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Abstract. Railway signaling is often considered as one of the most fruit-
ful areas of intervention by formal methods. Many success stories have
been told about the application of formal specification and verification
techniques in this area. In this chapter, we investigate the reasons of these
successes, and we offer some insight into the actual industrial usage of
formal methods in this field, which does not yet meet the promises of
the aforementioned success stories, but is steadily increasing, especially
on the side of railway operators and infrastructure companies. The ex-
ternal conditions which are driving industrial choices and the trends of
operators and infrastructure companies are also discussed, as well as
the classification of railway signaling devices into categories more or less
amenable to formal methods application.

1 Introduction

National railway systems are managed by transportation service providers that
do not develop computer-based systems themselves. Rather, they act as sys-
tem integrators of systems purchased from external suppliers. Service providers
therefore have the problem of managing acquisition and integration of purchased
subsystems. Hence, such organizations need clear, unambiguous, possibly formal
requirement specifications. Both the purchaser and their suppliers must agree on
rigorous acceptance procedures, based on verification and validation, functional
and safety assessment, and safety approval. Furthermore, uniform, possibly stan-
dardized documentation is essential to permit monitoring of system development
and to facilitate operation and maintenance. The procurement task is made more
difficult by the requirement, under applicable national and international laws,
that safety-critical railway systems must satisfy international standards, dictat-
ing procedures for design, deployment and maintenance.
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Railway signaling is often considered as one of the most fruitful areas of
intervention by formal methods. Many success stories have been told about the
application of formal specification and verification techniques in this area. The
width of the proposed usage of formal methods in this field is witnessed by the
number of references to relevant articles in a recent (still far from complete)
review by Dines Bjørner [7]: 182 references, and many others have followed in
the last two years. Moreover, work performed at railway companies is often not
published for confidentiality reasons.

There are two main reasons for the success of formal methods applications
to railway signaling. On the one hand, railway signaling has always generated
the interest of formal methods researchers, due to its safety-criticality, and the
absence of complex computations and hard real-time constraints, making it a
promising application field. On the other hand, railways have always had a very
strong safety culture, based on simple fail-safe principles. In electromechanical
equipments, used in most signaling systems before the introduction of comput-
ers, gravity was used to bring a system to the fail-safe state (e.g. all signals
to red) in any occurrence of a critical event. The fact that computers have no
gravity, that is, the impossibility of predicting in general the effects of the occur-
rence of faults, has long delayed the acceptance of computer-controlled signaling
equipment by railway companies. The employment of very stable technology and
the quest for the highest possible guarantees have been key aspects for the adop-
tion of computer-controlled equipment in railway applications. Formal proof, or
verification, of safety is therefore seen as a necessity.

In this chapter, we offer some insight into the actual industrial usage of
formal methods in this field, which does not yet meet the promises of the afore-
mentioned success stories, but is steadily increasing. The external conditions
which are driving industrial choices are also discussed, as well as the classifica-
tion of railway signaling devices into categories more or less amenable to formal
methods application. Here we give only some personal and partial views and
experiences in the field, and do not intend to exhaustively cover the field of rail-
way signaling applications of formal methods. In particular, we only address the
European railway signaling market, where actually the most important appli-
cations of formal methods to railways can be found, and which has undergone
several dramatic changes in the last decade.

The structure of this chapter is as follows. In Section 2, the EN50128 guide-
lines by the European Committee for Electrotechnical Standardization regarding
the development of software for railway signaling are discussed. Section 3 reports
on a comparative case study of the applicability of different formal methods to
railway signaling. Section 4 is devoted to applications in the railway domain of
one such formal method, namely B. In Section 5, we focus on formal methods
applications to railway signaling equipment, which is divided into train control
systems and interlocking systems. Finally, Section 6 contains some conclusions.
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2 CENELEC Guidelines

The EN50128 guidelines [29], issued by the European Committee for Electrotech-
nical Standardization (CENELEC), address the development of ”Software for
Railway Control and Protection Systems”, and constitute the main reference for
railway signaling equipment manufacturers in Europe, with their use spreading
to the other continents and to other sectors of the railway (and other safety-
related) industry.

The EN50128 document is part of a series of documents regarding the safety
of railway control and protection systems, in which the key concept of Software
Safety Integrity Level (SSIL) is defined. One of the first steps indicated by these
guidelines in the development of a system is to define a Safety Integrity Level
(SIL) for each of its components, on the basis of the level of risk associated, by
means of a risk assessment process. Assigning different SILs to different com-
ponents helps to concentrate the efforts (and therefore the production costs) on
the critical components. The SILs are: 4 (very high), 3 (high), 2 (medium), 1
(low), and 0 (not safety-related).

