ���  (this uses the

fact that information states are closed). From these facts, it is easy to see that (i) and

(ii) are equivalent. The equivalence of (ii) and (iii) is immediate. From Theorem 4.10

we know that  BB(LT* � ��� ) = LLTT (� ��� ), from which we get the equivalence of (iii) and (iv).

b) These equivalences can be proved analogously to those in part a). The equivalence

of (iv) and (v) is an easy consequence of the semantic definitions of  ∃F  and  ∀F.

Using the model  LT* � ���   we can define many more different consequence relations.

Sceptical and credulous entailment used the formulae ∀F � ���   and  ∃F � ��� , but our temporal

language is much more expressive. We can check for instance whether a certain

propositional formula is true in every branch at a point with depth less than 5.

In the case of normal default theories, there are even stronger connections between

linear minimal models, branching time minimal models and the joint closures of these

classes. We will treat them in the next section.

6  The Case of Normal Default Theories

A normal default rule is a default rule of the form  ( � ��� � ��� � ��� ) / � ��� , and a default theory

consisting of solely normal default rules is called a normal default theory. In [ET94] we

pointed out a branching time temporal semantics for the normal case only. Most of the

results there follow as a special case of the general case in this paper; we will restate and
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prove the main results here. In case  � ���   is normal, the minimal temporal models of T � ���
can be characterised completely by their branches.

Theorem 6.1

Let  � ���   be a normal default theory. Then  M   is a minimal temporal model of  T � ��� if

and only if  BB(M) � ���  LLTT (� ��� ).

Proof

The right to left direction is Theorem 4.4a). Note that the counterexample for the

other direction following this theorem (see Figure 2) is based on a default theory

with a non-normal default. So let us prove the other direction. Suppose  M   is a

minimal model of  T � ���   but has a branch  B  which is not a minimal model of  T � ��� .
Consider the homomorphism  f  mapping  B  seen as a linear time model into  M . As

M � ��� T � ���   and  T � ���   is backward persistent under homomorphisms (Proposition 5.2), we

have that  B � ��� T � ��� . As it is not a minimal model of  T � ���   by assumption, there must

exist a linear time model  N  of  T � ���   such that  N < B. Suppose  B  and  N  are based on

the flow of time  s0 < s1 < s2 < ..... Let us consider the first point of time  sn    (from the

roots) at which  N  and  B  are different. If  N(s0) < B(s0) , then define a new model  M'

based on the same flow of time as  M   but  with  M'(s0) = N(s0)  and  M'(t) = M(t)   for all

t ≠ s0. It can easily be checked that  M'   is a model of  T � ���   and  M' < M , which is

impossible since  M   was minimal.

Now suppose  n > 0  so  N(si) = B(si )   for  i  < n  and  N(sn) < B(sn). Construct a model

M'   based on the same flow of time as  M   but with  M'(sn) = N(sn)  and  M'(t) = M(t)

for  t ≠ sn. We will show that  M' � ��� T � ��� . It is clear that  M' � ��� W' , as this is evaluated per

time point, and both  M � ��� W'   and  N � ��� W' . To show that  M' � ��� C', it is sufficient to

show that  M'  is conservative. The only interesting case is for a point  t « sn. But as

M'   has a flow of time which is a forest, the path from  sn  to the root is unique, and

as  sn  lies on  B, it must be the case that  t = si   for some  i < n. But then we have

M'(s i) = N(si) � ��� N(sn) = M'(sn), as  N  is conservative (N � ��� C').

Now take a rule  P� ���  � ��� � ��� � ��� F� ��� � ��� � ��� C� ��� (remember that  � ���   is normal). It is easy to see

that if at a point in  M   the left hand side is false, it will also be false in the

corresponding point of  M'  (this uses conservativity of  M' ). So the only possibility of

this rule to be false in  M' , is at time point  sn. We will show that this can not occur.

