Process Algebra: An Algebraic Theory of Concurrency

\[x \parallel y = y \parallel x \]
A Very Brief History of Process Algebra

Late 70’s: Hoare and Milner developed process algebras CSP and CCS, to specify and formally reason about distributed systems.

Early 80’s: Bergstra and Klop developed the process algebra ACP.

1982: Bergstra and Klop coined the term process algebra.
Examples of Concurrent Systems

A colony of ants:

A pocket calculator:
Given a set S of states, and a finite set A of (atomic) actions.

- A transition $s \xrightarrow{a} s'$ expresses that state s can evolve into state s' by execution of action a.

- A transition $s \xrightarrow{a} \checkmark$ expresses that state s can terminate successfully by execution of action a.

A process graph is a set of transitions, with a special root state.
Part of the process graph of the pocket calculator:

\[
= \begin{array}{c}
\text{C} \\
\text{+} \\
0 + .. \\
8 - \\
0 + 8.. \\
3\\n= \\
\end{array}
\begin{array}{c}
7 \\
7.. \\
1 \\
1 \\
4 \\
\end{array}
\begin{array}{c}
\text{C} \\
\text{+} \\
0 + .. \\
7.. \\
7 *.. \\
7 * 4.. \\
= \\
\end{array}
\begin{array}{c}
83 \\
-1 \\
28 \\
\end{array}
\]

This process graph is built from the process graphs of the buttons on the calculator.
Basic process terms are built from atomic actions, *alternative composition* and *sequential composition*.

- **An atomic action** a represents indivisible behaviour. It executes itself and then terminates successfully: $a \xrightarrow{a} \sqrt{\cdot}$.

- **Alternative composition**: the process term $t_1 + t_2$ executes the behaviour of either t_1 or t_2.

- **Sequential composition**: the process term $t_1 \cdot t_2$ first executes t_1, and upon successful termination proceeds to execute t_2.
The basic process term \(((a + b) \cdot c) \cdot d\) represents the process graph:

\[
\begin{align*}
((a + b) \cdot c) \cdot d \\
\begin{array}{c}
\downarrow \\
\downarrow \\
\downarrow \\
\downarrow \\
\downarrow \\
\sqrt{}
\end{array}
\end{align*}
\]
Transition Rules of Basic Process Algebra

\[v \xrightarrow{v} \sqrt{\cdot} \]
\[x \xrightarrow{v} \sqrt{\cdot} \]
\[x + y \xrightarrow{v} \sqrt{\cdot} \]
\[y \xrightarrow{v} \sqrt{\cdot} \]
\[x \cdot y \xrightarrow{v} y \]

\[x \xrightarrow{v} x' \]
\[x + y \xrightarrow{v} x' \]
\[y \xrightarrow{v} y' \]
\[x \cdot y \xrightarrow{v} x' \cdot y \]
Example Derivation of a Transition

Proof of $((a + b) \cdot c) \cdot d \overset{b}{\rightarrow} c \cdot d$ from the transition rules:

\[
\begin{align*}
 b & \overset{b}{\rightarrow} \sqrt{} \\
 a + b & \overset{b}{\rightarrow} \sqrt{} \\
 (a + b) \cdot c & \overset{b}{\rightarrow} c \\
 ((a + b) \cdot c) \cdot d & \overset{b}{\rightarrow} c \cdot d
\end{align*}
\]
What is a Suitable Process Equivalence?

A process equivalence based on traces is not satisfactory.

Example:

Both root states display \(\text{read}(d) \text{ write}_1(d) \) and \(\text{read}(d) \text{ write}_2(d) \), so they are trace equivalent.

A crucial distinction becomes apparent if disc 1 crashes. Then the first process always saves datum \(d \) on disc 2, while the second process may get stuck.
A bisimulation is a binary relation B on states such that:

1. if $p B q$ and $p \xrightarrow{a} p'$, then $q \xrightarrow{a} q'$ with $p' B q'$

2. if $p B q$ and $q \xrightarrow{a} q'$, then $p \xrightarrow{a} p'$ with $p' B q'$

3. if $p B q$ and $p \xrightarrow{a} \sqrt{_}$, then $q \xrightarrow{a} \sqrt{_}$

4. if $p B q$ and $q \xrightarrow{a} \sqrt{_}$, then $p \xrightarrow{a} \sqrt{_}$

p and q are bisimilar, denoted $p \leftrightarrow q$, if there is a bisimulation relation B such that $p B q$.
Example

\[(a + a)\cdot b \iff a\cdot b + a\cdot(b + b)\]

\[
\begin{array}{c}
\text{(a + a)\cdot b} \\
\rightarrow \\
\text{a\cdot b} \\
\rightarrow \\
\text{a\cdot (b + b)}
\end{array}
\]

Bisimulation relation \mathcal{B} is defined by: \[(a + a)\cdot b \mathcal{B} a\cdot b + a\cdot(b + b)\]

\[b \mathcal{B} b\]

\[b \mathcal{B} b + b.\]
Example

\[(a + a) \cdot b \iff a \cdot b + a \cdot (b + b)\]

Bisimulation relation \mathcal{B} is defined by:
\[(a + a) \cdot b \mathcal{B} a \cdot b + a \cdot (b + b)\]

\[b \mathcal{B} b\]

\[b \mathcal{B} b + b.\]
Two process terms are bisimilar if and only if they make true exactly the same formulas in Hennessy-Milner Logic.
Congruence

Bisimulation equivalence is a congruence over BPA.

That is, if $s \leftrightarrow s'$ and $t \leftrightarrow t'$, then $s + t \leftrightarrow s' + t'$ and $s \cdot t \leftrightarrow s' \cdot t'$.

This can actually be deduced from the syntactic form of the transition rules for BPA.

All upcoming process algebraic operators are congruent with respect to bisimulation equivalence.
Bisimulation equivalence is a congruence over BPA.

That is, if $s \leftrightarrow s'$ and $t \leftrightarrow t'$, then $s + t \leftrightarrow s' + t'$ and $s \cdot t \leftrightarrow s' \cdot t'$.

This can actually be deduced from the syntactic form of the transition rules for BPA.

All upcoming process algebraic operators are congruent with respect to bisimulation equivalence.
Bisimulation equivalence is a congruence over BPA.

That is, if $s \leftrightarrow s'$ and $t \leftrightarrow t'$, then $s + t \leftrightarrow s' + t'$ and $s \cdot t \leftrightarrow s' \cdot t'$.

This can actually be deduced from the syntactic form of the transition rules for BPA.

All upcoming process algebraic operators are congruent with respect to bisimulation equivalence.
Axioms for BPA Modulo Bisimulation

A1 \quad x + y = y + x

A2 \quad (x + y) + z = x + (y + z)

A3 \quad x + x = x

A4 \quad (x + y) \cdot z = x \cdot z + y \cdot z

A5 \quad (x \cdot y) \cdot z = x \cdot (y \cdot z)
Equality Relation

The axioms induce an equality relation \equiv on basic process terms:

- **(Substitution)**
 If $s = t$ is an axiom and σ maps all variables in s and t to basic process terms, then $\sigma(s) = \sigma(t)$.

- **(Equivalence)**
 $t = t$ for all basic process terms t
 if $s = t$, then $t = s$
 if $s = t$ and $t = u$, then $s = u$

- **(Context)**
 If $s = s'$ and $t = t'$, then $s + t = s' + t'$ and $s \cdot t = s' \cdot t'$.
The axioms for BPA are sound modulo \leftrightarrow:

$$\text{if } s = t \text{ then } s \leftrightarrow t.$$

Since bisimulation equivalence is a congruence over BPA, soundness of the axioms can be verified by checking that $\sigma(s) \leftrightarrow \sigma(t)$ for all axioms $s = t$ and substitutions σ.
The axioms for BPA are sound modulo \leftrightarrow:

$$\text{if } s = t \text{ then } s \leftrightarrow t.$$

Since bisimulation equivalence is a congruence over BPA, soundness of the axioms can be verified by checking that $\sigma(s) \leftrightarrow \sigma(t)$ for all axioms $s = t$ and substitutions σ.

Soundness of the Axioms
Ground-Completeness of the Axioms

The axioms for BPA are \textbf{ground-complete} modulo \leftrightarrow:

\[
\text{if } s \leftrightarrow t \text{ then } s = t.
\]

We write $s =_{AC} t$ if s and t can be equated by axioms A1 and A2.

The axioms for BPA are turned into a \textbf{term rewriting system}, modulo AC of the $+$:

\[
\begin{align*}
 x + y & =_{AC} y + x \\
 (x + y) + z & =_{AC} x + (y + z) \\
 x + x & \rightarrow x \\
 (x + y) \cdot z & \rightarrow x \cdot z + y \cdot z \\
 (x \cdot y) \cdot z & \rightarrow x \cdot (y \cdot z)
\end{align*}
\]

Each basic process term is reduced to a \textbf{normal form}.

If $s \leftrightarrow t$, and s and t have normal forms s' and t', respectively, then $s' =_{AC} t'$. Hence,

\[
s = s' =_{AC} t' = t
\]
Ground-Completeness of the Axioms

The axioms for BPA are ground-complete modulo \leftrightarrow:

$$\text{if } s \leftrightarrow t \text{ then } s = t.$$

We write $s =_{AC} t$ if s and t can be equated by axioms A1 and A2.

The axioms for BPA are turned into a term rewriting system, modulo AC of the +:

$$\begin{align*}
x + y &=_{AC} y + x \\
(x + y) + z &=_{AC} x + (y + z)
\end{align*}$$

$$\begin{align*}
x + x &\rightarrow x \\
(x + y) \cdot z &\rightarrow x \cdot z + y \cdot z \\
(x \cdot y) \cdot z &\rightarrow x \cdot (y \cdot z)
\end{align*}$$

Each basic process term is reduced to a normal form.

