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Abstract

We set up a formal framework to describe transition system specifications in the
style of Plotkin. This framework has the power to express many-sortedness, gen-
eral binding mechanisms and substitutions, among other notions such as negative
hypotheses and unary predicates on terms.
The framework is used to present a conservativity format in operational se-

mantics, which states sufficient criteria to ensure that the extension of a transition
system specification with new transition rules does not affect the semantics of the
original terms.

1 Introduction

A current method to provide process algebras and specification languages with an oper-
ational semantics is based on the use of structured operational semantics from Plotkin
[44]. Given a set of states, the transitions between these states are obtained inductively
from a transition system specification (TSS), which consists of transition rules.
Desirable properties for the transition systems that are generated by some TSS are

often deduced by means of long technical proofs. Therefore, several general formats
for TSSs have been developed, for instance to determine which TSSs satisfy a certain
congruence property [49, 12, 32, 29, 14, 6, 53, 20, 38, 11], or to study the meaning of
negative hypotheses [29, 14, 28], or to find which extensions of TSSs are operationally
conservative [32, 29, 14, 52, 18, 19]. Our article is devoted to this last topic.
Over and over again, process theories such as CCS [39], CSP [37] and ACP [8] have

been extended with new features, and the original TSSs, which provide the semantics
for these process algebras, were extended with transition rules to describe these features;
see [7] for a systematic approach. A question that arises naturally is whether or not

1



such an extension influences the transition systems of terms in the original domain.
Usually, it is desirable that an extension is (operationally) conservative, meaning that
the provable transitions for an original term are the same both in the original and in
the extended TSS.
Groote and Vaandrager [32, Theorem 7.6] proposed the first syntactic restrictions

for an original TSS and its extension, which automatically yield that the extension is
operationally conservative. The restrictions are: all transition rules must be ‘tyft/tyxt’,
and the original transition rules must be ‘pure’ and ‘well-founded’ (see [32] for the
definitions), and the transition rules in the extension must contain some fresh operator
in their source, i.e., in the left-hand side of their conclusion. Groote [29] adapted this
conservativity format to the setting with negative hypotheses. Bol and Groote [14]
showed that the tyft/tyxt restriction can be omitted.
Verhoef [52] proposed more general syntactic criteria which ensure operational con-

servativity. Verhoef’s criteria allow, under certain conditions, that a transition rule
in the extension has an original term as its source. Examples of extensions that are
within the scope of Verhoef’s criteria, but that do not fit the previous formats, are the
extension of CCS with time from Moller and Tofts [42], and BPA with discrete time
from Baeten and Bergstra [4]. (In a later version of BPA with discrete time [5], the
operational semantics has been adapted in such a way that the extension with discrete
time is no longer operationally conservative over BPA.) Verhoef’s format was extended
to a setting with inequalities in [18, 19].
In many practical cases, the format from [52] cannot yet be applied, due to the use

of a many-sorted signature, or the presence of some variable binding mechanism in
the transition rules. Familiar examples of such binding mechanisms are the expression
λx.t from the λ-calculus, where the variable x is bound in the term t, and the con-
struct t[s/x], where occurrences of the variable x in the term t are replaced by the
term s. This article proposes a generalization of the conservativity format from [52] to
transition rules which may contain many-sortedness and a variable binding mechanism.
This generalization requires a subtle distinction between several kinds of occurrences
of variables in transition rules. We relax the criteria ‘pure’ and ‘well-founded’, that
were posed on the original transition rules by all previous conservativity formats, to
a more natural requirement on variables in the original transition rules, which we call
‘source-dependency’. Furthermore, variables in original transition rules need not be
source-dependent, under the condition that the sorts of such variables are not extended
with fresh terms. Finally, we allow terms as labels in transition rules; Bernstein [10]
showed that such labels allow to capture higher-order languages.
Several concepts in the setting of operational semantics with variable binding, which

seem to be intuitively clear at first sight, turn out to be ambiguous when studied care-
fully. In order to obtain a formal framework in which transition rules with a variable
binding mechanism can be expressed rigorously, we elaborately discuss the preliminaries,
presenting examples and introducing new notions on the way. Most notably, we dis-
tinguish between actual and formal variables, following conventions from programming
languages, and we formalize the construct t[s/x] in transition rules.
We give two detailed examples to show how our conservativity format can be applied

to practical cases. The examples deal with real time ACP [21] and the πI-calculus [47].
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A check on the source-dependency of transition rules has been incorporated in the tool
LATOS [33]. In [23] part of the conservative extension format presented in this article
has been transposed to positive/negative conditional term rewriting systems, and shown
to be applicable with respect to software renovation factories.

Acknowledgements. We have benefited from technical discussions with Bard Bloom,
Pedro D’Argenio, Anuj Dawar, Arie van Deursen, Rob van Glabbeek, Pieter Hartel,
Douglas Howe, Davide Sangiorgi, and Frits Vaandrager. An anonymous referee provided
valuable comments.

2 The Formal Framework

In this section we recall some notions concerning general theory of structured operational
semantics, and introduce some new matters, interspersed with examples. We define a
framework in which it is possible to express binding mechanisms and substitutions, and
incorporate the notions of negative hypotheses from Groote [29] and predicates from
Baeten and Verhoef [6]. Furthermore, we introduce two different kinds of terms: actual
ones and formal ones.

Some intuitions In many programming languages there are so-called actual param-
eters and formal parameters. The formal parameters are used to define procedures or
functions; the actual parameters are the “real” variables to be used in the main pro-
gram. In the main program the formal parameters are bound by the actual parameters.
When discussing procedures on a conceptual level, it is often useful to introduce a no-
tational distinction between formal and actual parameters; see for instance [55]. We
do the same in this article: we think of a transition rule as a procedure to establish a
transition relation by means of substituting (actual) terms for the (formal) variables.
Since transition rules are discussed on a conceptual level, we make a clear distinction
between actual and formal variables. Transition rules are built from terms that may
contain formal variables, and proofs for transitions are obtained by substituting actual
terms for formal variables in transition rules.
The following example illustrates that it is useful to make a notational distinction

between actual and formal variables. Consider the transition rule

y[w/x] a−→z

y b−→z

where w, x, y, z are variables, and y[w/x] is a standard notation that binds the x in y,
and replaces it by w. Application of a substitution σ to this transition rule yields

σ(y)[σ(w)/x] a−→σ(z)

σ(y) b−→σ(z)

For instance, if σ(w) = c and σ(y) = x and σ(z) = d, then we obtain

c a−→d

x b−→d
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We make two observations.

1. The expression y[w/x] is not a substitution (for then it would equal y), but a
syntactic construct with a suggestive form. We call it a substitution harness. Only
after application of a substitution σ, the result σ(y)[σ(w)/x] can be evaluated to
a term.

2. Substitutions only apply to part of the variables that occur in a transition rule.
In order to distinguish such variables in a transition rule, we call them formal,
and we mark them with an asterisk (*).

Hence, the transition rule above takes the form

y∗[w∗/x] a−→z∗

y∗ b−→z∗

The distinction of formal variables in structured operational semantics with variable
binding was also propagated independently by Sangiorgi [46] and Howe [38]. There,
they are called ‘meta-variables’.
Now that we have an idea of the framework, we first introduce the notion of actual

terms (as opposed to formal terms), in which it is possible to express variable binding.
Binding mechanisms exist in many and diverse forms. We describe these mechanisms as
general as possible, using a notational approach based on [1]; it is the notation for terms
in the Nuprl proof development system; see [17]. The choice for the Nuprl notation,
instead of for example the λ-calculus [9], is simply a matter of taste.

2.1 The Actual World

In this section we describe the actual world, which contains actual terms, actual substi-
tutions, and so forth. In the sequel, ~O denotes a sequence O1...Ok, and ~Oi a sequence
Oi1...Oik, with k ≥ 0.

Definition 2.1 A (many-sorted) signature Σ consists of a set of sorts, an infinite set
V of sorted actual variables, and a set of function symbols

f : ~S1.S1 × · · · × ~Sn.Sn → S,

where the Sij and the Si and S are sorts.

A function symbol of arity zero is called a constant.

Definition 2.2 Let Σ be a signature. The collection
�
(Σ) of (open) actual terms s, t, ...

over Σ is defined as the least set satisfying:

- each actual variable from V is in
�
(Σ),

- for each function f : ~S1.S1× · · ·× ~Sn.Sn → S, f(~x1.t1, ..., ~xn.tn) is an actual term
of sort S, where
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- the actual terms ti are of sort Si,

- each ~xi is a sequence of distinct actual variables xi1...xiki, with xij of sort
Sij.

The actual variables ~xi are said to be bound in the ith argument of f .

Definition 2.3 Free occurrences of actual variables in actual terms are defined as ex-
pected:

- x occurs free in x for each x ∈ V;

- if x occurs free in ti, and x does not occur in the sequence ~xi, then x occurs free
in f(~x1.t1, ..., ~xn.tn).

An actual term is called closed if it does not contain any free occurrences of actual
variables. In the sequel, T (Σ) denotes the collection of closed actual terms over Σ.

The notion of a substitution is also defined as expected.