So suppose we have  (M',  sn) � ��� P� ��� � ��� � ��� � ��� F� ��� � ��� , then it easily follows that

(M, sn) � ���  P� ���  � ���   � ��� � ��� F� ��� � ��� , which implies  (M, sn) � ���  C� ��� , so  (B, sn) � ���  C� ��� . This means (by

conservativity of  B) that (B, si ) � ��� C� ��� � ���   for all  i � ��� NN. As  N < B, we also have that
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(N, si ) � ��� C� ��� � ��� , so  (N, sn) � ��� � ��� � ��� F� ��� � ��� . Since  (M, sn) � ���  P� ��� , we have  (B, sn) � ���  P� ��� , from

which it follows that  (N, sn) � ��� P� ��� (N(si) = B(si )   for  i  < n). So  (N, sn) � ��� P� ��� � ��� � ��� � ��� F� ��� � ��� .
As  N � ��� D', we get  (N, sn) � ��� C� ��� , and from  M'(sn) = N(sn)  we conclude that

(M',  sn) � ���  C� ��� . We have shown that  M' < M   and  M' � ��� T � ��� , which contradicts the

assumption that  M   is a minimal model of  T � ��� . This means that  B  must be a

minimal model of  T � ��� , so  BB(M) � ���  LLTT (� ��� ), which concludes the proof.

For the case of closed models this implies the following.

Proposition 6.2

Suppose  � ���   is an extension complete normal default theory and M   a temporal model.

Then  M  is a closed minimal temporal model of  T � ���   if and only if  M   is the joint

closure of a set  BB  of minimal linear time models of  T � ��� .
Proof

The joint closure of a set  BB  of minimal linear time models of  T � ���   is a closed

minimal temporal model of  T � ���   by Theorem 4.10 (extension completeness and

normality of  � ���   is not used). For the other direction, by Proposition 4.8,  M   is the

joint closure of its branches. These branches are minimal linear time models of  T � ���
by Theorem 6.1.

For extension complete normal default theories, the model  LT* � ���   also has stronger

properties:

Definition 6.3  (Final minimal model)

The model  F  is called a final minimal temporal model of  T � ���  if it is a minimal

temporal model of  T � ���   and for each minimal temporal model  M   of  T � ���  there is a

unique homomorphism  f : M � ���  F.

We have the following result:

Theorem 6.4

Let � ���  be a normal extension complete default theory. Then  LT* � ���   is a (unique) final

minimal temporal model of  T � ��� ; it  is the joint closure of all minimal temporal

models of  T � ��� .  For every minimal temporal model of  T � ��� there is a unique
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homomorphism into LT* � ��� ; for closed minimal temporal models of  T � ��� this

homomorphism is injective.

Proof

By definition, LT* � ���   is the joint closure of  LLTT (� ��� ), so using Proposition 6.2 we have

that it is a minimal temporal model of  T � ��� . Now consider any minimal temporal

model  M   of  T � ��� . By Theorem 6.1 it follows that  BB(M) � ���  LLTT (� ��� ), and from Theorem

4.10 it follows that  BB(LT* � ��� ) = LLTT (� ��� ). The required unique homomorphism maps

every branch of  M   into its (unique) place in  LT* � ��� . This uniqueness follows from

the closedness of  LT* � ��� . By Definition 4.5 (ii), any homomorphism from a closed

model is injective.

7  Conclusions

In this paper we have given a temporal interpretation of default rules. This led us to a

translation of default theories into temporal theories. In earlier publications (i.e. [ET93,

ET98]) we showed that using this translation we can define semantics for default logic

using minimal linear time temporal models. In the current paper we described the

construction of a branching time temporal model in which all minimal linear time

models are incorporated, and proved properties about this model. Under a topological

condition (extension completeness), which is always satisfied for finite default theories,

this model contains only branches which are minimal linear time models.  As another

main result we established that for any normal default theory satisfying the same

condition, this model contains not only all minimal linear models of the temporal

interpretation, but also all minimal branching time models. In this case we have a linear,

branching time and final model semantics for default logic. Other semantics for default

logic can be found in e.g. [Vo93], [BS94] (see [ET98] for a comparison between our

linear time semantics and various other approaches).

This work enables one to use concepts from temporal logic to integrate process

aspects into the study of formal semantics for default reasoning. We share the view also

put forward in [Ga82], [Et87] that integrating such dynamics in the semantics is more

transparent and fruitful than trying to abstract from them. We think that our work as

presented in the current paper (and [ET93, ET94b, ET98]) contributes to the

operationalization of this view.
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