If $s \leftrightarrow t$, and s and t have normal forms s' and t', respectively, then $s' =_{AC} t'$. Hence,

$$s = s' =_{AC} t' = t$$
Example

\[(a + a) \cdot (c \cdot d) + (b \cdot c) \cdot (d + d) = ((b + a) \cdot (c + c)) \cdot d\]

\[
\begin{align*}
(a + a) \cdot (c \cdot d) + (b \cdot c) \cdot (d + d) & \quad \text{A3} \\
\rightarrow & \quad a \cdot (c \cdot d) + (b \cdot c) \cdot (d + d) \\
\rightarrow & \quad a \cdot (c \cdot d) + (b \cdot c) \cdot d \\
A3 & \quad \rightarrow a \cdot (c \cdot d) + b \cdot (c \cdot d)
\end{align*}
\]

\[
\begin{align*}
((b + a) \cdot (c + c)) \cdot d & \quad \text{A3} \\
\rightarrow & \quad ((b + a) \cdot c) \cdot d \\
\rightarrow & \quad (b + a) \cdot (c \cdot d) \\
A5 & \quad \rightarrow b \cdot (c \cdot d) + a \cdot (c \cdot d)
\end{align*}
\]

The two resulting normal forms are equal modulo AC of the +, so the two original basic process terms are equal.
A communication function $\gamma : A \times A \rightarrow A$ produces for each pair of atomic actions a and b their communication $\gamma(a, b)$.

The communication function γ is commutative and associative:

$$\gamma(a, b) \equiv \gamma(b, a)$$
$$\gamma(\gamma(a, b), c) \equiv \gamma(a, \gamma(b, c))$$
The merge \parallel executes its arguments in parallel:

\[
\begin{align*}
x & \xrightarrow{v} \sqrt{} \\
x \parallel y & \xrightarrow{v} y
\end{align*}
\]

\[
\begin{align*}
x & \xrightarrow{v} x' \\
x \parallel y & \xrightarrow{v} x' \parallel y
\end{align*}
\]

\[
\begin{align*}
y & \xrightarrow{v} \sqrt{} \\
x \parallel y & \xrightarrow{v} x
\end{align*}
\]

\[
\begin{align*}
y & \xrightarrow{v} y' \\
x \parallel y & \xrightarrow{v} x \parallel y'
\end{align*}
\]

The merge can also execute a communication between initial transitions of its arguments:

\[
\begin{align*}
x & \xrightarrow{v} \sqrt{} \quad y & \xrightarrow{w} \sqrt{} \\
x \parallel y & \xrightarrow{\gamma(v,w)} \sqrt{}
\end{align*}
\]

\[
\begin{align*}
x & \xrightarrow{v} \sqrt{} \quad y & \xrightarrow{w} y' \\
x \parallel y & \xrightarrow{\gamma(v,w)} y'
\end{align*}
\]

\[
\begin{align*}
x & \xrightarrow{v} x' \quad y & \xrightarrow{w} \sqrt{} \\
x \parallel y & \xrightarrow{\gamma(v,w)} x'
\end{align*}
\]

\[
\begin{align*}
x & \xrightarrow{v} x' \quad y & \xrightarrow{w} y' \\
x \parallel y & \xrightarrow{\gamma(v,w)} x' \parallel y'
\end{align*}
\]
The merge \parallel executes its arguments in parallel:

$$\begin{align*}
 x \xrightarrow{v} \sqrt{} & \quad \Rightarrow & \quad x \parallel y \xrightarrow{v} y \\
 x \parallel y \xrightarrow{v} x' & \quad \Rightarrow & \quad x \parallel y \xrightarrow{v} x' \parallel y \\
 y \xrightarrow{v} \sqrt{} & \quad \Rightarrow & \quad y \parallel y \xrightarrow{v} x \\
 y \parallel y \xrightarrow{v} y' & \quad \Rightarrow & \quad y \parallel y \xrightarrow{v} x \parallel y'
\end{align*}$$

The merge can also execute a communication between initial transitions of its arguments:

$$\begin{align*}
 x \xrightarrow{v} \sqrt{} & \quad y \xrightarrow{w} \sqrt{} & \quad \Rightarrow & \quad x \parallel y \xrightarrow{\gamma(v,w)} \sqrt{} \\
 x \parallel y \xrightarrow{\gamma(v,w)} \sqrt{} & \quad \Rightarrow & \quad x \parallel y \xrightarrow{\gamma(v,w)} y' \\
 x \xrightarrow{v} x' & \quad y \xrightarrow{w} \sqrt{} & \quad \Rightarrow & \quad x \parallel y \xrightarrow{\gamma(v,w)} x' \\
 x \parallel y \xrightarrow{\gamma(v,w)} x' & \quad \Rightarrow & \quad x \parallel y \xrightarrow{\gamma(v,w)} x' \parallel y'
\end{align*}$$
Example

Let $\gamma(a, a) \equiv \gamma(a, b) \equiv \gamma(b, b) \equiv c$. The process graph of $(a \cdot b)(b \cdot a)$ is:
Two auxiliary operators are needed to axiomatise the merge.

The left merge \ll executes an initial transition of its first argument:

$$
\begin{align*}
 x \xrightarrow{v} \sqrt{} & \quad \frac{x \ll y \xrightarrow{v} y}{x \ll y \xrightarrow{v} y'}
 \\
 x \xrightarrow{v} x' & \quad \frac{x \ll y \xrightarrow{v} x' \parallel y'}
\end{align*}
$$

The communication merge $|$ executes a communication between initial transitions of its arguments:

$$
\begin{align*}
 x \xrightarrow{v} \sqrt{} \quad y \xrightarrow{w} \sqrt{} & \quad \frac{x \mid y \xrightarrow{\gamma(v,w)} \sqrt{}}{x \mid y \xrightarrow{\gamma(v,w)} y'}
 \\
 x \xrightarrow{v} \sqrt{} \quad y \xrightarrow{w} y' & \quad \frac{x \mid y \xrightarrow{\gamma(v,w)} y'}{x \mid y \xrightarrow{\gamma(v,w)} x'}
 \\
 x \xrightarrow{v} x' \quad y \xrightarrow{w} \sqrt{} & \quad \frac{x \mid y \xrightarrow{\gamma(v,w)} x'}{x \mid y \xrightarrow{\gamma(v,w)} x' \parallel y'}
 \\
 x \xrightarrow{v} x' \quad y \xrightarrow{w} y' & \quad \frac{x \mid y \xrightarrow{\gamma(v,w)} x' \parallel y'}{x \mid y \xrightarrow{\gamma(v,w)} x' \parallel y'}
\end{align*}
$$
Two auxiliary operators are needed to axiomatise the merge.

The **left merge** \(\sqcup \) executes an initial transition of its first argument:

\[
\begin{align*}
 x \xrightarrow{\nu} \sqrt{} \quad &\Rightarrow \quad x \sqcup y \xrightarrow{\nu} y \\
 x \xrightarrow{\nu} x' \quad &\Rightarrow \quad x \sqcup y \xrightarrow{\nu} x'||y
\end{align*}
\]

The **communication merge** \(| \) executes a communication between initial transitions of its arguments:

\[
\begin{align*}
 x \xrightarrow{\nu} \sqrt{} \quad y \xrightarrow{w} \sqrt{} \quad &\Rightarrow \quad x|y \xrightarrow{\gamma(v,w)} \sqrt{} \\
 x \xrightarrow{\nu} \sqrt{} \quad y \xrightarrow{w} y' \quad &\Rightarrow \quad x|y \xrightarrow{\gamma(v,w)} y' \\
 x \xrightarrow{\nu} x' \quad y \xrightarrow{w} \sqrt{} \quad &\Rightarrow \quad x|y \xrightarrow{\gamma(v,w)} x' \\
 x \xrightarrow{\nu} x' \quad y \xrightarrow{w} y' \quad &\Rightarrow \quad x|y \xrightarrow{\gamma(v,w)} x'||y'
\end{align*}
\]
Conservative Extension

PAP is a *conservative extension* of BPA, i.e., the process graphs of basic process terms remain the same.

This can again be deduced from the syntactic form of the transition rules for BPA and PAP.

All upcoming process algebraic extensions are conservative.

Remark: $+$ binds weaker than other operators.
PAP is a conservative extension of BPA, i.e., the process graphs of basic process terms remain the same.

This can again be deduced from the syntactic form of the transition rules for BPA and PAP.

All upcoming process algebraic extensions are conservative.

Remark: + binds weaker than other operators.
Conservative Extension

PAP is a **conservative extension** of BPA, i.e., the process graphs of basic process terms remain the same.

This can again be deduced from the syntactic form of the transition rules for BPA and PAP.

All upcoming process algebraic extensions are conservative.

Remark: + binds weaker than other operators.
PAP is a **conservative extension** of BPA, i.e., the process graphs of basic process terms remain the same.

This can again be deduced from the syntactic form of the transition rules for BPA and PAP.

All upcoming process algebraic extensions are conservative.