Definition 2.4 An actual substitution is a sort preserving mapping σ : V → T (Σ),
where sort preserving means that x and σ(x) are always of the same sort. A substitution
extends to a mapping from open actual terms to closed actual terms as usual; the term
σ(t) is obtained by replacing each free occurrence of an actual variable x in t by σ(x).
As usual, [t/x] is the postfix notation for the substitution that maps x to t and is inert

otherwise. Such postfix denoted substitutions are called explicit actual substitutions (as
opposed to implicit actual substitutions σ).

In the definition of actual substitutions on open actual terms there is a well-known
complication. Namely, consider an actual term σ(t), and let x occur free in t. After x in
t has been replaced by σ(x), actual variables y that occur in σ(x) are suddenly bound in
actual subterms such as f(y.s) of t. A solution for this problem, which originates from
the λ-calculus, is to allow unrestricted substitution by applying α-conversion, that is,
by renaming bound actual variables. In the sequel, actual terms are considered modulo
α-conversion, and when a substitution is applied, bound actual variables are renamed.
Stoughton [50] presented a nice treatment of this technique.

Remark 2.5 Bloom and Vaandrager [13] developed a framework for transition rules
with many-sortedness and a binding mechanism. They make a clear distinction between
sorts for processes, which exhibit behaviour, and sorts for data, which do not exhibit any
behaviour. This distinction is not of interest for the question whether an extension of
transition rules influences the behaviour of original terms. We consider data as processes
that do not display any behaviour.

2.2 The Formal World

We argued that it is a good idea to distinguish between formal and actual variables,
when discussing transition rules with variable bindings and substitutions on an abstract

5



level. We introduce the notion of a formal term t∗, being an actual term with possible
occurrences of formal variables and substitution harnesses.
Assume a signature Σ, consisting of a non-empty set of sorts, a set V of actual vari-

ables, and a set of function symbols. The set V∗ of formal variables is defined as
{x∗ | x ∈ V}, where x∗ and x are of the same sort.

Definition 2.6 The collection � (Σ) of formal terms over a signature Σ is the least set
satisfying:

- each actual variable from V is in � (Σ);

- each formal variable from V∗ is in � (Σ);

- for each function symbol f : ~S1.S1×· · ·× ~Sn.Sn → S, f(~x1.t
∗

1, ..., ~xn.t
∗

n) is a formal
term of sort S, where

- the formal terms t∗i are of sort Si,

- each ~xi consists of distinct actual variables in V of sorts ~Si;

- if s∗ and t∗ are formal terms of sorts S0 and S1 respectively, and x ∈ V is of sort
S1, then t

∗[s∗/x] is a formal term of sort S0.

Definition 2.7 A formal substitution is a sort preserving mapping σ∗ : V∗ →
�
(Σ).

It extends to a mapping σ∗ : � (Σ) →
�
(Σ) as expected; the term σ∗(t∗) is obtained

from t∗ by replacing each formal variable x∗ in t∗ by σ∗(x∗), after which the substitution
harnesses become explicit actual substitutions. The result evaluates to a term in

�
(Σ).

Example 2.8 An example of a formal term is y∗[w∗/x], which evaluates to the actual
term a after application of a formal substitution σ∗ with σ∗(w∗) = c and σ∗(y∗) = x.
Namely, the implicit formal substitution σ∗ turns the substitution harness y∗[w∗/x] into
the actual term x[c/x], where [c/x] is an explicit actual substitution, which evaluates
to c.

Summarizing the various substitutions At this point we have introduced all the
substitutions and the substitution harness. We summarize the various notions, and
briefly discuss their differences. There are four notions in two worlds: the implicit
and explicit actual substitutions (which are semantically the same), and the formal
substitutions and the substitution harnesses.

• Implicit actual substitutions σ and explicit actual substitutions [t/x] both denote
mappings from actual variables to closed actual terms.

• Formal substitutions σ∗ are mappings from formal variables to open actual terms.

• A substitution harness t∗[s∗/x] is not a substitution, but a piece of syntax with a
suggestive form. If a formal substitution σ∗ is applied to it, then the result is an
expression σ∗(t∗)[σ∗(s∗)/x], containing an explicit actual substitution, so that it
can be evaluated to an actual term.
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Substitution harnesses are used to formulate in a precise way how a formal substitution
is to act on a transition rule. The formal and actual substitutions are used to move
from transition rules to a proof tree.

2.3 Actual and Formal Transition Rules

We have explained what the formal framework looks like more or less, and the intuition
behind the use of structured operational semantics with variable binding and substitu-
tion harnesses. We formalize what that intuition is, in order to be able to discuss the
theory of structured operational semantics for higher-order languages on an abstract
level, and to give a rigorous presentation of a conservativity result.
Before presenting the basic definitions of structured operational semantics, first we

consider as an example the well-known recursive µ-construct, which combines formal
variables, a binding mechanism and a substitution harness. This transition rule, which
occurs for instance in the operational semantics of [43], serves as a running example.

Example 2.9 Intuitively, the term µx.p executes p until it encounters an expression x,
in which case it starts to execute µx.p again. This intuition is expressed in the following
transition rule, which we call the µ-rule:

y∗[µx.y∗/x] a−→z∗

µx.y∗ a−→z∗

Recall that formal variables are marked with an asterisk (*) in order to avoid notational
confusion. Note that the variable x in the µ-rule does not carry an asterisk, because we
want to bind actual variables to actual terms in the end. The transition

µx.ax a−→µx.ax

with a the well-known action prefix operator from CCS, can be derived from the µ-rule
together with the standard transition rule for the prefix operator: aw∗ a−→w∗. Namely,
after application of the formal substitution σ∗ to the µ-rule with σ∗(y∗) = ax and
σ∗(z∗) = µx.ax, the hypothesis takes the form ax[µx.ax/x] a−→µx.ax, which evaluates
to aµx.ax a−→µx.ax. Since this is an instance of the transition rule for the prefix operator,
with µx.ax for w∗, we conclude that the σ∗-instantiation of the conclusion of the µ-rule
is valid: µx.ax a−→µx.ax.

We introduce the basic notions of structured operational semantics. We assume a
signature Σ, and a set D of relation and predicate symbols.

Definition 2.10 Let t0, ..., tn ∈ T (Σ).

- For R a relation, the expression t0R(t1, ..., tn−1)tn is a positive transition.

- For R a predicate, the expression t0R(t1, ..., tn−1) is a positive transition.

- For R a relation or a predicate, the expression t0¬R(t1, ..., tn−1) is a negative
transition.
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We allow the possibility to attach terms to relations and predicates, because nowadays
many formalisms, such as the π-calculus [41], use transition rules with parametrized
labels.

Remark 2.11 Our conservativity result would also hold in a setting where transitions,
and proofs of such transitions (as is defined in Section 2.4), may involve open terms; see
[22]. However, the assumption that terms in transitions are closed is a standard restric-
tion in applications of operational semantics, so that we refrain from a generalization
to open terms.

Definition 2.12 An actual (transition) rule is an expression of the form H/τ , where
H is a collection of positive and negative transitions, and τ is a positive transition.

Example 2.13 An example of an actual rule that we met in Example 2.9 is

aµx.ax a−→µx.ax

µx.ax a−→µx.ax

It was deduced from the µ-rule, which is an example of a formal rule.

Actual transition rules are deduced by means of formal transition rules. The formal
rules are the ones that are presented in the literature; they are the recipes that enable
to deduce a transition relation.

Definition 2.14 A formal (transition) rule is an expression of the form H∗/τ∗, where:

• H∗ is a collection hypotheses of the form

- t∗0R(t
∗

1, ..., t
∗

n−1)t
∗

n with R a relation, and

- t∗0R(t
∗

1, ..., t
∗

n−1) with R a predicate, and

- t∗0¬R(t
∗

1, ..., t
∗

n−1) with R a relation or predicate;

• τ∗ is the conclusion of the form

- t∗0R(t
∗

1, ..., t
∗

n−1)t
∗

n with R a relation, or

- t∗0R(t
∗

1, ..., t
∗

n−1) with R a predicate;

whereby t∗0, ..., t
∗

n ∈ � (Σ).
A transition system specification (TSS) is a collection of formal rules.

We give an intricate example of a formal transition rule PRE from the π-calculus,
which incorporates bound variables and parametrized labels. Recall that actual terms
are considered modulo α-conversion.
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Example 2.15 Assume two sorts Port of port names and Process of processes. For
actual variables x and y of sort Port we have the formal rule

PRE x(y).v∗
x(y)
−−−→v∗

where v∗ is a formal variable of sort Process. The formal rule PRE expresses that
process x(y).p sends port name y via port x, and proceeds as process p. There is a
subtle distinction between the two occurrences of y in PRE; in x(y).v∗ it is a binder
of v∗, while in the label it is a free parameter. A notation of PRE in the vein of this
article would be

send(x, y.v∗)
(x,y)
−−−→v∗

From PRE we can deduce x(y).t
x(w)
−−−→t[w/y] for actual terms t of sort Process which do

not contain any free occurrences of the actual variable w of sort Port, where [w/y] is

an explicit actual substitution. Namely, PRE yields x(w).t[w/y]
x(w)
−−−→t[w/y], and if w

does not occur free in t, then x(w).t[w/y] is α-convertible to x(y).t.