The EN50128 guidelines dictate neither a precise development methodology
for software, nor any particular programming technique, but they classify a wide
range of commonly adopted techniques in terms of a rating (from ”Forbidden”
to ”Highly Recommended” and ”Mandatory”) with respect to the established
SIL of the component. Formal methods (in particular CCS, CSP, HOL, LOTOS,
OBJ, Temporal Logic, VDM, Z and B are cited as examples) are rated as highly
recommended for the specification of systems/components with the higher lev-
els of SIL. Formal proof is also highly recommended as a verification activity.
Anyway, both are not classified as mandatory, since alternative, more traditional
techniques are also accepted. We should notice however that this is the first time
(the first edition of EN50128 dates back to 1994) that a strong indication about
the usage of formal methods appears in standard guidelines.

Indeed, despite CENELEC directives and success stories, formal methods
have not permeated the whole railway signaling industries, where much software
is still written with traditional means. This is due to the investments needed to
build up a formal method culture, and to the high costs of commercial support
tools. Moreover, equipment can conform to CENELEC without applying formal
methods. Verification by thorough testing can be claimed compliant to EN50128.
But the guidelines require, for the highest SILs, that design and verification is
carried independently by two separate teams. Relying only on testing shifts an
enormous effort (usually more than 50% of the total development effort) on the
shoulders of the testing department, which is often considered less important
(and hence less funded) than the design department. This becomes a risk for
a company that is more and more required by the market to be CENELEC
compliant, and the only solution is to shift back the effort to the design team,
by introducing formal methods in the specification and design phases. This is
a necessity that companies begin to realize, and success stories and CENELEC
guidelines have had an important part in the raising of this consciousness.
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3 Software Procurement in Railway Signaling

This section reports on experiences in a joint project between Politecnico di
Milano and Italian State Railway FS, Infrastructure Department (which recently
became Rete Ferroviaria Italiana S.p.A.). The purpose of the project was to
define procedures and rules for managing software procurement for safety-critical
signaling equipment [33]. The latter includes a broad range of devices, governing
lines and tracks in stations, railway/road crossings, and train movements. Goals
of the project, which were imposed as additional constraints, were:

– to cover all phases of system development, from requirements elicitation to
implementation, final validation, approval and acceptance;

– to provide requirements on methods, languages and tools to be used during
software development, without any bias towards any particular technology
or tool provider. The only general requirement is technical soundness and
being up-to-date with respect to the current advances in computer science;

– to provide results consistent with, and acceptable against, international stan-
dards (mainly the EN50128 standard, see Section 2);

– to choose methods that are sufficiently mature for industrial usage, are sup-
ported by automated tools, and are likely to gain acceptance by average
engineers, both in the railway and computer technology domains.

The main working group in the project was composed of two researchers from
Politecnico di Milano, expert of formal methods, and two engineers from Rete
Ferroviaria Italiana, skilled in the modelling and analysis of railway signaling
equipment. No formal procedure or metric was adopted for the evaluation of
the various formal methods; these were analyzed through a detailed, careful
investigation of the available technical documentation and scientific literature
and on the basis of previous experiences in using the notations and tools. To
validate the obtained results and provide some empirical support, a small-scale
experiment was conducted, consisting of the formal specification of a simple
signaling apparatus. The descriptions obtained in the various notations were
compared with respect to compactness and readability of the produced artifacts,
as these qualities were considered the most important to favor the practical
application of the method.

As a result of the project, requirements and recommendations were issued,
tailored to various kinds of systems. The main contribution of the project con-
cerns requirements on specification, verification and validation. In particular,
adoption of formal methods in the specification phase is recommended, when
supported by suitable tools and validation and verification techniques. Here we
report on the results concerning a comparative evaluation of methods, tools and
notations for formal requirements specification.

3.1 System Classification

The recommendations were based on a system classification according to three
categories: complexity (low, medium, high), criticality, and presence of temporal
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requirements. Complexity was assumed to be conventionally determined by the
purchaser, while the degree of criticality was determined according to the SIL
(see Section 2) of the application. The temporal requirements were classified in
three categories: time independent, qualitative time, and quantitative time. The
time independent category refers to systems without any particular temporal
constraints, e.g. performing pure data or signal elaborations. The qualitative
time category refers to systems that can restrict to time-ordered values and ac-
tions without quantitative information about time instants and time distances.
Some improper real-time systems are in this category: systems with strict and
binding requirements, but designed to adequately manage every possible delay or
anticipation, or the absence of expected events. The quantitative time category
comprises hard real-time systems. These systems interact with processes that are
not completely manageable or controlled, and that cannot avoid a quantitative
expression of their temporal constraints (instead of just an order relation among
events) without severe consequences. It is worth pointing out that the category
of qualitative time is quite different from the so-called soft real-time systems,
i.e., systems where missing some (quantitatively of qualitatively stated) time
constraint is undesirable or annoying but does not cause unacceptable dam-age;
also it does not correspond to high-throughput systems, which must have the
capability of processing high quantities of data, but with time requirements that
are expressed in statistical terms. This is because the systems under consider-
ation were in any case critical for safety and economic reasons, so that missing
time requirements (even when these are qualitative) is not admitted.