Remark: $+$ binds weaker than other operators.
Axioms for PAP

\[M1 \quad x \parallel y = (x \parallel y + y \parallel x) + x \parallel y \]

\[LM2 \quad \nu \parallel y = \nu \cdot y \]
\[LM3 \quad (\nu \cdot x) \parallel y = \nu \cdot (x \parallel y) \]
\[LM4 \quad (x + y) \parallel z = x \parallel z + y \parallel z \]

\[CM5 \quad \nu \parallel \nu = \gamma(\nu, \nu) \]
\[CM6 \quad \nu \parallel (w \cdot y) = \gamma(\nu, w) \cdot y \]
\[CM7 \quad (\nu \cdot x) \parallel w = \gamma(\nu, w) \cdot x \]
\[CM8 \quad (\nu \cdot x) \parallel (w \cdot y) = \gamma(\nu, w) \cdot (x \parallel y) \]
\[CM9 \quad (x + y) \parallel z = x \parallel z + y \parallel z \]
\[CM10 \quad x \parallel (y + z) = x \parallel y + x \parallel z \]
Axioms for PAP

\[
\text{M1} \quad x \parallel y = (x \perp y + y \perp x) + x \mid y
\]

\[
\text{LM2} \quad v \perp y = v \cdot y
\]

\[
\text{LM3} \quad (v \cdot x) \perp y = v \cdot (x \parallel y)
\]

\[
\text{LM4} \quad (x + y) \perp z = x \perp z + y \perp z
\]

\[
\text{CM5} \quad v \mid w = \gamma(v, w)
\]

\[
\text{CM6} \quad v \mid (w \cdot y) = \gamma(v, w) \cdot y
\]

\[
\text{CM7} \quad (v \cdot x) \mid w = \gamma(v, w) \cdot x
\]

\[
\text{CM8} \quad (v \cdot x) \parallel (w \cdot y) = \gamma(v, w) \cdot (x \parallel y)
\]

\[
\text{CM9} \quad (x + y) \mid z = x \mid z + y \mid z
\]

\[
\text{CM10} \quad x \mid (y + z) = x \mid y + x \mid z
\]
Axioms for PAP

M1 \[x\|y = (x\perp y + y\perp x) + x|y \]

LM2 \[v\perp y = v \cdot y \]

LM3 \[(v \cdot x)\perp y = v \cdot (x\|y) \]

LM4 \[(x + y)\perp z = x\perp z + y\perp z \]

CM5 \[v|w = \gamma(v, w) \]

CM6 \[v|(w \cdot y) = \gamma(v, w) \cdot y \]

CM7 \[(v \cdot x)|w = \gamma(v, w) \cdot x \]

CM8 \[(v \cdot x)|(w \cdot y) = \gamma(v, w) \cdot (x\|y) \]

CM9 \[(x + y)|z = x|z + y|z \]

CM10 \[x|(y + z) = x|y + x|z \]
Soundness and Ground-Completeness

The axioms for PAP are sound modulo \leftrightarrow:

\[s = t \Rightarrow s \leftrightarrow t \]

Again soundness can be checked for each axiom separately.

The axioms for PAP are ground-complete modulo \leftrightarrow:

\[s \leftrightarrow t \Rightarrow s = t \]

Again ground-completeness can be proved using a term rewriting approach, to eliminate parallel operators from process terms.
The axioms for PAP are sound modulo \leftrightarrow:

\[s = t \Rightarrow s \leftrightarrow t \]

Again soundness can be checked for each axiom separately.

The axioms for PAP are ground-complete modulo \leftrightarrow:

\[s \leftrightarrow t \Rightarrow s = t \]

Again ground-completeness can be proved using a term rewriting approach, to eliminate parallel operators from process terms.
The **deadlock** δ does not display any behaviour.

There is no transition rule for this constant.

The domain of the communication function γ is extended with δ:

$$\gamma : A \times A \to A \cup \{\delta\}.$$

If a and b do not communicate, then $\gamma(a, b) \equiv \delta$.

If $\gamma(a, b) \equiv \delta$, then $a|b = \delta$, so in that case $a|b$ does not display any transitions.
The **deadlock** \(\delta\) does not display any behaviour.

There is no transition rule for this constant.

The domain of the communication function \(\gamma\) is extended with \(\delta\):

\[
\gamma : A \times A \rightarrow A \cup \{\delta\}.
\]

If \(a\) and \(b\) do not communicate, then \(\gamma(a, b) \equiv \delta\).

If \(\gamma(a, b) \equiv \delta\), then \(a \mid b = \delta\), so in that case \(a \mid b\) does not display any transitions.
Encapsulation

The encapsulation operator ∂_H, with $H \subseteq A$, renames all actions from H in its argument into δ:

$$
\frac{x \xrightarrow{\nu} \sqrt{\nu \notin H}}{\partial_H(x) \xrightarrow{\nu} \sqrt{\nu}}
$$

$$
\frac{x \xrightarrow{\nu} x' \ (\nu \notin H)}{\partial_H(x) \xrightarrow{\nu} \partial_H(x')}
$$

Encapsulation operators can be used to force actions into communication.

Example: $\partial_{\{a,b\}}(a\parallel b)$ can only execute $\gamma(a, b)$

(assuming that $\gamma(a, b) \notin \{a, b, \delta\}$).
Encapsulation

The encapsulation operator ∂_H, with $H \subseteq A$, renames all actions from H in its argument into δ:

\[
\begin{align*}
 x \xrightarrow{v} \sqrt{v} \quad (v \not\in H) & \quad \Rightarrow \quad \\
 \partial_H(x) \xrightarrow{v} \sqrt{v} & \\
 x \xrightarrow{v} x' \quad (v \not\in H) & \quad \Rightarrow \quad \\
 \partial_H(x) \xrightarrow{v} \partial_H(x')
\end{align*}
\]

Encapsulation operators can be used to force actions into communication.

Example: $\partial_{\{a,b\}}(a\parallel b)$ can only execute $\gamma(a, b)$ (assuming that $\gamma(a, b) \not\in \{a, b, \delta\}$).
Axioms for Deadlock and Encapsulation

A6 \[x + \delta = x \]
A7 \[\delta \cdot x = \delta \]

D1 \[\partial_H(v) = v \quad (v \not\in H) \]
D2 \[\partial_H(v) = \delta \quad (v \in H) \]
D3 \[\partial_H(\delta) = \delta \]
D4 \[\partial_H(x + y) = \partial_H(x) + \partial_H(y) \]
D5 \[\partial_H(x \cdot y) = \partial_H(x) \cdot \partial_H(y) \]

LM11 \[\delta \parallel x = \delta \]
CM12 \[\delta | x = \delta \]
CM13 \[x | \delta = \delta \]

The axioms are *sound* and *ground-complete* for ACP modulo \leftrightarrow.
Axioms for Deadlock and Encapsulation

A6 \[x + \delta = x \]

A7 \[\delta \cdot x = \delta \]

D1 \[\partial_H(v) = v \quad (v \notin H) \]

D2 \[\partial_H(v) = \delta \quad (v \in H) \]

D3 \[\partial_H(\delta) = \delta \]

D4 \[\partial_H(x + y) = \partial_H(x) + \partial_H(y) \]

D5 \[\partial_H(x \cdot y) = \partial_H(x) \cdot \partial_H(y) \]

LM11 \[\delta \parallel x = \delta \]

CM12 \[\delta | x = \delta \]

CM13 \[x | \delta = \delta \]

The axioms are *sound* and *ground-complete* for ACP modulo \(\leftrightarrow \).
Let $\gamma(a, b) \equiv c$ be the only communication between actions.

\[a \parallel b \overset{M1}{=} a \perp b + b \perp a + a \mid b \]

\[\text{LM2, CM5} \overset{=}{=} a \cdot b + b \cdot a + c \]

\[\partial \{a, b\}(a \parallel b) = \partial \{a, b\}(a \cdot b + b \cdot a + c) \]

\[\text{D1, 2, 4, 5} \overset{=}{=} \delta \cdot \partial \{a, b\}(b) + \delta \cdot \partial \{a, b\}(a) + c \]

\[\text{A6, 7} \overset{=}{=} c \]
Example

Let $\gamma(a, b) \equiv c$ be the only communication between actions.

\[
\begin{align*}
a \parallel b & \overset{\text{M1}}{=} a \parallel b + b \parallel a + a \mid b \\
\overset{\text{LM2, CM5}}{=} & \quad a \cdot b + b \cdot a + c
\end{align*}
\]

\[
\begin{align*}
\partial_{\{a,b\}}(a \parallel b) & = \quad \partial_{\{a,b\}}(a \cdot b + b \cdot a + c) \\
\overset{\text{D1,2,4,5}}{=} & \quad \delta \cdot \partial_{\{a,b\}}(b) + \delta \cdot \partial_{\{a,b\}}(a) + c \\
\overset{\text{A6,7}}{=} & \quad c
\end{align*}
\]
Recursion

This process graph is captured by two recursive equations:

\[X = a \cdot Y \]
\[Y = b \cdot X \]

\(X \) and \(Y \) are recursion variables, representing the two states.

A recursive specification is a collection

\[
\begin{align*}
X_1 &= t_1(X_1, \ldots, X_n) \\
\vdots \\
X_n &= t_n(X_1, \ldots, X_n)
\end{align*}
\]

where the \(t_i(X_1, \ldots, X_n) \) are process terms over ACP with possible occurrences of the recursion variables \(X_1, \ldots, X_n \).
This process graph is captured by two recursive equations:

\[
X = a \cdot Y \\
Y = b \cdot X
\]

\(X\) and \(Y\) are recursion variables, representing the two states.

A recursive specification is a collection

\[
\begin{align*}
X_1 &= t_1(X_1, \ldots, X_n) \\
&\vdots \\
X_n &= t_n(X_1, \ldots, X_n)
\end{align*}
\]

where the \(t_i(X_1, \ldots, X_n)\) are process terms over ACP with possible occurrences of the recursion variables \(X_1, \ldots, X_n\).
Processes \(p_1, \ldots, p_n \) are a \textit{solution} modulo \(\leftrightarrow \) of

\[
\{ X_i = t_i(X_1, \ldots, X_n) \mid i \in \{1, \ldots, n\} \}
\]

if \(p_i \leftrightarrow t_i(p_1, \ldots, p_n) \) for \(i \in \{1, \ldots, n\} \).

If \(p_1, \ldots, p_n \) and \(q_1, \ldots, q_n \) are two solutions of the same recursive specification, then we want that \(p_i \leftrightarrow q_i \) for \(i \in \{1, \ldots, n\} \).

A recursive specification with multiple solutions modulo \(\leftrightarrow \) is

\[
X = X
\]

In contrast, \(X = a \cdot X \) has a unique solution modulo \(\leftrightarrow \).
Processes p_1, \ldots, p_n are a solution modulo \leftrightarrow of

$$\{X_i = t_i(X_1, \ldots, X_n) \mid i \in \{1, \ldots, n\}\}$$

if $p_i \leftrightarrow t_i(p_1, \ldots, p_n)$ for $i \in \{1, \ldots, n\}$.

If p_1, \ldots, p_n and q_1, \ldots, q_n are two solutions of the same recursive specification, then we want that $p_i \leftrightarrow q_i$ for $i \in \{1, \ldots, n\}$.