2.4 Proofs of Actual Rules

Examples 2.9 and 2.15 already showed that a TSS is used to prove that certain transi-
tions hold. Now we give the precise definition of a proof from a TSS.

Definition 2.16 A proof from a TSS T of an actual rule H/τ consists of an upwardly
branching tree in which all upward paths are finite, where the nodes of the tree are
labelled by positive and negative transitions such that:

• the root has label τ ,

• if some node has label `, and K is the set of labels of nodes directly above this
node, then

1. either K = ∅, and ` ∈ H,

2. or K/` is a formal substitution instance of a formal rule in T .

Example 2.17 In Example 2.9 we saw that the transition µx.ax a−→µx.ax can be
proved from the TSS containing the formal rule for prefixing from CCS and the µ-rule.
This proof is depicted in Figure 1.

Remark 2.18 Provability of an actual rule may depend in an essential way on the
fact that terms are considered modulo α-conversion. For example, this was the case in

Example 2.15, where the proof of the transition x(y).t
x(w)
−−−→t[w/y], with w not free in

t, used α-conversion of x(y).t to x(w).t[w/y].

3 A Conservative Extension Theorem

In this section we present the theorem concerning conservative extensions. First, we
define in a precise way what is a conservative extension. Then a string of technical
definitions leads to the formulation and proof of the main theorem.
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µx.ax a−→µx.ax

a.µx.ax a−→µx.ax

∅
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

















Figure 1: A proof for µx.ax a−→µx.ax

3.1 Well-Defined Sum

In order to be able to combine two TSSs, the function symbols and variables in the
intersection of their signatures must have the same functionality in both signatures.
Furthermore, if a relation or predicate symbol occurs in the two TSSs, then it must
be either a relation or a predicate symbol in both TSSs. Therefore, we introduce the
notion of a well-defined sum of two TSSs.

Definition 3.1 Let T0 and T1 be TSSs over (Σ0,D0) and (Σ1,D1) respectively. Their
sum (or union) T0 ⊕ T1 is well-defined if

• each function symbol and each variable in Σ0 ∩ Σ1 has the same functionality in
both signatures;

• each element in D0 ∩ D1 is either a relation or a predicate in both collections.

In the remainder of this section we assume two TSSs T0 and T1 over (Σ0,D0) and
(Σ1,D1) respectively, where T0 ⊕ T1 is well-defined.

3.2 Conservative Extension

In the presence of negative hypotheses it is not straightforward to give meaning to a
TSS. Several semantic notions have been introduced in the literature, such as two-valued
and three-valued stable models, completeness, stratifications, and well-foundedness; see
[27, 28] for an overview and a comparison of a wide range of such notions. Instead of
restricting to one particular semantics, we define a stronger notion of a conservative
extension, which can be regarded as a front-end to conservative extensions with respect
to these semantic notions; see Section 3.8.
A conservative extension requires that an original TSS and its extension prove exactly

the same actual rules N/τ with N a collection of negative transitions and the left-hand
side of τ an original actual term.

10



Definition 3.2 T0 ⊕ T1 is an (operationally) conservative extension of T0 if for each
actual rule N/τ with

- N contains only negative transitions;

- the left-hand side of τ is in T (Σ0);

- T0 ⊕ T1 proves N/τ ;

we have that T0 proves N/τ .

The notion of an operationally conservative extension of a TSS is related to an equiv-
alence notion for TSSs that is used in [28, 20]: two TSSs are equivalent if they prove
exactly the same actual rules N/τ where N contains only negative transitions.
We define a syntactic format for TSSs which ensures that a TSS T0 ⊕ T1 is a conser-

vative extension of T0. But first we need to present several auxiliary definitions.

3.3 Fresh Formal Terms and Fresh Relations

A formal term in � (Σ1) is called fresh if it incorporates a function symbol from Σ1\Σ0

outside its substitution harnesses.

Definition 3.3 The formal terms in � (Σ1) that are fresh are defined inductively as
follows:

- f(~x1.t
∗

1, ..., ~xn.t
∗

n) is fresh if f ∈ Σ1\Σ0, or if some t
∗

i is fresh;

- t∗[s∗/x] is fresh if t∗ is fresh.

Example 3.4 Let Σ0 = {f} and Σ1 = {a, f}, where a is a constant and f is of arity
one. Then f(x.a[z∗/y]) is fresh, but f(x.z∗[a/y]) is not fresh.

Lemma 3.5 t∗ ∈ � (Σ1) is fresh ⇒ σ∗(t∗) 6∈
�
(Σ0).

Proof. By induction with respect to the size of t∗.

Definition 3.6 Relations and predicates are called fresh if they are in D1\D0.

3.4 The Collections FV (t∗) and EV (t∗)

FV (t∗) denotes the collection of formal variables that occur in the formal term t∗.

Definition 3.7 The collections FV (t∗) are defined inductively as follows.

FV (x∗) = x∗,

FV (f(~x1.t
∗

1, ..., ~xn.t
∗

n)) = FV (t∗1) ∪ ... ∪ FV (t∗n),

FV (t∗[s∗/x]) = FV (t∗) ∪ FV (s∗).

Example 3.8 FV (f(v.x∗[y∗/w])) = {x∗, y∗}.
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Lemma 3.9 For formal terms t∗ ∈ � (Σ0) we have

σ∗(x∗) ∈
�
(Σ0) for all x

∗ ∈ FV (t∗) ⇒ σ∗(t∗) ∈
�
(Σ0).

Proof. By induction with respect to the size of t∗.

The converse of Lemma 3.9 does not hold. Namely, if σ∗(t∗) ∈
�
(Σ0), then it is

possible for formal variables y∗ that occur inside a substitution harness in t∗ that
σ∗(y∗) 6∈

�
(Σ0). This is illustrated by the following example.

Example 3.10 Let Σ0 = {a} and Σ1 = {b}, where a and b are constants, and let
σ∗(x∗) = b. Then σ∗(a[x∗/y]) = a ∈

�
(Σ0), but σ

∗(x∗) = b 6∈
�
(Σ0).

In order to obtain a result converse to Lemma 3.9, we define a second, more restrictive
collection EV (t∗) of formal variables in a formal term t∗, which does not take into
account formal variables that occur inside a substitution harness.

Definition 3.11 The collections EV (t∗) are defined inductively as follows.

EV (x∗) = x∗,

EV (f(~x1.t
∗

1, ..., ~xn.t
∗

n)) = EV (t∗1) ∪ ... ∪ EV (t∗n),

EV (t∗[s∗/x]) = EV (t∗).

Example 3.12 EV (f(v.x∗[y∗/w])) = {x∗}.

The definition of EV (t∗) is motivated by the following lemma, which is the converse
of Lemma 3.9, with FV replaced by EV .

Lemma 3.13 σ∗(t∗) ∈
�
(Σ0) ⇒ σ∗(x∗) ∈

�
(Σ0) for all x

∗ ∈ EV (t∗).

Proof. By induction with respect to the size of t∗.

3.5 Source-Dependency

Definition 3.14 The formal term at the left-hand side of the conclusion of a formal
rule is called the source of the formal rule.

In this section we introduce the notion of source-dependency, modulo a set of sorts, for
the formal variables in a formal rule. Source-dependency is an important ingredient of
the conservativity theorem. In order to conclude that an extended TSS is conservative
over an original TSS, we need to know that the formal variables in the original formal
rules are source-dependent, modulo sorts for which there are no fresh terms. In practical
cases, this criterion is sometimes neglected. For example, Nicollin and Sifakis [43]
consider an extended TSS in which each formal rule in the extension contains a fresh
operator in its source, and from this fact alone they conclude that it is a conservative
extension. In general, however, this characteristic is not sufficient, as is shown in the
next example.
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Example 3.15 Let Σ0 = {a} and Σ1 = {b}, where a and b are constants, and let R be
a predicate. Consider the TSS over Σ0 that consists of the formal rule x∗R/aR. Extend
this TSS with the formal rule bR, which contains the fresh constant b in its source.
Then aR holds in the extended TSS, but not in the original one, so this extension is
not conservative.

Consider a formal rule r∗, which contains a formal variable x∗. Each of the following
two properties ensures that for formal substitutions σ∗ with the source of σ∗(r∗) an
original term, σ∗(x∗) is also an original term.

• x∗ occurs in the source of r∗, outside the substitution harnesses.

• There do not exist fresh terms of the same sort as x∗.

These two properties are captured in the first two cases of the definition of source-
dependency modulo a set of sorts S, respectively, where intuitively S consists of the
sorts for which there do not exist fresh terms.

Definition 3.16 For a formal rule r∗, and a collection S of sorts, the source-dependent
formal variables modulo S in r∗ are defined inductively as follows.

1. If t∗ is the source of r∗, then all formal variables in EV (t∗) are source-dependent
in r∗ modulo S.

2. If x∗ ∈ FV (r∗) is of sort S for some S ∈ S, then x∗ is source-dependent in r∗

modulo S.