A recursive specification with multiple solutions modulo \leftrightarrow is

$$X = X$$

In contrast, $X = a \cdot X$ has a unique solution modulo \leftrightarrow.
A recursive specification

\[\{ X_i = t_i(X_1, \ldots, X_n) \mid i \in \{1, \ldots, n\} \} \]

is guarded if the right-hand sides of its recursive equations can be adapted to the form

\[a_1 \cdot s_1(X_1, \ldots, X_n) + \cdots + a_k \cdot s_k(X_1, \ldots, X_n) + b_1 + \cdots + b_\ell \]

using the axioms of ACP and the possibility to replace recursion variables by the right-hand sides of their recursive equations.

Guarded recursive specifications are exactly the ones that have a unique solution modulo \(\leftrightarrow \).

Guardedness
Given a *guarded* recursive specification E:

$$\{X_i = t_i(X_1, \ldots, X_n) \mid i \in \{1, \ldots, n\}\}$$

We introduce constants

$$\langle X_i \mid E \rangle \quad (i \in \{1, \ldots, n\})$$

representing a solution of X_i in E.

$\langle X_i \mid E \rangle$ inherits the behaviour of $t_i(\langle X_1 \mid E \rangle, \ldots, \langle X_n \mid E \rangle)$:

$$t_i(\langle X_1 \mid E \rangle, \ldots, \langle X_n \mid E \rangle) \xrightarrow{\nu} \sqrt{\checkmark} \quad \frac{\langle X_i \mid E \rangle \xrightarrow{\nu} \sqrt{\checkmark}}{
\langle X_i \mid E \rangle \xrightarrow{\nu} \sqrt{\checkmark}}$$

$$t_i(\langle X_1 \mid E \rangle, \ldots, \langle X_n \mid E \rangle) \xrightarrow{\nu} y \quad \frac{\langle X_i \mid E \rangle \xrightarrow{\nu} y}{\langle X_i \mid E \rangle \xrightarrow{\nu} y}$$
Transition Rules for Recursion

Given a *guarded* recursive specification E:

\[
\{ X_i = t_i(X_1, \ldots, X_n) \mid i \in \{1, \ldots, n\}\}
\]

We introduce constants

\[
\langle X_i \mid E \rangle \quad (i \in \{1, \ldots, n\})
\]

representing a solution of X_i in E.

\[
\langle X_i \mid E \rangle \text{ inherits the behaviour of } t_i(\langle X_1 \mid E \rangle, \ldots, \langle X_n \mid E \rangle):
\]

\[
\begin{align*}
t_i(\langle X_1 \mid E \rangle, \ldots, \langle X_n \mid E \rangle) & \xrightarrow{\nu} \sqrt{\nu} \\
\langle X_i \mid E \rangle & \xrightarrow{\nu} \sqrt{\nu}
\end{align*}
\]

\[
\begin{align*}
t_i(\langle X_1 \mid E \rangle, \ldots, \langle X_n \mid E \rangle) & \xrightarrow{\nu} y \\
\langle X_i \mid E \rangle & \xrightarrow{\nu} y
\end{align*}
\]
Example

Let E denote $\{X=a \cdot Y, \ Y=b \cdot X\}$. The process graph of $\langle X\vert E \rangle$ is:

$$\langle X\vert E \rangle \rightarrow \langle Y\vert E \rangle \leftarrow \langle X\vert E \rangle$$

We derive the transition $\langle X\vert E \rangle \xrightarrow{a} \langle Y\vert E \rangle$:

$$a \xrightarrow{a} \sqrt{\text{v}} \overline{\text{v}} \rightarrow \sqrt{\text{v}}$$

$$\overline{a \cdot \langle Y\vert E \rangle} \xrightarrow{a} \langle Y\vert E \rangle \rightarrow \langle X\vert E \rangle$$

$$\langle X\vert E \rangle \xrightarrow{a} \langle Y\vert E \rangle$$
Let E denote $\{X = a \cdot Y, \ Y = b \cdot X\}$. The process graph of $\langle X | E \rangle$ is:

\[
\begin{array}{c}
\langle X | E \rangle \\
\downarrow b \\
\langle Y | E \rangle \\
\end{array}
\]

We derive the transition $\langle X | E \rangle \xrightarrow{a} \langle Y | E \rangle$:

\[
\begin{align*}
a \xrightarrow{a} & \sqrt{v} \\
\hline \\
a \cdot \langle Y | E \rangle & \xrightarrow{a} \langle Y | E \rangle \\
\hline \\
\langle X | E \rangle & \xrightarrow{a} \langle Y | E \rangle
\end{align*}
\]
We can put elements 0 and 1 into a bag, and subsequently collect these elements from the bag in arbitrary order.

It is specified by $X = \text{in}(0) \cdot (X \parallel \text{out}(0)) + \text{in}(1) \cdot (X \parallel \text{out}(1))$.
Example – Bag over \(\{0, 1\} \)

We can put elements 0 and 1 into a bag, and subsequently collect these elements from the bag in arbitrary order.

It is specified by \(X = in(0) \cdot (X \| out(0)) + in(1) \cdot (X \| out(1)) \).
Given a guarded recursive specification E:

$$\{X_i = t_i(X_1, \ldots, X_n) \mid i \in \{1, \ldots, n\}\}$$

For $i \in \{1, \ldots, n\}$:

RDP $\langle X_i \mid E \rangle = t_i(\langle X_1 \mid E \rangle, \ldots, \langle X_n \mid E \rangle)$

RSP If $y_j = t_j(y_1, \ldots, y_n)$ for all $j \in \{1, \ldots, n\}$, then $y_i = \langle X_i \mid E \rangle$
The axioms for ACP with *guarded* recursion are *sound* modulo \leftrightarrow:

$$s = t \Rightarrow s \leftrightarrow t$$

RSP is *not* sound for *unguarded* recursion.

For example, since $t = t$, RSP would yield

$$t = \langle X | X = X \rangle$$

for all process terms t.
The axioms for ACP with guarded recursion are sound modulo \leftrightarrow:

$$s = t \implies s \leftrightarrow t$$

RSP is not sound for unguarded recursion.

For example, since $t = t$, RSP would yield

$$t = \langle X | X = X \rangle$$

for all process terms t.

Example

\[\langle Z \mid Z = a \cdot Z \rangle \quad \text{RDP} \quad a \cdot \langle Z \mid Z = a \cdot Z \rangle \]

\[\text{RDP} \quad a \cdot (a \cdot \langle Z \mid Z = a \cdot Z \rangle) \]

\[A5 \quad (a \cdot a) \cdot \langle Z \mid Z = a \cdot Z \rangle \]

So by RSP,

\[\langle Z \mid Z = a \cdot Z \rangle = \langle X \mid X = (a \cdot a) \cdot X \rangle \]
A process p is **regular** if there are only *finitely* many processes p' such that $p \xrightarrow{a} \cdots \xrightarrow{b} p'$.

A recursive specification is **linear** if its recursive equations are of the form

$$X = a_1 \cdot X_1 + \cdots + a_k \cdot X_k + b_1 + \cdots + b_\ell$$

Each linear recursive specification gives rise to a regular process.

Vice versa, each regular process can be described by a linear recursive specification.
Ground-Completeness for Regular Processes

The axioms for ACP with *linear* recursion are *ground-complete* modulo \leftrightarrow:

$$s \leftrightarrow t \Rightarrow s = t$$

For *non-linear* recursion, the axioms are *not* ground-complete.

For example, one cannot derive

$$\langle Y \mid Y = a \cdot (Z \cdot b) + b, Z = a \cdot (Y \cdot b) + b \rangle = \langle Z \mid Y = a \cdot (Z \cdot b) + b, Z = a \cdot (Y \cdot b) + b \rangle$$

Non-linear recursion can be dealt with using the approximation induction principle, which states that if two processes are equal up to any finite depth, then the processes are equal.
The axioms for ACP with linear recursion are ground-complete modulo \leftrightarrow:

$$s \leftrightarrow t \Rightarrow s = t$$

For non-linear recursion, the axioms are not ground-complete.

For example, one cannot derive

$$\langle Y \mid Y=a \cdot (Z \cdot b)+b, Z=a \cdot (Y \cdot b)+b \rangle = \langle Z \mid Y=a \cdot (Z \cdot b)+b, Z=a \cdot (Y \cdot b)+b \rangle$$

Non-linear recursion can be dealt with using the approximation induction principle, which states that if two processes are equal up to any finite depth, then the processes are equal.
The axioms for ACP with *linear* recursion are *ground-complete* modulo \leftrightarrow:

$$s \leftrightarrow t \implies s = t$$

For *non-linear* recursion, the axioms are *not* ground-complete.

For example, one cannot derive

$$\langle Y \mid Y = a \cdot (Z \cdot b) + b, Z = a \cdot (Y \cdot b) + b \rangle = \langle Z \mid Y = a \cdot (Z \cdot b) + b, Z = a \cdot (Y \cdot b) + b \rangle$$

Non-linear recursion can be dealt with using the *approximation induction principle*, which states that if two processes are equal up to any finite depth, then the processes are equal.
Data elements are sent from *Sender* to *Receiver* via faulty channel B. *Sender* alternatingly attaches bit 0 or bit 1 to data elements.

If *Receiver* receives a datum, it sends the attached bit to *Sender* via faulty channel D, to acknowledge reception. If *Receiver* receives a corrupted message, then it resends the preceding acknowledgement.

Sender keeps sending a datum with attached bit b until it receives acknowledgement b. Then it starts sending the next datum with attached bit $1 - b$ until it receives acknowledgement $1 - b$, etc.
Correctness Criterion for the Alternating Bit Protocol

The data elements that are received by the *Sender* via channel A, are eventually sent into channel C by the *Receiver*, in the same order.

This assumes that a data element is not infinitely often corrupted. Namely, that would only happen if a channel were broken.
Specification of the Alternating Bit Protocol

Sender sending a datum with bit b attached:

\[
S_b = \sum_{d \in \Delta} r_A(d) \cdot T_{db}
\]

\[
T_{db} = (s_B(d, b) + s_B(\perp)) \cdot U_{db}
\]

\[
U_{db} = r_D(b) \cdot S_{1-b} + (r_D(1-b) + r_D(\perp)) \cdot T_{db}
\]

Receiver expecting a datum with b attached:

\[
R_b = \sum_{d \in \Delta} \{r_B(d, b) \cdot s_C(d) \cdot Q_b + r_B(d, 1-b) \cdot Q_{1-b}\}
\]

\[
+ r_B(\perp) \cdot Q_{1-b}
\]

\[
Q_b = (s_D(b) + s_D(\perp)) \cdot R_{1-b}
\]
Specification of the Alternating Bit Protocol

Sender sending a datum with bit b attached:

\[
S_b = \sum_{d \in \Delta} r_A(d) \cdot T_{db}
\]

\[
T_{db} = (s_B(d, b) + s_B(\perp)) \cdot U_{db}
\]

\[
U_{db} = r_D(b) \cdot S_{1-b} + (r_D(1-b) + r_D(\perp)) \cdot T_{db}
\]

Receiver expecting a datum with b attached:

\[
R_b = \sum_{d \in \Delta} \{r_B(d, b) \cdot s_C(d) \cdot Q_b + r_B(d, 1-b) \cdot Q_{1-b}\}
\]

\[
+ r_B(\perp) \cdot Q_{1-b}
\]

\[
Q_b = (s_D(b) + s_D(\perp)) \cdot R_{1-b}
\]
A send and a read action of the same message \(((d, b), b \text{ or } \bot)\) over the same channel (B or D) communicate with each other.

The alternating bit protocol is specified by

$$\partial_H(R_0\|S_0)$$

with H the set of send and read actions over channels B and D.
A send and a read action of the same message \(((d, b), b \text{ or } \bot)\) over the same channel (B or D) communicate with each other.

The alternating bit protocol is specified by

\[\partial_H(R_0 \parallel S_0) \]

with \(H\) the set of send and read actions over channels B and D.
Transition Graph of $\partial_H(R_0 \parallel S_0)$

\[
\partial_H(R_0 \parallel S_0) \xrightarrow{c_D(1)} \partial_H(Q_1 \parallel U_{e_1}) \xleftarrow{c_B(d, 0)} \partial_H(R_1 \parallel T_{d_0}) \\
\partial_H(Q_1 \parallel U_{d_0}) \xrightarrow{c_D(\perp)} \partial_H((s_C(e) \cdot Q_1) \parallel U_{e_1}) \xleftarrow{c_B(e, 1)} \partial_H(Q_0 \parallel U_{e_1}) \\
\partial_H((s_C(d) \cdot Q_0) \parallel U_{d_0}) \xrightarrow{s_C(d)} \partial_H(Q_0 \parallel U_{d_0}) \xleftarrow{c_D(0)} \partial_H(R_1 \parallel S_1) \\
\partial_H(R_1 \parallel S_0) \xrightarrow{r_A(d)} \partial_H(R_1 \parallel T_{e_1}) \xleftarrow{c_B(\perp)} \partial_H(Q_0 || U_{e_1}) \\
\partial_H(R_1 \parallel S_1) \xrightarrow{r_A(e)} \partial_H(T_{d_0} \parallel S_0) \xleftarrow{c_D(0)} \partial_H(R_0 \parallel S_0)
\]
Verification of the Alternating Bit Protocol

\[R_0 \parallel S_0 = \sum_{d' \in \Delta} \{ r_B(d', 0) \cdot ((s_C(d') \cdot Q_0) \parallel S_0) + r_B(d', 1) \cdot (Q_1 \parallel S_0) \}
+ r_B(\perp) \cdot (Q_1 \parallel S_0)
+ \sum_{d \in \Delta} r_A(d) \cdot (R_0 \parallel T_{d0}) \]

\[\partial_H(R_0 \parallel S_0) = \sum_{d \in \Delta} r_A(d) \cdot \partial_H(R_0 \parallel T_{d0}) \]

\[R_0 \parallel T_{d0} = (s_B(d, 0) + s_B(\perp)) \cdot (R_0 \parallel U_{d0})
+ \sum_{d' \in \Delta} \{ r_B(d', 0) \cdot ((s_C(d') \cdot Q_0) \parallel T_{d0}) + r_B(d', 1) \cdot (Q_1 \parallel T_{d0}) \}
+ r_B(\perp) \cdot (Q_1 \parallel T_{d0})
+ c_B(d, 0) \cdot ((s_C(d) \cdot Q_0) \parallel U_{d0}) + c_B(\perp) \cdot (Q_1 \parallel U_{d0}) \]

\[\partial_H(R_0 \parallel T_{d0}) = c_B(d, 0) \cdot \partial_H((s_C(d) \cdot Q_0) \parallel U_{d0}) + c_B(\perp) \cdot \partial_H(Q_1 \parallel U_{d0}) \]
Verification of the Alternating Bit Protocol

\[R_0 \parallel S_0 = \sum_{d' \in \Delta} \{ r_B(d', 0) \cdot ((s_C(d') \cdot Q_0) \parallel S_0) + r_B(d', 1) \cdot (Q_1 \parallel S_0) \} + r_B(\perp) \cdot (Q_1 \parallel S_0) + \sum_{d \in \Delta} r_A(d) \cdot (R_0 \parallel T_{d_0}) \]

\[\partial_H(R_0 \parallel S_0) = \sum_{d \in \Delta} r_A(d) \cdot \partial_H(R_0 \parallel T_{d_0}) \]

\[R_0 \parallel T_{d_0} = (s_B(d, 0) + s_B(\perp)) \cdot (R_0 \parallel U_{d_0}) + \sum_{d' \in \Delta} \{ r_B(d', 0) \cdot ((s_C(d') \cdot Q_0) \parallel T_{d_0}) + r_B(d', 1) \cdot (Q_1 \parallel T_{d_0}) \} + r_B(\perp) \cdot (Q_1 \parallel T_{d_0}) + c_B(d, 0) \cdot ((s_C(d) \cdot Q_0) \parallel U_{d_0}) + c_B(\perp) \cdot (Q_1 \parallel U_{d_0}) \]

\[\partial_H(R_0 \parallel T_{d_0}) = c_B(d, 0) \cdot \partial_H((s_C(d) \cdot Q_0) \parallel U_{d_0}) + c_B(\perp) \cdot \partial_H(Q_1 \parallel U_{d_0}) \]
Verification of the Alternating Bit Protocol

\[
Q_1 \| U_{d0} = r_D(0) \cdot (Q_1 \| S_1)
+ (r_D(1) + r_D(\perp)) \cdot (Q_1 \| T_{d0})
+ (s_D(1) + s_D(\perp)) \cdot (R_0 \| U_{d0})
+ (c_D(1) + c_D(\perp)) \cdot (R_0 \| T_{d0})
\]

\[
\partial_H(Q_1 \| U_{d0}) = (c_D(1) + c_D(\perp)) \cdot \partial_H(R_0 \| T_{d0})
\]

\[
(s_C(d) \cdot Q_0) \| U_{d0} = r_D(0) \cdot ((s_C(d) \cdot Q_0) \| S_1)
+ (r_D(1) + r_D(\perp)) \cdot ((s_C(d) \cdot Q_0) \| T_{d0})
+ s_C(d) \cdot (Q_0 \| U_{d0})
\]

\[
\partial_H((s_C(d) \cdot Q_0) \| U_{d0}) = s_C(d) \cdot \partial_H(Q_0 \| U_{d0})
\]
Verification of the Alternating Bit Protocol

\[Q_1 \parallel U_{d0} = r_D(0) \cdot (Q_1 \parallel S_1) \]
\[+ (r_D(1) + r_D(\perp)) \cdot (Q_1 \parallel T_{d0}) \]
\[+ (s_D(1) + s_D(\perp)) \cdot (R_0 \parallel U_{d0}) \]
\[+ (c_D(1) + c_D(\perp)) \cdot (R_0 \parallel T_{d0}) \]

\[\partial_H(Q_1 \parallel U_{d0}) = (c_D(1) + c_D(\perp)) \cdot \partial_H(R_0 \parallel T_{d0}) \]

\[(s_C(d) \cdot Q_0) \parallel U_{d0} = r_D(0) \cdot ((s_C(d) \cdot Q_0) \parallel S_1) \]
\[+ (r_D(1) + r_D(\perp)) \cdot ((s_C(d) \cdot Q_0) \parallel T_{d0}) \]
\[+ s_C(d) \cdot (Q_0 \parallel U_{d0}) \]

\[\partial_H((s_C(d) \cdot Q_0) \parallel U_{d0}) = s_C(d) \cdot \partial_H(Q_0 \parallel U_{d0}) \]
Verification of the Alternating Bit Protocol

\[Q_0 \parallel U_{d0} = (s_D(0) + s_D(\bot))(R_1 \parallel U_{d0}) \]
\[+ r_D(0)(Q_0 \parallel S_1) + (r_D(1) + r_D(\bot))(Q_0 \parallel T_{d0}) \]
\[+ c_D(0)(R_1 \parallel S_1) + c_D(\bot)(R_1 \parallel T_{d0}) \]

\[\partial_H(Q_0 \parallel U_{d0}) = c_D(0) \cdot \partial_H(R_1 \parallel S_1) + c_D(\bot) \cdot \partial_H(R_1 \parallel T_{d0}) \]

\[R_1 \parallel T_{d0} = \sum_{d' \in \Delta} \{ r_B(d', 1) \cdot ((s_C(d') \cdot Q_1) \parallel T_{d0}) + r_B(d', 0)(Q_0 \parallel T_{d0}) \} \]
\[+ r_B(\bot)(Q_0 \parallel T_{d0}) \]
\[+ (s_B(d, 0) + s_B(\bot))(R_1 \parallel U_{d0}) \]
\[+ (c_B(d, 0) + c_B(\bot))(Q_0 \parallel U_{d0}) \]

\[\partial_H(R_1 \parallel T_{d0}) = (c_B(d, 0) + c_B(\bot)) \cdot \partial_H(Q_0 \parallel U_{d0}) \]
Verification of the Alternating Bit Protocol

\[Q_0 \parallel U_{d0} = (s_D(0) + s_D(\bot)) \cdot (R_1 \parallel U_{d0}) + r_D(0) \cdot (Q_0 \parallel S_1) + (r_D(1) + r_D(\bot)) \cdot (Q_0 \parallel T_{d0}) + c_D(0) \cdot (R_1 \parallel S_1) + c_D(\bot) \cdot (R_1 \parallel T_{d0}) \]

\[\partial_H(Q_0 \parallel U_{d0}) = c_D(0) \cdot \partial_H(R_1 \parallel S_1) + c_D(\bot) \cdot \partial_H(R_1 \parallel T_{d0}) \]

\[R_1 \parallel T_{d0} = \sum_{d' \in \Delta} \left\{ r_B(d', 1) \cdot ((s_C(d') \cdot Q_1) \parallel T_{d0}) + r_B(d', 0) \cdot (Q_0 \parallel T_{d0}) \right\} + r_B(\bot) \cdot (Q_0 \parallel T_{d0}) + (s_B(d, 0) + s_B(\bot)) \cdot (R_1 \parallel U_{d0}) + (c_B(d, 0) + c_B(\bot)) \cdot (Q_0 \parallel U_{d0}) \]

\[\partial_H(R_1 \parallel T_{d0}) = (c_B(d, 0) + c_B(\bot)) \cdot \partial_H(Q_0 \parallel U_{d0}) \]
Likewise we can derive the six symmetric counter-parts of these equations (with 0’s and 1’s interchanged).