3. If t∗0R(t
∗

1, ..., t
∗

n−1)t
∗

n is a hypothesis of r∗, and all formal variables in FV (t∗0) are
source-dependent in r∗ modulo S, then all formal variables in EV (t∗i ) for i =
1, ..., n are source-dependent in r∗ modulo S.

4. If t∗0R(t
∗

1, ..., t
∗

n−1) is a hypothesis of r∗, and all formal variables in FV (t∗0) are
source-dependent in r∗ modulo S, then all formal variables in EV (t∗i ) for i =
1, ..., n− 1 are source-dependent in r∗ modulo S.

A formal variable is called source-dependent if it is source-dependent modulo ∅.

Source-dependency is a more liberal formulation of the syntactic criterion ‘pure and
well-founded’ for formal variables in formal rules from Groote and Vaandrager [32]. In
the setting without variable bindings, the notion of source-dependency was discovered
independently by Van Glabbeek [26].

Example 3.17 We display the µ-rule, which was introduced in Example 2.9.

y∗[µx.y∗/x] a−→z∗

µx.y∗ a−→z∗

Since the source of the µ-rule is µx.y∗ and EV (µx.y∗) = {y∗}, it follows that y∗ is source-
dependent (Definition 3.16 (1)). Since the µ-rule has a hypothesis y∗[µx.y∗/x] a−→z∗, and

FV (y∗[µx.y∗/x]) = FV (y∗) ∪ FV (µx.y∗) = {y∗}
EV (z∗) = {z∗}

it follows that z∗ is also source-dependent (Definition 3.16 (3)).
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3.6 The Formal Rule ρ(r∗)

Definition 3.18 For each formal rule r∗ in T0⊕T1, ρ(r
∗) denotes the formal rule that

consists of the conclusion of r∗, together with those hypotheses of r∗ for which the term
at the left-hand side is in � (Σ0).

Example 3.19 Let Σ0 = {a} and Σ1 = {b}, where a and b are constants, and let ↓
and ↑ be predicates. If r∗ is the formal rule

a↓ b↓

b↑

then ρ(r∗) is a↓ /b↑.

Note that if r∗ ∈ T0, then ρ(r
∗) = r∗, simply because in this case all terms in r∗ are in

� (Σ0).

3.7 The Main Theorem

Recall that we assume two TSSs T0 and T1 over (Σ0,D0) and (Σ1,D1) respectively,
where T0 ⊕ T1 is well-defined. Theorem 3.20 formulates sufficient criteria for T0 ⊕ T1 to
be a conservative extension of T0.

Theorem 3.20 Under the following conditions, T0 ⊕ T1 is a conservative extension of
T0.

1. S is a collection of sorts such that for each S ∈ S there are no fresh actual terms
in T (Σ0 ⊕ Σ1) of sort S.

2. For each r∗ ∈ T0, all x
∗ ∈ FV (r∗) are source-dependent in r∗ modulo S.

3. For each r∗ ∈ T1,

• either the source of r∗ is fresh,

• or r∗ has a hypothesis of the form t∗0R(t
∗

1, ..., t
∗

n−1)t
∗

n or t
∗

0R(t
∗

1, ..., t
∗

n−1), where

– t∗0 ∈ � (Σ0);

– all formal variables in FV (t∗0) are source-dependent in ρ(r
∗) modulo S;

– R or one of the terms t∗1, ..., t
∗

n is fresh.

In the proof of the conservativity theorem above we apply induction with respect to
the source distance of a source-dependent formal variable x∗ in a formal rule r∗ modulo
S, being the minimal number of steps it takes to deduce that x∗ is source-dependent in
r∗ modulo S.

Definition 3.21 Assume a formal rule r∗ and a collection of sorts S. For a formal
variable x∗ ∈ FV (r∗) that is source-dependent modulo S, its source distance sd(r∗,S, x∗)
in r∗ is defined as follows.
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- If t∗ is the source of r∗ and x∗ ∈ EV (t∗), then sd(r∗,S, x∗) ≤ n holds for all
naturals n.

- If x∗ is of sort S for some S ∈ S, then sd(r∗,S, x∗) ≤ n holds for all naturals n.

- If t∗0R(t
∗

1, ..., t
∗

n−1)t
∗

n is a hypothesis of r∗, and sd(r∗,S, x∗) ≤ n holds for all
x∗ ∈ FV (t∗0), then sd(r

∗,S, y∗) ≤ n+ 1 holds for all y∗ ∈ EV (t∗1) ∪ ... ∪ EV (t∗n).

- If t∗0R(t
∗

1, ..., t
∗

n−1) is a hypothesis of r∗, and sd(r∗,S, x∗) ≤ n holds for all x∗ ∈
FV (t∗0), then sd(r

∗,S, y∗) ≤ n+ 1 holds for all y∗ ∈ EV (t∗1) ∪ ... ∪ EV (t∗n−1).

Finally, sd(r∗,S, x∗) = n if n is the smallest number such that sd(r∗,S, x∗) ≤ n.

Proof of Theorem 3.20. Suppose that there exists a proof P from T0⊕T1 for an actual
rule N/t0R(t1, ..., tn−1)tn, where N consists of negative transitions and t0 ∈ T (Σ0). We
need to prove that P is a proof from T0, which we do by ordinal induction A on the
length of P . (The case that T0 ⊕ T1 proves an actual rule N/t0R(t1, ..., tn−1), where N
consists of negative transitions and t0 ∈ T (Σ0), can be dealt with in a similar fashion.)
Let P have length α, and suppose that we have already proved the case for ordinals

smaller than α. The last step in P is constituted by a formal rule r∗ ∈ T0 ⊕ T1
with a conclusion of the form p∗0R(p

∗

1, ..., p
∗

n−1)p
∗

n together with a formal substitution
σ∗ : V∗ →

�
(Σ0 ⊕ Σ1), where σ

∗(p∗0) = t0.
First, we show that σ∗(x∗) ∈

�
(Σ0) for all x∗ that are source-dependent in ρ(r∗)

modulo S, by induction B on the source distance of x∗ in ρ(r∗) (see Definition 3.21).

1. sd(ρ(r∗),S, x∗) = 0.

This means that either x∗ ∈ EV (p∗0), or x
∗ is of sort S for some S ∈ S.

Suppose that x∗ ∈ EV (p∗0). Since σ
∗(p∗0) = t0 is in T (Σ0), Lemma 3.13 then yields

σ∗(x∗) ∈
�
(Σ0).

Suppose that x∗ is of sort S ∈ S. By Assumption 1 of Theorem 3.20 there are no
fresh actual terms of sort S, so in this case also σ∗(x∗) ∈

�
(Σ0).

2. sd(ρ(r∗),S, x∗) = k + 1.

By definition there is a hypothesis q∗0U(q∗1, ..., q
∗

m−1)q
∗

m or q∗0U(q∗1, ..., q
∗

m−1) of ρ(r
∗)

such that x∗ ∈ EV (q∗i ) for some i = 1, ...,m and sd(ρ(r∗),S, y∗) ≤ k for all
y∗ ∈ FV (q∗0). Induction B implies that σ∗(y∗) ∈

�
(Σ0) for all y∗ ∈ FV (q∗0).

Furthermore, Definition 3.18 of ρ(r∗) ensures that q∗0 ∈ � (Σ0), so Lemma 3.9 yields
σ∗(q∗0) ∈ T (Σ0). The transition σ∗(q∗0U(q∗1, ..., q

∗

m−1)q
∗

m) or σ∗(q∗0U(q∗1, ..., q
∗

m−1))
is proved by a strict sub-proof of P , so then ordinal induction A implies that
T0 proves this transition. In particular, σ∗(q∗i ) ∈ T (Σ0) for i = 1, ...,m. Since
x∗ ∈ EV (q∗i ) for some i = 1, ...,m, Lemma 3.13 yields σ∗(x∗) ∈

�
(Σ0).

Next, we show that r∗ is in T0. Suppose not, so let r∗ ∈ T1; we deduce a contradiction.
Since σ∗(p∗0) = t0 is in T (Σ0), Lemma 3.5 implies that p∗0 is not fresh. Then by As-
sumption 3 of Theorem 3.20 there is a hypothesis in r∗ of the form q∗0U(q∗1, ..., q

∗

m−1)q
∗

m

or q∗0U(q∗1, ..., q
∗

m−1), where either U or some q∗i for i = 1, ...,m is fresh, and q∗0 ∈ � (Σ0),
and all formal variables in FV (q∗0) are source-dependent in ρ(r∗) modulo S.
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If q∗i is fresh for some i = 1, ...,m, then Lemma 3.5 says that σ∗(q∗i ) 6∈ T (Σ0). Hence,
since either U is fresh or σ∗(q∗i ) 6∈ T (Σ0) for some i = 1, ...,m, the sub-proof of P of
N/σ∗(q∗0U(q∗1, ..., q

∗

m−1)q
∗

m) or N/σ∗(q∗0U(q∗1, ..., q
∗

m−1)) cannot be a proof from T0. So
according to ordinal induction A, σ∗(q∗0) 6∈ T (Σ0). Since q

∗

0 ∈ � (Σ0), Lemma 3.9 yields
σ∗(x∗) 6∈

�
(Σ0) for some x∗ ∈ FV (q∗0). Then x

∗ is not source-dependent in ρ(r∗) modulo
S. Contradiction.
So apparently r∗ is in T0. Then ρ(r

∗) = r∗ (see Section 3.6), so σ∗(x∗) ∈
�
(Σ0) for all

x∗ that are source-dependent in r∗ modulo S. According to Assumption 2 of Theorem
3.20 all variables in FV (r∗) are source-dependent in r∗ modulo S. Thus, σ∗(r∗) contains
only closed actual terms from T (Σ0). In particular, for each positive hypothesis h∗ in
r∗, the left-hand side of σ∗(h∗) is in T (Σ0). Then induction A says that the sub-proof
of P for N/σ∗(h∗) is a proof from T0. Since the last step (with r∗ and σ∗) is in T0 too,
P is a proof from T0. 2

3.8 Three-Valued Stable Models

We use three-valued stable models, introduced by Przymusinski [45], to give a semantics
to TSSs with negative hypotheses, and discuss how the conservative extension property
as formulated in Definition 3.2 implies a conservativity result for these models.