Concluding, the state space of $\partial_H(R_0 \parallel S_0)$ can be reconstructed on an equational level.

But how to get rid of the communication actions?
Likewise we can derive the six symmetric counter-parts of these equations (with 0’s and 1’s interchanged).

Concluding, the state space of $\partial_H(R_0\|S_0)$ can be reconstructed on an equational level.

But how to get rid of the communication actions?
Abstraction

\(\tau \) represents an internal action:

\[
\begin{array}{c}
\tau \\
\tau \xrightarrow{\tau} \sqrt{\ } \\
\end{array}
\]

The abstraction operator \(\tau_I \), with \(I \subseteq A \), renames all actions from \(I \) in its argument to \(\tau \):

\[
\begin{array}{cc}
\begin{array}{c}
x \xrightarrow{\nu} \checkmark \quad (\nu \notin I) \\
\tau_I(x) \xrightarrow{\nu} \checkmark \\
\end{array} & \begin{array}{c}
x \xrightarrow{\nu} x' \quad (\nu \notin I) \\
\tau_I(x) \xrightarrow{\nu} \tau_I(x') \\
\end{array} \\
\begin{array}{c}
x \xrightarrow{\nu} \checkmark \quad (\nu \in I) \\
\tau_I(x) \xrightarrow{\tau} \checkmark \\
\end{array} & \begin{array}{c}
x \xrightarrow{\nu} x' \quad (\nu \in I) \\
\tau_I(x) \xrightarrow{\tau} \tau_I(x') \\
\end{array}
\end{array}
\]
\[\tau \text{ represents an internal action:} \]

\[
\begin{array}{c}
\tau \xrightarrow{\tau} \checkmark
\end{array}
\]

The abstraction operator \(\tau_I \), with \(I \subseteq A \), renames all actions from \(I \) in its argument to \(\tau \):

\[
\begin{array}{ll}
x \xrightarrow{v} \checkmark \ (v \notin I) & \quad x \xrightarrow{v} x' \ (v \notin I) \\
\tau_I(x) \xrightarrow{v} \checkmark & \quad \tau_I(x) \xrightarrow{v} \tau_I(x')
\end{array}
\]

\[
\begin{array}{ll}
x \xrightarrow{v} \checkmark \ (v \in I) & \quad x \xrightarrow{v} x' \ (v \in I) \\
\tau_I(x) \xrightarrow{\tau} \checkmark & \quad \tau_I(x) \xrightarrow{\tau} \tau_I(x')
\end{array}
\]
Not all τ-transitions are silent.

Example: A malfunctioning channel.

A datum received via channel 1 is sent into channel 2 or 3. A datum communicated via channel 2 it is sent into channel 4. A datum communicated via channel 3 gets stuck, because the subsequent channel 5 is broken.

The system gets into a deadlock if a datum is transferred via channel 3. This deadlock should not disappear when abstracting away from the communication actions via channels 2 and 3.
Branching Bisimulation Equivalence

\[a + \tau \cdot \delta \text{ and } a \text{ are } \textit{not} \text{ equivalent.} \]
\[\partial_b(a + \tau \cdot b) \text{ and } \partial_b(a + b) \text{ are } \textit{not} \text{ equivalent.} \]
\[a + \tau \cdot b \text{ and } a + b \text{ are } \textit{not} \text{ equivalent.} \]

A correct answer to the question

\[\text{which } \tau\text{-transitions are silent?} \]

turns out to be

\[\text{those } \tau\text{-transitions that do not lose possible behaviours!} \]

Example: \[a + \tau \cdot (a + b) \text{ and } a + b \text{ are equivalent: after executing the } \tau \text{ in the first process term it is still possible to execute } a. \]
Branching Bisimulation Equivalence

\[a + \tau \cdot \delta \] and \(a \) are not equivalent.

\[\partial_{\{b\}}(a + \tau \cdot b) \] and \(\partial_{\{b\}}(a + b) \) are not equivalent.

\[a + \tau \cdot b \] and \(a + b \) are not equivalent.

A correct answer to the question

which \(\tau \)-transitions are silent?

turns out to be

those \(\tau \)-transitions that do not lose possible behaviours!

Example: \(a + \tau \cdot (a + b) \) and \(a + b \) are equivalent: after executing the \(\tau \) in the first process term it is still possible to execute \(a \).
Branching Bisimulation Equivalence

\[a + \tau \cdot \delta \] and \(a \) are not equivalent.

\[\partial_b(a + \tau \cdot b) \] and \(\partial_b(a + b) \) are not equivalent.

\[a + \tau \cdot b \] and \(a + b \) are not equivalent.

A correct answer to the question

\[\text{which } \tau\text{-transitions are silent?} \]

turns out to be

\[\text{those } \tau\text{-transitions that do not lose possible behaviours!} \]

Example: \(a + \tau \cdot (a + b) \) and \(a + b \) are equivalent: after executing the \(\tau \) in the first process term it is still possible to execute \(a \).
Branching Bisimulation Equivalence

\[a + \tau \cdot \delta \] and \(a \) are not equivalent.
\[\partial_b(a + \tau \cdot b) \] and \(\partial_b(a + b) \) are not equivalent.
\[a + \tau \cdot b \] and \(a + b \) are not equivalent.

A correct answer to the question

which \(\tau \)-transitions are silent?

turns out to be

those \(\tau \)-transitions that do not lose possible behaviours!

Example: \(a + \tau \cdot (a + b) \) and \(a + b \) are equivalent: after executing the \(\tau \) in the first process term it is still possible to execute \(a \).
Branching Bisimulation Equivalence

\[a + \tau \cdot \delta \] and \(a \) are not equivalent.

\[\partial\{b\}(a + \tau \cdot b) \] and \(\partial\{b\}(a + b) \) are not equivalent.

\[a + \tau \cdot b \] and \(a + b \) are not equivalent.

A correct answer to the question

which \(\tau \)-transitions are silent?

turns out to be

those \(\tau \)-transitions that do not lose possible behaviours!

Example: \(a + \tau \cdot (a + b) \) and \(a + b \) are equivalent: after executing the \(\tau \) in the first process term it is still possible to execute \(a \).
Branching Bisimulation Equivalence

Let $\sqsubseteq \downarrow$. A branching bisimulation is a binary relation \mathcal{B} on states such that:

1. if $p \mathcal{B} q$ and $p \xrightarrow{a} p'$, then
 - either $a \equiv \tau$ and $p' \mathcal{B} q$
 - or $q \xrightarrow{\tau} \cdots \xrightarrow{\tau} q_0$ such that $p \mathcal{B} q_0$ and $q_0 \xrightarrow{a} q'$ with $p' \mathcal{B} q'$

2. if $p \mathcal{B} q$ and $q \xrightarrow{a} q'$, then
 - either $a \equiv \tau$ and $p \mathcal{B} q'$
 - or $p \xrightarrow{\tau} \cdots \xrightarrow{\tau} p_0$ such that $p_0 \mathcal{B} q$ and $p_0 \xrightarrow{a} p'$ with $p' \mathcal{B} q'$

3. if $p \mathcal{B} q$ and $p \downarrow$, then $q \xrightarrow{\tau} \cdots \xrightarrow{\tau} q_0$ with $p \mathcal{B} q_0$ and $q_0 \downarrow$

4. if $p \mathcal{B} q$ and $q \downarrow$, then $p \xrightarrow{\tau} \cdots \xrightarrow{\tau} p_0$ with $p_0 \mathcal{B} q$ and $p_0 \downarrow$

p and q are branching bisimilar, denoted $p \leftrightarrow_b q$, if there is a branching bisimulation relation \mathcal{B} such that $p \mathcal{B} q$.
Let $\sqrt{\downarrow}$. A **branching bisimulation** is a binary relation B on states such that:

1. if pBq and $p \xrightarrow{a} p'$, then
 - either $a \equiv \tau$ and $p'Bq$
 - or $q \xrightarrow{\tau} \cdots \xrightarrow{\tau} q_0$ such that pBq_0 and $q_0 \xrightarrow{a} q'$ with $p'Bq'$

2. if pBq and $q \xrightarrow{a} q'$, then
 - either $a \equiv \tau$ and pBq'
 - or $p \xrightarrow{\tau} \cdots \xrightarrow{\tau} p_0$ such that p_0Bq and $p_0 \xrightarrow{a} p'$ with $p'Bq'$

3. if pBq and $p \downarrow$, then $q \xrightarrow{\tau} \cdots \xrightarrow{\tau} q_0$ with pBq_0 and $q_0 \downarrow$

4. if pBq and $q \downarrow$, then $p \xrightarrow{\tau} \cdots \xrightarrow{\tau} p_0$ with p_0Bq and $p_0 \downarrow$

p and q are branching bisimilar, denoted $p \leftrightarrow_b q$, if there is a branching bisimulation relation B such that pBq.