Definition 3.22 A collection of negative transitions N holds for a set of positive tran-
sitions P, denoted by P |= N , if for each t0¬R(t1, ..., tn−1) ∈ N we have

- either t0R(t1, ..., tn−1)t 6∈ P for all actual terms t if R is a relation;

- or t0R(t1, ..., tn−1) 6∈ P if R is a predicate.

A three-valued stable model partitions the collection of positive transitions into three
disjoint sets: the set C of transitions that are certainly true, the set U of transitions for
which it is unknown whether or not they are true, and the set of remaining transitions
that are false. Such a partitioning (which is determined by 〈C, U〉) constitutes a three-
valued stable model for TSS T if:

- a positive transition τ is in C if and only if T proves an actual rule N/τ where N
contains only negative transitions and C ∪ U |= N ;

- a positive transition τ is in C∪ U if and only if T proves an actual rule N/τ where
N contains only negative transitions and C |= N .

A TSS may allow more than one three-valued stable model.

Example 3.23 Assume two constants a and b, and a predicate R. The TSS that con-
sists of the formal rules b¬R/aR and a¬R/bR allows three three-valued stable models,
namely 〈∅, {aR, bR}〉 and 〈{aR}, ∅〉 and 〈{bR}, ∅〉.

The conservative extension notion as formulated in Definition 3.2 implies a conser-
vativity property for three-valued stable models. Namely, if an extended TSS is con-
servative over the original TSS, in the sense of Definition 3.2, and if a three-valued
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stable model for the extended TSS is restricted to those positive transitions that have
an original term as left-hand side, then the result is a three-valued stable model for the
original TSS.

Theorem 3.24 Let T0⊕T1 be a conservative extension of T0. If 〈C, U〉 is a three-valued
stable model for T0 ⊕ T1, then

C
′ = {τ ∈ C | the left-hand side of τ is in T (Σ0)}
U
′ = {τ ∈ U | the left-hand side of τ is in T (Σ0)}

is a three-valued stable model for T0.

Proof. We have to check that

1. τ ∈ C
′ if and only if T0 proves an actual rule N/τ with C

′ ∪ U′ |= N ;

2. τ ∈ C
′ ∪ U′ if and only if T0 proves an actual rule N/τ with C

′ |= N .

The proofs of these two statements are almost identical. We spell out both proofs, in
order to exhibit their subtle distinctions.

1a Assume that there is a proof from T0 for an actual rule N/τ , where N contains
only negative transitions, and C

′ ∪ U′ |= N . We show that τ ∈ C
′.

Since T0 proves N/τ , clearly N and τ involve only closed actual terms from T (Σ0).
Furthermore, the proof for N/τ from T0 is also a proof from T0 ⊕ T1.

Consider a negative transition t0¬R(t1, ..., tn−1) in N . Since C
′ ∪ U

′ |= N , either
t0R(t1, ..., tn−1)t 6∈ C

′ ∪ U
′ for all closed actual terms t ∈ T (Σ0 ⊕ Σ1) (if R is a

relation), or t0R(t1, ..., tn−1) 6∈ C
′ ∪ U′ (if R is a predicate). Since N involves only

closed actual terms from T (Σ0), in particular t0 ∈ T (Σ0). Thus, by definition of C′

and U
′, either t0R(t1, ..., tn−1)t 6∈ C∪U for all t ∈ T (Σ0⊕Σ1), or t0R(t1, ..., tn−1) 6∈

C∪U, respectively. Hence C∪U |= N . Since 〈C, U〉 constitutes a three-valued stable
model for T0 ⊕ T1, and there is a proof from T0 ⊕ T1 for N/τ , this implies τ ∈ C.

Since τ contains only actual terms from T (Σ0), in particular its left-hand side is
in T (Σ0), and so τ ∈ C

′.

1b Assume that τ ∈ C
′. We show that there is a proof from T0 for an actual rule

N/τ , where N contains only negative transitions, and C
′ ∪ U′ |= N .

τ ∈ C
′ ⊆ C, and 〈C, U〉 constitutes a three-valued stable model for T0⊕T1. So there

exists a proof from T0 ⊕ T1 for an actual rule N/τ , where N consists of negative
transitions, and C ∪ U |= N . Since T0 ⊕ T1 is a conservative extension of T0, and
the left-hand side of τ is in T (Σ0), there exists a proof for N/τ from T0. Finally,
C
′ ∪ U′ ⊆ C ∪ U and C ∪ U |= N together imply C

′ ∪ U′ |= N .

2a Assume that there is a proof from T0 for an actual rule N/τ , where N contains
only negative transitions, and C

′ |= N . We show that τ ∈ C
′ ∪ U′.

Since T0 proves N/τ , clearly N and τ involve only closed actual terms from T (Σ0).
Furthermore, the proof for N/τ from T0 is also a proof from T0 ⊕ T1.
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Consider a negative transition t0¬R(t1, ..., tn−1) in N . Since C
′ |= N , either

t0R(t1, ..., tn−1)t 6∈ C
′ for all closed actual terms t ∈ T (Σ0 ⊕ Σ1) (if R is a re-

lation), or t0R(t1, ..., tn−1) 6∈ C
′ (if R is a predicate). Since N involves only closed

actual terms from T (Σ0), in particular t0 ∈ T (Σ0). Thus, by definition of C′,
either t0R(t1, ..., tn−1)t 6∈ C for all t ∈ T (Σ0 ⊕ Σ1), or t0R(t1, ..., tn−1) 6∈ C, re-
spectively. Hence C |= N . Since 〈C, U〉 constitutes a three-valued stable model for
T0 ⊕ T1, and there is a proof from T0 ⊕ T1 for N/τ , this implies τ ∈ C ∪ U.

Since τ contains only actual terms from T (Σ0), in particular its left-hand side is
in T (Σ0), and so τ ∈ C

′ ∪ U′.

2b Assume that τ ∈ C
′ ∪ U′. We show that there is a proof from T0 for an actual rule

N/τ , where N contains only negative transitions, and C
′ |= N .

τ ∈ C
′ ∪ U′ ⊆ C ∪ U, and 〈C, U〉 constitutes a three-valued stable model for T0 ⊕ T1.

So there exists a proof from T0 ⊕ T1 for an actual rule N/τ , where N consists
of negative transitions, and C |= N . Since T0 ⊕ T1 is a conservative extension of
T0, and the left-hand side of τ is in T (Σ0), there exists a proof for N/τ from T0.
Finally, C′ ⊆ C and C |= N together imply C

′ |= N . 2

The reverse of Theorem 3.24 also holds, in the following sense. If an extended TSS is
conservative over the original TSS, then each three-valued stable model for the original
TSS can be obtained by restricting some three-valued stable model for the extended
TSS to those positive transitions that have an original term as left-hand side.

Theorem 3.25 Let T0⊕T1 be a conservative extension of T0. If 〈C, U〉 is a three-valued
stable model for T0, then there exists a three-valued stable model 〈C′, U′〉 for T0⊕T1 such
that

C = {τ ∈ C
′ | the left-hand side of τ is in T (Σ0)}

U = {τ ∈ U
′ | the left-hand side of τ is in T (Σ0)}.

Proof. We construct pairs of disjoint sets of positive transitions 〈Cα, Uα〉 for ordinals α,
using ordinal induction, and show that these pairs converge to a suitable three-valued
stable model for T0 ⊕ T1.

- C0 = C, and U0 consists of U together with all positive transitions that do not have
a term from T (Σ0) as left-hand side.

- For ordinals α, 〈Cα+1, Uα+1〉 is constructed from 〈Cα, Uα〉 as follows. A positive
transition τ is in Cα+1 iff T0⊕T1 proves an actual rule N/τ where N contains only
negative transitions and Cα ∪ Uα |= N . Furthermore, a positive transition τ is in
Cα+1 ∪ Uα+1 iff T0⊕T1 proves an actual rule N/τ where N contains only negative
transitions and Cα |= N .

- For limit ordinals λ we define Cλ = ∪α<λCα and Uλ = ∩α<λUα.