Branching Bisimulation Equivalence
Branching Bisimulation Equivalence

Let $\sqrt{\downarrow}$. A branching bisimulation is a binary relation B on states such that:

1. if $p B q$ and $p \xrightarrow{a} p'$, then
 - either $a \equiv \tau$ and $p' B q$
 - or $q \xrightarrow{\tau} \cdots \xrightarrow{\tau} q_0$ such that $p B q_0$ and $q_0 \xrightarrow{a} q'$ with $p' B q'$

2. if $p B q$ and $q \xrightarrow{a} q'$, then
 - either $a \equiv \tau$ and $p B q'$
 - or $p \xrightarrow{\tau} \cdots \xrightarrow{\tau} p_0$ such that $p_0 B q$ and $p_0 \xrightarrow{a} p'$ with $p' B q'$

3. if $p B q$ and $p \downarrow$, then $q \xrightarrow{\tau} \cdots \xrightarrow{\tau} q_0$ with $p B q_0$ and $q_0 \downarrow$

4. if $p B q$ and $q \downarrow$, then $p \xrightarrow{\tau} \cdots \xrightarrow{\tau} p_0$ with $p_0 B q$ and $p_0 \downarrow$

p and q are branching bisimilar, denoted $p \leftrightarrow_b q$, if there is a branching bisimulation relation B such that $p B q$.
Branching Bisimulation Equivalence

Let $\sqrt{\downarrow}$. A branching bisimulation is a binary relation B on states such that:

1. if $p B q$ and $p \xrightarrow{a} p'$, then
 - either $a \equiv \tau$ and $p' B q$
 - or $q \xrightarrow{\tau} \cdots \xrightarrow{\tau} q_0$ such that $p B q_0$ and $q_0 \xrightarrow{a} q'$ with $p' B q'$

2. if $p B q$ and $q \xrightarrow{a} q'$, then
 - either $a \equiv \tau$ and $p B q'$
 - or $p \xrightarrow{\tau} \cdots \xrightarrow{\tau} p_0$ such that $p_0 B q$ and $p_0 \xrightarrow{a} p'$ with $p' B q'$

3. if $p B q$ and $p \downarrow$, then $q \xrightarrow{\tau} \cdots \xrightarrow{\tau} q_0$ with $p B q_0$ and $q_0 \downarrow$

4. if $p B q$ and $q \downarrow$, then $p \xrightarrow{\tau} \cdots \xrightarrow{\tau} p_0$ with $p_0 B q$ and $p_0 \downarrow$

p and q are branching bisimilar, denoted $p \leftrightarrow_b q$, if there is a branching bisimulation relation B such that $p B q$.
Examples

\[a + \tau \cdot (a + b) \leq \tau \cdot (a + b) + b \]

\(\leftrightarrow_b \) satisfies a notion of fairness:

\[s_0 \longrightarrow s_2 \quad \tau \]

\(a \)

\[s_1 \longrightarrow s_3 \quad a \]
Branching bisimilarity has an expressive characterizing logic.

Rocco De Nicola, Frits Vaandrager
Three Logics for Branching Bisimulation
JACM 42(2):458-487, 1995
A rooted branching bisimulation is a binary relation \mathcal{B} on states such that:

1. if $p \mathcal{B} q$ and $p \xrightarrow{a} p'$, then $q \xrightarrow{a} q'$ with $p' \leftrightarrow_b q'$

2. if $p \mathcal{B} q$ and $q \xrightarrow{a} q'$, then $p \xrightarrow{a} p'$ with $p' \leftrightarrow_b q'$

p and q are rooted branching bisimilar, denoted $p \leftrightarrow_{rb} q$, if there is a rooted branching bisimulation relation \mathcal{B} such that $p \mathcal{B} q$.

\leftrightarrow_{rb} does constitute a congruence for ACP_τ.

$a + \tau \cdot b$ and $a + b$ are not equivalent.

$\tau \cdot b$ and b are not equivalent.
$a + \tau \cdot b$ and $a + b$ are not equivalent.

$\tau \cdot b$ and b are not equivalent.

A rooted branching bisimulation is a binary relation B on states such that:

1. if $p B q$ and $p \xrightarrow{a} p'$, then $q \xrightarrow{a} q'$ with $p' \leftrightarrow_b q'$

2. if $p B q$ and $q \xrightarrow{a} q'$, then $p \xrightarrow{a} p'$ with $p' \leftrightarrow_b q'$

p and q are rooted branching bisimilar, denoted $p \leftrightarrow_{rb} q$, if there is a rooted branching bisimulation relation B such that $p B q$.

\leftrightarrow_{rb} does constitute a congruence for ACP_τ.
$a + \tau \cdot b$ and $a + b$ are not equivalent.

$\tau \cdot b$ and b are not equivalent.

A **rooted branching bisimulation** is a binary relation \mathcal{B} on states such that:

1. if $p \mathcal{B} q$ and $p \xrightarrow{a} p'$, then $q \xrightarrow{a} q'$ with $p' \leftrightarrow_b q'$

2. if $p \mathcal{B} q$ and $q \xrightarrow{a} q'$, then $p \xrightarrow{a} p'$ with $p' \leftrightarrow_b q'$

p and q are **rooted branching bisimilar**, denoted $p \leftrightarrow_{rb} q$, if there is a rooted branching bisimulation relation \mathcal{B} such that $p \mathcal{B} q$.

\leftrightarrow_{rb} does constitute a congruence for ACPτ.
$a + \tau \cdot b$ and $a + b$ are not equivalent.

$\tau \cdot b$ and b are not equivalent.

A rooted branching bisimulation is a binary relation B on states such that:

1. if $p \mathrel{B} q$ and $p \xrightarrow{a} p'$, then $q \xrightarrow{a} q'$ with $p' \leftrightarrow_b q'$

2. if $p \mathrel{B} q$ and $q \xrightarrow{a} q'$, then $p \xrightarrow{a} p'$ with $p' \leftrightarrow_b q'$

p and q are rooted branching bisimilar, denoted $p \leftrightarrow_{rb} q$, if there is a rooted branching bisimulation relation B such that $p \mathrel{B} q$.

\leftrightarrow_{rb} does constitute a congruence for ACP_τ.

Rooted Branching Bisimulation Equivalence
Axioms for Abstraction

B1 \[\nu \cdot \tau = \nu \]

B2 \[\nu \cdot (\tau \cdot (x + y) + x) = \nu \cdot (x + y) \]

TI1 \[\tau_I(\nu) = \nu \quad (\nu \notin I) \]

TI2 \[\tau_I(\nu) = \tau \quad (\nu \in I) \]

TI3 \[\tau_I(\delta) = \delta \]

TI4 \[\tau_I(x + y) = \tau_I(x) + \tau_I(y) \]

TI5 \[\tau_I(x \cdot y) = \tau_I(x) \cdot \tau_I(y) \]
Guarded Linear Recursion

All process terms $\tau \cdot s$ are a solution of $X = \tau \cdot X$, as $\tau \cdot s \leftrightarrow_{rb} \tau \cdot (\tau \cdot s)$.
Hence, $X = \tau \cdot X$ is unguarded.

A linear recursive specification E is guarded if there does not exist an infinite sequence of τ-transitions

$$\langle X|E \rangle \xrightarrow{\tau} \langle X'|E \rangle \xrightarrow{\tau} \langle X''|E \rangle \xrightarrow{\tau} \ldots$$

Guarded linear recursive specifications are exactly the ones that have a unique solution modulo \leftrightarrow_{rb}.
All process terms $\tau \cdot s$ are a solution of $X = \tau \cdot X$, as $\tau \cdot s \leftrightarrow_{rb} \tau \cdot (\tau \cdot s)$.

Hence, $X = \tau \cdot X$ is unguarded.

A linear recursive specification E is guarded if there does not exist an infinite sequence of τ-transitions

$$\langle X | E \rangle \xrightarrow{\tau} \langle X' | E \rangle \xrightarrow{\tau} \langle X'' | E \rangle \xrightarrow{\tau} \cdots$$

Guarded linear recursive specifications are exactly the ones that have a unique solution modulo \leftrightarrow_{rb}.
Cluster Fair Abstraction Rule

Let E be a guarded linear recursive specification.

Recursion variables X and Y in E are in the same cluster for $I \subseteq A$ if

$\langle X|E \rangle \xrightarrow{b_1} \cdots \xrightarrow{b_m} \langle Y|E \rangle$ and $\langle Y|E \rangle \xrightarrow{c_1} \cdots \xrightarrow{c_n} \langle X|E \rangle$ for some $b_1, \ldots, b_m, c_1, \ldots, c_n \in I \cup \{\tau\}$.

a or $a \cdot X$ is an exit for cluster C if:

1. a or $a \cdot X$ is a summand in the right-hand side of the recursive equation for a recursion variable in C, and
2. in the case of $a \cdot X$, $a \not\in I \cup \{\tau\}$ or $X \not\in C$.

CFAR If X is in a cluster for I with exits $\{v_1 \cdot Y_1, \ldots, v_m \cdot Y_m, w_1, \ldots, w_n\}$, then

$v \cdot \tau_I(\langle X|E \rangle) = v \cdot \tau_I(v_1 \cdot \langle Y_1|E \rangle + \cdots + v_m \cdot \langle Y_m|E \rangle + w_1 + \cdots + w_n)$
Let \(E \) be a guarded linear recursive specification.

Recursion variables \(X \) and \(Y \) in \(E \) are in the same cluster for \(I \subseteq A \) if \(\langle X|E \rangle \overset{b_1}{\rightarrow} \cdots \overset{b_m}{\rightarrow} \langle Y|E \rangle \) and \(\langle Y|E \rangle \overset{c_1}{\rightarrow} \cdots \overset{c_n}{\rightarrow} \langle X|E \rangle \) for some \(b_1, \ldots, b_m, c_1, \ldots, c_n \in I \cup \{\tau\} \).

\(a \) or \(a \cdot X \) is an exit for cluster \(C \) if:

1. \(a \) or \(a \cdot X \) is a summand in the right-hand side of the recursive equation for a recursion variable in \(C \), and

2. in the case of \(a \cdot X \), \(a \notin I \cup \{\tau\} \) or \(X \notin C \).