First, we prove for all ordinals α:

I. C = {τ ∈ Cα | the left-hand side of τ is in T (Σ0)}
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II. U = {τ ∈ Uα | the left-hand side of τ is in T (Σ0)}

Proof. We prove both equalities in parallel, using ordinal induction with respect to α. The case α = 0
follows immediately from the definitions of C0 and U0. We focus on the inductive case.

Ia Let τ ∈ C. Then the left-hand side of τ is in T (Σ0). We show that τ ∈ Cα.

If α is a limit ordinal, then by induction τ ∈ Cβ for β < α, so τ ∈ Cα.

Let α be a non-limit ordinal. τ ∈ C implies that T0 proves an actual rule N/τ where N contains
only negative transitions and C∪U |= N . Then T0⊕T1 also provesN/τ . Furthermore, the left-hand
sides of transitions in N are all in T (Σ0), so by induction C ∪ U |= N implies Cα−1 ∪ Uα−1 |= N .
Hence, τ ∈ Cα.

Ib Let τ ∈ Cα with its left-hand side in T (Σ0). We show that τ ∈ C.

If α is a limit ordinal, then τ ∈ Cβ for some β < α, so by induction c ∈ C.

If α is not a limit ordinal, then τ ∈ Cα yields that T0 ⊕ T1 proves an actual rule N/τ where N
contains only negative transitions and Cα−1∪Uα−1 |= N . Since T0⊕T1 is a conservative extension
of T0 and the left-hand side of τ is in T (Σ0), T0 also proves N/τ . Furthermore, by induction
C ∪ U ⊆ Cα−1 ∪ Uα−1 |= N . Hence, τ ∈ C.

IIa Let τ ∈ U. Then the left-hand side of τ is in T (Σ0). We show that τ ∈ Uα.

If α is a limit ordinal, then by induction τ ∈ Uβ for all β < α, so τ ∈ Uα.

Let α be a non-limit ordinal. τ ∈ U implies that T0 proves an actual rule N/τ where N contains
only negative transitions and C |= N and C∪U 6|= N . Then T0⊕T1 also proves N/τ . Furthermore,
the left-hand sides of transitions in N are all in T (Σ0), so by induction C |= N implies Cα−1 |= N .
Finally, by induction Cα−1 ∪ Uα−1 ⊇ C ∪ U 6|= N . Hence, τ ∈ Uα.

IIb Let τ ∈ Uα with its left-hand side in T (Σ0). We show that τ ∈ U.

If α is a limit ordinal, then τ ∈ Uβ for β < α, so by induction τ ∈ U.

If α is not a limit ordinal, then τ ∈ Uα yields that T0 ⊕ T1 proves an actual rule N/τ where
N contains only negative transitions and Cα−1 |= N and Cα−1 ∪ Uα−1 6|= N . Since T0 ⊕ T1

is a conservative extension of T0 and the left-hand side of τ is in T (Σ0), T0 also proves N/τ .
Furthermore, the left-hand sides of transitions in N are all in T (Σ0), so by induction Cα−1 ∪
Uα−1 6|= N implies C ∪ U 6|= N . Finally, by induction C ⊆ Cα−1 |= N . Hence, τ ∈ U.

Next, we prove three inclusions for ordinals α and β with α < β. The last two
inclusions enable us to apply the well-known fixpoint theorem of Knaster-Tarski [51].
(The first inclusion is needed in the proof of the second inclusion.)

1. Cα ∪ Uα ⊇ Cβ ∪ Uβ ;

2. Cα ⊆ Cβ ;

3. Uα ⊇ Uβ .

Proof. First we prove inclusions (1) and (2) in parallel, using ordinal induction with respect to (α, β),
where (α′, β′) < (α, β) if either β′ < β, or β′ = β and α′ < α. We start with the base case where α = 0.

• C0 ∪ U0 ⊇ Cβ ∪ Uβ .

Let τ ∈ Cβ ∪ Uβ . If the left-hand side of τ is not in T (Σ0), then τ ∈ U0 ⊆ C0 ∪ U0.

If the left-hand side of τ is in T (Σ0), then by equalities (I) and (II) τ ∈ C ∪ U ⊆ C0 ∪ U0.

• C0 ⊆ Cβ .

Since C0 = C, this follows from equality (I).

Next, we prove inclusions (1) and (2) for the inductive case.
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• Cα ∪ Uα ⊇ Cβ ∪ Uβ .

Let τ ∈ Cβ ∪ Uβ ; we show that τ ∈ Cα ∪ Uα. We distinguish several cases, depending on whether
or not α and β are limit ordinals.

Case 1: α is a limit ordinal.

Inclusion (1) yields that τ ∈ Cβ ∪ Uβ ⊆ Cγ ∪ Uγ for all γ < α. We distinguish two cases.

Case 1.1: τ ∈ Cγ for some γ < α.

Then inclusion (2) yields τ ∈ Cγ ⊆ Cα.

Case 1.2: τ ∈ Uγ for all γ < α.

Then τ ∈ ∩γ<αUγ = Uα.

Case 2: β is a limit ordinal. We distinguish two cases.

Case 2.1: τ ∈ Uβ .

Then τ ∈ Uγ for all γ < β, so in particular τ ∈ Uα.

Case 2.2: τ ∈ Cβ .

Then τ ∈ Cγ for some γ < β. We distinguish two cases.

Case 2.2.1: γ ≤ α.

Then by inclusion (2) τ ∈ Cγ ⊆ Cα.

Case 2.2.2: γ ≥ α.

Then by inclusion (1) τ ∈ Cγ ⊆ Cγ ∪ Uγ ⊆ Cα ∪ Uα.

Case 3: Both α and β are not limit ordinals.

Since τ ∈ Cβ ∪ Uβ , T0 ⊕ T1 proves an actual rule N/τ where N contains only negative transitions
and Cβ−1 |= N . Inclusion (2) yields Cα−1 ⊆ Cβ−1 |= N . Hence, τ ∈ Cα ∪ Uα.

• Cα ⊆ Cβ .

Let τ ∈ Cα; we show that τ ∈ Cβ . We distinguish several cases, depending on whether or not α
and β are limit ordinals.

Case 1: α is a limit ordinal.

Inclusion (2) yields Cγ ⊆ Cβ for all γ < α, so Cα = ∪γ<αCγ ⊆ Cβ .

Case 2: β is a limit ordinal.

Then Cα ⊆ ∪γ<βCγ = Cβ .

Case 3: Both α and β are not limit ordinals. Since τ ∈ Cα, T0 ⊕ T1 proves an actual rule
N/τ where N contains only negative transitions and Cα−1 ∪ Uα−1 |= N . Inclusion (1) yields
Cβ−1 ∪ Uβ−1 ⊆ Cα−1 ∪ Uα−1 |= N . Hence, τ ∈ Cβ .

Finally, we prove inclusion (3).

• Cα ∪ Uα ⊇ Cβ ∪ Uβ and Cα ⊆ Cβ together yield

Uβ = (Cβ ∪ Uβ)\Cβ ⊆ (Cα ∪ Uα)\Cα = Uα.

Owing to inclusions (2) and (3), the Knaster-Tarski theorem yields that there exists an
ordinal α such that Cα = Cα+1 and Uα = Uα+1. We show that 〈Cα, Uα〉 is a three-valued
stable model for T0 ⊕ T1.

- By definition of Cα+1, τ ∈ Cα(= Cα+1) iff T0⊕T1 proves an actual rule N/τ where
N contains only negative transitions and Cα ∪ Uα |= N .

- By definition of Cα+1 ∪ Uα+1, τ ∈ Cα ∪ Uα(= Cα+1 ∪ Uα+1) iff T0 ⊕ T1 proves an
actual rule N/τ where N contains only negative transitions and Cα |= N .

Owing to equalities (I) and (II), 〈Cα, Uα〉 is the desired three-valued stable model for
T0 ⊕ T1. 2
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Przymusinski [45] noted that each TSS allows a least three-valued stable model, in
the sense that the set of unknown transitions is maximal. (The construction of this least
three-valued stable model is similar to the limit construction in the proof of Theorem
3.25, with the distinction that C0 is taken to be empty and U0 is taken to be the set of
all positive transitions.) Przymusinski proved that the least three-valued stable model
coincides with the well-founded semantics of Van Gelder, Ross, and Schlipf [24].

Theorem 3.26 Let T0 ⊕ T1 be a conservative extension of T0. If 〈C, U〉 is the least
three-valued stable model for T0 ⊕ T1, then

C
′ = {τ ∈ C | the left-hand side of τ is in T (Σ0)}
U
′ = {τ ∈ U | the left-hand side of τ is in T (Σ0)}

is the least three-valued stable model for T0.

Proof. According to Theorem 3.24, 〈C′, U′〉 is a three-valued stable model for T0. Con-
sider an arbitrary three-valued stable model 〈C′, U′〉 for T0. According to Theorem 3.25
there exists a three-valued stable model 〈C, U〉 for T0 ⊕ T1 such that

C
′

= {τ ∈ C | the left-hand side of τ is in T (Σ0)}

U
′

= {τ ∈ U | the left-hand side of τ is in T (Σ0)}.