CFAR If \(X \) is in a cluster for \(I \) with exits \(\{\nu_1 \cdot Y_1, \ldots, \nu_m \cdot Y_m, w_1, \ldots, w_n\} \), then

\[
\nu \cdot \tau_I(\langle X|E \rangle) = \nu \cdot \tau_I(\nu_1 \cdot \langle Y_1|E \rangle + \cdots + \nu_m \cdot \langle Y_m|E \rangle + w_1 + \cdots + w_n)
\]
Let E be a guarded linear recursive specification.

Recursion variables X and Y in E are in the same cluster for $I \subseteq A$ if $\langle X \mid E \rangle \xrightarrow{b_1} \cdots \xrightarrow{b_m} \langle Y \mid E \rangle$ and $\langle Y \mid E \rangle \xrightarrow{c_1} \cdots \xrightarrow{c_n} \langle X \mid E \rangle$ for some $b_1, \ldots, b_m, c_1, \ldots, c_n \in I \cup \{ \tau \}$.

a or $a \cdot X$ is an exit for cluster C if:

1. a or $a \cdot X$ is a summand in the right-hand side of the recursive equation for a recursion variable in C, and
2. in the case of $a \cdot X$, $a \not\in I \cup \{ \tau \}$ or $X \not\in C$.

CFAR If X is in a cluster for I with exits $\{v_1 \cdot Y_1, \ldots, v_m \cdot Y_m, w_1, \ldots, w_n\}$, then

$$v \cdot \tau_I(\langle X \mid E \rangle) = v \cdot \tau_I(v_1 \cdot \langle Y_1 \mid E \rangle + \cdots + v_m \cdot \langle Y_m \mid E \rangle + w_1 + \cdots + w_n)$$
Example

\[a \cdot \tau_c(\langle X|X = c \cdot Y + b_1, Y = c \cdot X + b_2 \rangle) = a \cdot (b_1 + b_2) \]
The axioms for ACP_τ with guarded linear recursion are sound and ground-complete modulo \leftrightarrow_{rb}:

\[s \leftrightarrow_{rb} t \iff s = t \]
Back to the Alternating Bit Protocol

\[\partial_H(R_0 || T_{e1}) \]
\[\partial_H(Q_0 || U_{e1}) \]
\[\partial_H((s_C(e) \cdot Q_1) || U_{e1}) \]
\[\partial_H(R_1 || T_{e1}) \]

\[\partial_H(R_0 || S_0) \]
\[\partial_H(Q_1 || U_{d0}) \]
\[\partial_H((s_C(d) \cdot Q_0) || U_{d0}) \]
\[\partial_H(Q_0 || U_{d0}) \]
\[\partial_H(R_1 || S_1) \]

\[r_A(d) \]
\[c_B(d, 0) \]
\[s_C(d) \]
\[c_D(0) \]
\[r_A(e) \]

\[c_D(\perp) \]
\[c_B(\perp) \]
\[c_B(e, 1) \]
\[c_D(\perp) \]
\[c_B(\perp) \]
\[c_B(d, 0) \]
Verification of the Alternating Bit Protocol

Let I be the set of communication actions over channels B and D.

After application of τ_I to $\partial_H(R_0\|S_0)$, the loops of communication actions can be removed by CFAR.

For example, $\partial_H(R_0\|T_{d_0})$ and $\partial_H(Q_1\|U_{d_0})$ form a cluster for I with exit $c_B(d, 0) \cdot \partial_H((s_C(d) \cdot Q_0)\|U_{d_0})$, so

$$r_A(d) \cdot \tau_I(\partial_H(R_0\|T_{d_0})) = r_A(d) \cdot (\tau_I(c_B(d, 0) \cdot \partial_H((s_C(d) \cdot Q_0)\|U_{d_0})))$$

$$= r_A(d) \cdot (\tau \cdot \tau_I(\partial_H((s_C(d) \cdot Q_0)\|U_{d_0})))$$

$$= r_A(d) \cdot \tau_I(\partial_H((s_C(d) \cdot Q_0)\|U_{d_0}))$$
Verification of the Alternating Bit Protocol

Let I be the set of communication actions over channels B and D.

After application of τ_I to $\partial_H(R_0 \parallel S_0)$, the loops of communication actions can be removed by CFAR.

For example, $\partial_H(R_0 \parallel T_{d0})$ and $\partial_H(Q_1 \parallel U_{d0})$ form a cluster for I with exit $c_B(d, 0) \cdot \partial_H((s_C(d) \cdot Q_0) \parallel U_{d0})$, so

$$r_A(d) \cdot \tau_I(\partial_H(R_0 \parallel T_{d0})) = r_A(d) \cdot (\tau_I(c_B(d, 0) \cdot \partial_H((s_C(d) \cdot Q_0) \parallel U_{d0})))$$

$$= r_A(d) \cdot (\tau \cdot \tau_I(\partial_H((s_C(d) \cdot Q_0) \parallel U_{d0})))$$

$$= r_A(d) \cdot \tau_I(\partial_H((s_C(d) \cdot Q_0) \parallel U_{d0}))$$
Likewise we derive

\[s_C(d) \cdot \tau_I(\partial_H(Q_0 \parallel U_d)) = s_C(d) \cdot \tau_I(\partial_H(R_1 \parallel S_1)) \]

\[r_A(e) \cdot \tau_I(\partial_H(R_1 \parallel T_e)) = r_A(e) \cdot \tau_I(\partial_H((s_C(e) \cdot Q_1) \parallel U_e)) \]

\[s_C(e) \cdot \tau_I(\partial_H(Q_1 \parallel U_e)) = s_C(e) \cdot \tau_I(\partial_H(R_0 \parallel S_0)) \]
\[
\tau_I(\partial_H(R_0\|S_0)) = \sum_{d \in \Delta} r_A(d) \cdot \tau_I(\partial_H(R_0\|T_{d0})) \\
= \sum_{d \in \Delta} r_A(d) \cdot \tau_I(\partial_H((s_C(d)\cdot Q_0)\|U_{d0})) \\
= \sum_{d \in \Delta} r_A(d) \cdot (s_C(d) \cdot \tau_I(\partial_H(Q_0\|U_{d0}))) \\
= \sum_{d \in \Delta} r_A(d) \cdot (s_C(d) \cdot \tau_I(\partial_H(R_1\|S_1)))
\]

Likewise we derive

\[
\tau_I(\partial_H(R_1\|S_1)) = \sum_{d \in \Delta} r_A(d) \cdot (s_C(d) \cdot \tau_I(\partial_H(R_0\|S_0)))
\]

Concluding, using RSP it follows that

\[
\tau_I(\partial_H(R_0\|S_0)) = \sum_{d \in \Delta} r_A(d) \cdot (s_C(d) \cdot \tau_I(\partial_H(R_0\|S_0)))
\]
\[\tau_I(\partial_H(R_0\|S_0)) = \sum_{d \in \Delta} r_A(d) \cdot \tau_I(\partial_H(R_0\|T_{d0})) \]
\[= \sum_{d \in \Delta} r_A(d) \cdot \tau_I(\partial_H((s_C(d)\cdot Q_0)\|U_{d0}))) \]
\[= \sum_{d \in \Delta} r_A(d) \cdot (s_C(d) \cdot \tau_I(\partial_H(Q_0\|U_{d0}))) \]
\[= \sum_{d \in \Delta} r_A(d) \cdot (s_C(d) \cdot \tau_I(\partial_H(R_1\|S_1))) \]

Likewise we derive

\[\tau_I(\partial_H(R_1\|S_1)) = \sum_{d \in \Delta} r_A(d) \cdot (s_C(d) \cdot \tau_I(\partial_H(R_0\|S_0))) \]

Concluding, using RSP it follows that

\[\tau_I(\partial_H(R_0\|S_0)) = \sum_{d \in \Delta} r_A(d) \cdot (s_C(d) \cdot \tau_I(\partial_H(R_0\|S_0))) \]
Verification of the Alternating Bit Protocol

\[
\tau_I(\partial_H(R_0\parallel S_0)) = \sum_{d\in\Delta} r_A(d) \cdot \tau_I(\partial_H(R_0\parallel T_{d0})) \\
= \sum_{d\in\Delta} r_A(d) \cdot \tau_I(\partial_H((s_C(d)\cdot Q_0)\parallel U_{d0})) \\
= \sum_{d\in\Delta} r_A(d) \cdot (s_C(d) \cdot \tau_I(\partial_H(Q_0\parallel U_{d0}))) \\
= \sum_{d\in\Delta} r_A(d) \cdot (s_C(d) \cdot \tau_I(\partial_H(R_1\parallel S_1)))
\]

Likewise we derive

\[
\tau_I(\partial_H(R_1\parallel S_1)) = \sum_{d\in\Delta} r_A(d) \cdot (s_C(d) \cdot \tau_I(\partial_H(R_0\parallel S_0)))
\]

Concluding, using RSP it follows that

\[
\tau_I(\partial_H(R_0\parallel S_0)) = \sum_{d\in\Delta} r_A(d) \cdot (s_C(d) \cdot \tau_I(\partial_H(R_0\parallel S_0)))
\]
Concurrent systems are generally specified in the form

$$\tau_I(\partial_H(X_1\|\cdots\|X_k))$$

where H contains all send and receive actions over internal channels, and I all communication actions over these channels.

The recursion variables X_1, \ldots, X_k are in turn specified using:

- actions, alternative and sequential composition
- recursive equations

The underlying network topology is captured by means of the communication function γ.
Concurrent systems often require intricate data structures.

Data can also be specified algebraically, as abstract data types.

Example: Natural numbers with successor \textit{succ} and addition \textit{plus}:

$$\text{plus}(n, 0) = n$$

$$\text{plus}(n, \text{succ}(m)) = \text{succ}(\text{plus}(n, m))$$
The specification language μCRL is based on process algebra and abstract data types.

Its toolset supports model checking as well as theorem proving.

It has been used for verifications of numerous real-life protocols and distributed algorithms.