Since 〈C, U〉 is the least three-valued stable model for T0 ⊕ T1 we have U ⊆ U, and so
U
′ ⊆ U

′. Hence, 〈C′, U′〉 is the least three-valued stable model for T0. 2

The notion of a (two-valued) stable model stems from Gelfond and Lifschitz [25] in
the setting of logic programming, and was adapted to structured operational semantics
by Bol and Groote [14]. A two-valued stable model is a three-valued stable model of
the form 〈C, ∅〉. It is easy to see that Theorem 3.24 also holds for two-valued instead of
three-valued stable models. The following example, however, shows that Theorem 3.25
does not hold for two-valued stable models.

Example 3.27 Let T0 be the empty TSS. T0 allows the two-valued stable model 〈∅, ∅〉.
Let a be a constant and R a predicate, and let T1 consist of the single rule a¬R/aR.

According to Theorem 3.20, T0 ⊕ T1 is a conservative extension of T0. However, T0 ⊕
T1 does not allow a two-valued stable model, but only the three-valued stable model
〈∅, {aR}〉.

Van Glabbeek [28] argued that a good way to give meaning to TSSs with negative
hypotheses is through the notion of completeness. A TSS is complete if its least three-
valued stable model is a two-valued stable model. Groote [29] focused on TSSs that are
stratified, which means that it is possible to define an appropriate weight function on
the hypotheses and conclusions of the formal rules in a TSS. If a TSS is stratified, then
it is complete. Our results also apply to complete (and so to stratified) TSSs.
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4 Applications

Basically, Theorem 3.20 implies that a well-defined sum T0⊕T1 is a conservative exten-
sion of a TSS T0 if two requirements are satisfied:

1. the formal rules in T0 contain only source-dependent formal variables;

2. the sources of formal rules in T1 are all fresh formal terms.

These two criteria, the first of which has been incorporated in the tool LATOS [33], are
satisfied by most extensions of TSSs in the literature. We presented more liberal, and
therefore more complicated, formulations of the two requirements in Theorem 3.20 on
the forms of the formal rules in T0 and T1, in order to cover some cases of conservative
extensions in the literature that do not satisfy one of the two criteria above.

1. The second requirement of Theorem 3.20 allows that formal variables in formal
rules in T0 are source-dependentmodulo a collection of sorts S, under the condition
that for each S ∈ S there are no fresh actual terms of sort S.

An example of the usefulness of this more liberal formulation is the specification
language µCRL [31, 30], which consists of process algebra with data. The op-
erational semantics of µCRL contains a formal rule for a sum construct Σ(w.t),
which simulates the behaviour of t[d/w] for all possible data d:

x∗[y∗/w] a−→z∗

Σ(w.x∗) a−→z∗

where x∗ and z∗ are formal variables that range over a collection of process terms,
and y∗ is a formal variable and w an actual variable that range over some data
domain, say of sort D. In this formal rule both y∗ and z∗ are not source-dependent
(modulo ∅), but they are source-dependent modulo {D}, because y∗ is of sort D.
Hence, if the operational semantics of µCRL is extended with formal rules for a
new process operator, say the state operator [3], but the data domains are not
extended, then our format can be applied to conclude that such an extension is
conservative.

2. The third requirement of Theorem 3.20 allows that a source of a formal rule r∗ in
T1 is not a fresh formal term, under the condition that a fresh function symbol or
fresh relation or predicate symbol occurs in a hypothesis of r∗ that contains only
original function symbols and source-dependent formal variables in its left-hand
side.

This generalization is useful in extensions of TSSs where the transition systems
of original actual terms is extended. Examples of such extensions can be found
in timed process algebra [42, 4]. In those two articles, untimed process algebra
is extended with time, and original terms obtain the possibility to perform time
steps. The operational semantics presented in those two articles contain formal
rules such as

x∗ σ−→x′∗

x∗ + y∗ σ−→x′∗
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where the source x∗ + y∗, which denotes the alternative composition of processes
x∗ and y∗, is not fresh. However, the relation σ−→, which expresses the execution
of a time step, is fresh, and the left-hand side x∗ of the hypothesis x∗ σ−→x′∗ in the
formal rule above is a single source-dependent formal variable, so this rule does
satisfy the more liberal third requirement in Theorem 3.20.

The extensions of TSSs described in [42, 4] are within the conservativity format
described in this article, and, since these extensions do not contain binding con-
structs, also within the earlier format from [52].

Our conservativity format can be applied to extensions of operational semantics with
binding constructs, such as in process algebra with time [16, 43, 21] or data [30, 31],
where binding constructs enable to parametrize over the time or data domain, in process
algebra with a recursive operator like the µ-construct [34, 54, 36, 48], in the π-calculus
[40, 41, 47], and in the lazy λ-calculus [46, 35]. In the technical report version of this
article [22] and in [23] it is shown how the conservativity format can also be applied in
the realm of conditional rewriting. Finally, for applications of the conservativity format
in the case of operational semantics without many-sortedness and binding mechanisms;
see e.g. [7]. In the next two sections we give detailed applications of our conservativity
result. The first section is devoted to a timed process algebra, while the second one
focuses on the π-calculus.

4.1 Real Time ACP

We show how the conservativity result can be applied to real time ACP of Fokkink and
Klusener [21], which is an adaptation of an earlier extension of ACP with real time
by Baeten and Bergstra [2]. In [21] also the subalgebra real time BPA is considered,
which does not take into account the communication operators of real time ACP, and
it is claimed that real time ACP is a conservative extension of real time BPA, with
a reference to the technical report version of this article [22]. Here, we present the
technicalities to support this claim. Real time ACP is many-sorted, and contains a
variable binding operator, called integration, so that previous conservativity formats
could not be applied to its operational semantics.
First, we consider real time BPA, which consists of the following sorts and operators:

• Atom consists of a set of constants, referred to as the alphabet.

• Time also consists of a set of constants, and has the structure of an ordered
field (see e.g. [15]). So in particular there are binary operators addition and
multiplication on Time, which are commutative and associative.

• Bound consists of the terms defined by the BNF grammar

b ::= t | x | b+ b | t · b

where t represents an element of the ordered time domain, and x is an actual
variable of sort Time.
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• Formula consists of the boolean formulae defined by the BNF grammar

φ ::= b < b′ | φ ∧ φ | ¬φ

where b and b′ represent bounds. Intuitively, b < b′ holds if b is smaller than b′.

• Process contains process terms that are defined by the BNF grammar

p ::= 0 |
∫

(a, x.〈φ, p〉) | p+ p | bÀ p | φ :→ p

where 0 is a special constant, a a constant in the alphabet, x an actual time
variable, φ a boolean formula, and b a bound. Process terms that do not contain
free time variables specify behaviour according to the following intuitions:

– 0 displays no behaviour;

–
∫

(a, x.〈φ, p〉) can execute action a at time t to evolve into p[t/x], under the
condition that the formula φ[t/x] is true;

– p+ q executes the behaviour of either p or q;

– bÀ p consists of the behaviour of p after time t, with b = t;

– φ :→ p equals either p, if formula φ is true, or 0, if formula φ is false.

Remark 4.1 Time is interpreted in an absolute way, that is, time numbers refer to
some global clock. This contrasts with relative time, in which time numbers refer to the
last moment in time that a previous action was executed.

The operational semantics for real time BPA is presented in Table 1, where b∗, b′∗ are
formal variables of sort Bound, φ∗, ψ∗ are formal variables of sort Formula, p∗, p′∗, q∗ are
formal variables of sort Process, x is an actual variable of sort Time, a ranges over the
constants in Atom, and finally s, t, u range over the constants in Time. The intuition
behind the relations and predicates that are defined in Table 1 is as follows:

- p
a,t
−−→p′ expresses that process p can evolve into process p′ by the execution of

action a at time t;

- Ut(p) holds if process p can execute an initial action after time t;

- Et(b) holds if bound b equals time number t;

- φT holds if formula φ is true.

The first predicate Ut is needed in the operational semantics for real time ACP. The
last two predicates Et and T are not present in [21], where the semantics of bounds
and formulas are defined by means of equations. However, in order to apply the con-
servativity result to this setting, it is necessary to capture the semantics of bounds and
formulas in formal rules, using the predicates Et and T .
The formal variables in the formal rules in Table 1 are all source-dependent. As an

example, we show that this is the case in the formal rule for the conditional construct
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φ∗[t/x]T
∫

(a, x.〈φ∗, p∗〉)
a,t
−−→tÀ p∗[t/x]

p∗
a,t
−−→p′∗

p∗ + q∗
a,t
−−→p′∗

p∗
a,t
−−→p′∗

q∗ + p∗
a,t
−−→p′∗

(b∗ < t)T p∗
a,t
−−→p′∗

b∗ À p∗
a,t
−−→p′∗

φ∗ T p∗
a,t
−−→p′∗

φ∗ :→ p∗
a,t
−−→p′∗

φ∗[s/x] (t < s)T

Ut(
∫

(a, x.〈φ∗, p∗〉))

Ut(p
∗)

Ut(p
∗ + q∗)

Ut(p
∗)

Ut(q
∗ + p∗)

Ut(p
∗)

Ut(b
∗ À p∗)

(t < b∗)T

Ut(b
∗ À p∗)

φ∗ T Ut(p
∗)

Ut(φ
∗ :→ p∗)

Et(t)
Es(b

∗) Et(b
′∗)

Eu(b
∗ + b′∗)

u = s+ t
Es(b

∗)

Eu(t · b
∗)

u = t · s

Es(b
∗) Et(b

′∗)

(b∗ < b′∗)T
s < t

φ∗ T ψ∗ T

(φ∗ ∧ ψ∗)T

φ∗ ¬T

(¬φ∗)T

Table 1: Formal transition rules for real time BPA

φ∗ :→ p∗, which contains three formal variables: φ∗, p∗ and p′∗. The formal variables φ∗

and p∗ in this formal rule occur in the source, so they are source-dependent. Moreover,

since p∗ is source-dependent and the formal rule contains the hypothesis p∗
a,t
−−→p′∗, the

formal variable p′∗ in this formal rule is also source-dependent.
Real time ACP is an extension of real time BPA; it introduces the binary commu-

nication operators ‖ and | and . Thus, the syntax for the sorts Atom and Time and
Bound and Formula and the relations and predicates remain the same, but the BNF
grammar for the sort Process is extended with the three communication operators:

p ::= 0 |
∫

(a, x.〈φ, p〉) | p+ p | bÀ p | φ :→ p | p‖p | p|p | p p

Note that this extension is well-defined (in the sense of Definition 3.1). We also assume
a symmetric communication function γ between actions: γ : Atom × Atom → Atom.
The intuition behind the communication operators is as follows:

- if process p can execute action a at time t to evolve into p′, and process q can
execute an initial action after time t, then p q can execute action a at time t to
evolve into p′‖q;

- if process p can execute action a at time t to evolve into p′, and process q can exe-
cute action a′ at time t to evolve into q′, then p|q can execute the communication
action γ(a, a′) at time t to evolve into p′‖q′;

- p‖q combines the behaviours of p q and q p and p|q.
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p∗
a,t
−−→p′∗ Ut(q

∗)

p∗‖q∗
a,t
−−→p′∗‖(tÀ q∗)

p∗
a,t
−−→p′∗ Ut(q

∗)

q∗‖p∗
a,t
−−→(tÀ q∗)‖p′∗

p∗
a,t
−−→p′∗ Ut(q

∗)

p∗ q∗
a,t
−−→p′∗‖(tÀ q∗)

p∗
a,t
−−→p′∗ q∗

a′,t
−−−→q′∗

p∗‖q∗
c,t
−−→p′∗‖q′∗

γ(a, a′) = c
p∗

a,t
−−→p′∗ q∗

a′,t
−−−→q′∗

p∗|q∗
c,t
−−→p′∗‖q′∗

γ(a, a′) = c

Ut(p
∗) Ut(q

∗)

Ut(p
∗‖q∗)

Ut(p
∗) Ut(q

∗)

Ut(p
∗ q∗)

Ut(p
∗) Ut(q

∗)

Ut(p
∗|q∗)

Table 2: Formal transition rules for real time ACP

These intuitions are formalized by means of the extra formal rules for real time ACP
that are given in Table 2. It is easy to see that the sources of these formal rules are
all fresh, since they all contain one of the communication operators. Hence, the third
requirement of Theorem 3.20 is satisfied. Moreover, since the formal variables of the
sort Process that occur in formal rules in Table 1 are all source-dependent, the second
requirement of Theorem 3.20 is also satisfied. Hence, according to Theorem 3.20 real
time ACP is a conservative extension of real time BPA.

Remark 4.2 The termination symbol 0, taken from CCS, is not present in [21], where
processes can terminate successfully. We introduced the 0 here, because in the setting
with 0 no extra formal rules for successful termination are needed, which reduces the
number of formal rules in the operational semantics considerably. Furthermore, we
excluded the deadlock δ, and the encapsulation operator ∂H and its formal rules, which
are present in [21]. Although the conservativity format can also handle these constructs,
we preferred to leave them out, in order to keep the example as simple as possible.

4.2 The πI-Calculus

We show how the conservativity format can be applied to the πI-calculus from Sangiorgi
[47], which is a subset of the full π-calculus. Basically, one could say that the πI-calculus
is made out of CCS, combined with many-sortedness, variable binding and α-conversion.
These extra features are outside the scope of previous conservativity formats. The
formal transition rules for the π-calculus as defined in [40] satisfy our criteria too, so
the conservativity result can be applied to that formalism just as well. However, we
prefer πI over π here, because it has a simpler operational semantics, which allows to
keep the exposition smooth.
We already encountered the πI-calculus, and its formal rule PRE, briefly in Example

2.15. We explain its syntax and semantics in more detail. Recall that there are two
sorts Port and Process. Process terms are defined by the BNF grammar

p ::= 0 | x(y).p | x̄(y).p | p+ p | p|p | ν y p
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where 0 and p are terms of sort Process, and x and y are actual variables of sort Port.
The occurrences of x in this grammar are free, while the occurrences of y are binders
of p. As usual, p + p′ denotes the alternative composition and p|p′ the communication
merge. The process x(y).p sends, and the process x̄(y).p reads, port name y via port x
and proceeds as p. In both expressions, the x is free, and the y is bound in p. Finally,
ν y p expresses that the port name y is made local in p, that is, the y is bound in p.

PRE x(y).v∗
x(y)
−−−→v∗ SUM

v∗
x(y)
−−−→v′∗

v∗ + w∗
x(y)
−−−→v′∗

PAR
v∗

x(y)
−−−→v′∗ ¬Fy(w

∗)

v∗|w∗
x(y)
−−−→v′∗|w∗

COM
v∗

x(y)
−−−→v′∗ w∗

x̄(y)
−−−→w′∗

v∗|w∗ τ−→ν y (v′∗|w′∗)

RES
v∗

x(y)
−−−→v′∗

ν z v∗
x(y)
−−−→ν z v′∗

z 6∈ {x, y}

Fx(x(y).v
∗) Fx(x̄(y).v

∗)

Fz(v
∗)

Fz(x(y).v
∗)

z 6= y
Fz(v

∗)

Fz(x̄(y).v
∗)

z 6= y
Fz(v

∗)

Fz(ν y v
∗)

z 6= y

Fx(v
∗)

Fx(v
∗ + w∗)

Fx(v
∗)

Fx(w
∗ + v∗)

Fx(v
∗)

Fx(v
∗|w∗)

Fx(v
∗)

Fx(w
∗|v∗)

Table 3: Operational semantics of the πI-calculus

The operational semantics of the πI-calculus is presented in Table 3, where x, y, z are
actual variables of sort Port, and v∗, v′∗, w∗, w′∗ are formal variables of sort Process.
In order to keep Table 3 clean, the versions of PRE and SUM and PAR and RES with
label x̄(y) instead of x(y), and the symmetric versions of SUM and PAR and COM, have
not been included. The x and y in the labels of the formal rules are free parameters.
The predicate Fy that is used in the negative hypothesis of PAR, holds for processes

that contain free occurrences of the actual variable y. In most presentations of op-
erational semantics for the π-calculus, a phrase “y not free in w∗” is added to PAR.
However, in order to apply our conservativity result we need to give a more rigorous
definition of this side condition. The inductive definition for Fy is captured by the nine
formal rules at the lower end of Table 3.
The formal variables in the formal rules in Table 3 are all source-dependent. As an

example, we show that this is the case for the formal rule COM. It says that if v∗ sends
port name y along port x, proceeding as v′∗, and if w∗ reads port name y along port x,
proceeding as w′∗, then their merge can communicate, proceeding as the merge of v ′∗
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and w′∗, in which the port name y is made local, i.e., is bound in both arguments. The
formal variables in COM are all source-dependent:

- v∗ and w∗ occur in the source, so they are source-dependent,

- in the hypotheses v∗
x(y)
−−−→v′∗ and w∗

x̄(y)
−−−→w′∗, the left-hand sides v∗ and w∗ are

source-dependent, so their respective right-hand sides v′∗ and w′∗ are also source-
dependent.

Since each formal rule in the operational semantics of the πI-calculus contains only
source-dependent formal variables, Theorem 3.20 and implies that a well-defined sum
T0 ⊕ T1 is a conservative extension of the TSS T0 for the πI-calculus if the sources of
the formal rules in the extension T1 are all fresh terms.

Remark 4.3 In the πI-calculus, port names are not processes, but data that are used
to parametrize processes. Since processes and data are not distinguished in our setting,
port names are considered to be processes too. This means that the conservativity
result is slightly stronger than necessary, namely, that behaviour of both processes
(interesting) and port names (not so interesting) is not influenced by the formal rules
in the extension.

5 Conclusion

In this article we set up a formal framework to describe transition system specifications
in the style of Plotkin. This framework has the power to express many-sortedness,
general binding mechanisms and substitutions, among other notions such as negative
hypotheses and unary predicates on terms. It can serve as a platform to prove general
properties concerning transition system specifications.
We discussed one such result, known as conservativity. The conservativity theorem

that we proved states under which circumstances the extension of a transition system
specification with new formal rules does not affect the behaviour of the original terms.
This subject is important because many existing operational semantics are extended
with new features such as real time or mobility, and this should preferably be done
conservatively.
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