3.2 Requirements Analysis and Specification

Table 1 shows the prescription on specification and validation techniques and
generation of functional test cases, depending on the SIL of the system, its
complexity and its temporal features.

The table is divided into four parts: analysis, syntax checks, degree of speci-
fication coverage, and validation accuracy degree. Analysis is itself divided into
two kinds of activities for the validation of specifications: simulation or trace
generation, and proof of properties. (1) Simulation of the behavior of a system
means generating (possibly in an interactive or semi-automatic way) events and
actions in a chronological order, while trace generation means generating (again
possibly in a semi-automatic way) execution traces of the system, and verifying
automatically whether these traces are compatible with the specification. Unlike
simulation, in trace generation, events and actions are not necessarily generated
in chronological order. (2) Proof of properties indicates in how far it is possi-
ble to prove mathematically (by means of logical demonstrations or exhaustive
analysis) that a system possesses properties like safety, absence of deadlock, etc.
Such proofs are classified according to four categories: without abstraction, with
abstraction, generality, and automation degree. (2.1) Without abstraction means
that proofs can be executed on the complete specification of the system. They
therefore have a total degree of certainty: the specified system without doubt
possesses the proved property. (2.2) With abstraction means that proofs can be
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SIL COMPLEXITY TIME

1,2 3,4 LOW MED HIGH IND QUAL QUANT

Analysis Simulation/Trace Generation YES YES * * YES * YES YES

Property Proof No Abstraction * YES(3) * * * * * *
Abstraction * YES * * * * * *
Generality * YES(3) * * * * * *
Automation * S * * * * * *

Syntax Checks YES YES * YES YES * YES YES

Degree of Specification Coverage T T * * * * T(1) T(1)

Validation Accuracy Degree β γ(2) 0 α β 0 β(1) γ(1)

Table 1. Validation prescriptions. Legend ∗: there is no recommendation, neither in
favor nor against adoption of the technique; (1): the indicated coverage or accuracy is
a minimum requirement for the temporal parts alone; (2): it is recommended, but not
mandatory at the current state of the art, to use a method with degree of accuracy δ;
(3): recommended, but not mandatory at the current state of the art.

executed by introducing suitable approximations (abstractions) of the original
specification, e.g. by ignoring the actual data in the system. Abstractions make
proofs simpler, but may reduce the degree of certainty of the result. (2.3) Gen-
erality means that properties to be proved can be chosen by the user in a general
and flexible way, using a suitable, sufficiently expressive mathematical notation.
(2.4) Automation degree evaluates the support offered by the proof tools: S indi-
cates that at least a semi-automatic support is required (the tools support the
verification that the proof is correct, for instance by preparing a structure for the
proof obligations or by automating the trivial parts and sub-proofs, but must be
guided by expert users), otherwise proofs can be carried out manually.

Syntax checks expresses whether there is tool support for checking that a
specification is syntactically correct. For Specification coverage the requirement
T stands for total : all requirements have the same relevance and must therefore
be specified, otherwise it can be the case that some requirements, identified in an
unambiguous way and totally isolated from the others, do not have any influences
on safety and need not be formally specified. Finally, validation accuracy mea-
sures the accuracy of the validation of the requirements specification. Values are,
in order of increasing accuracy and hence of preference: 0 (informal inspections,
walkthrough), α (syntactic control of types, coherence between definition and
use of the entities that compose the specification, i.e. the typical static controls
carried out by the compilers of modern programming languages), β (at least one
of the following: simulation, animation, generation of traces, symbolic analysis,
reachability analysis, proofs of certain properties like absence of deadlock, proof
of properties with abstraction), γ (same as β, but with a combination of at least
two techniques of a different nature, and adoption of suitable metrics in order to
measure the coverage degree of a system analysis), and δ (statement and proof
of general properties).
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Notice that the columns of table 1 deal separately with the various system
features, but their prescriptions are intended to be applied in conjunction (in
other terms, the more severe requirement applies): for instance, for a system
of medium complexity and qualitative temporal features the required validation
accuracy degree is β; for a system of low complexity but highly critical (SIL 3
or 4) the required validation accuracy degree is γ.

Finally, Table 2 shows the application of the prescriptions of Table 1 to a
set of widely used formalisms, considering both language features and current
tool support. The analyzed notations and formal methods are Z [46], TRIO [35],
Statecharts [37], SDL [24], UML [14], LOTOS [22], Petri nets [45], SCADE [15],
and B [1]. Table 2 is obtained by comparing, for each notation and corresponding
method and tool environment, the characteristic features and the tool support
with the requirements expressed in Table 1. Not surprisingly, the state of the art
is still unsatisfactory, even for methods and tools that received the best score,
in the case of systems with quantitative timing and a high level of complexity.
In this case there is no ”strongly recommended” method and tool, the existing
ones being only ”recommended”. This is due to the fact the currently available
tools for analysis and verification of formal models lack a rigorous formal basis,
or are neither certified nor validated by repeated and long-lasting application
in an industrial setting. However, as already mentioned in the introduction, in
railway signaling there are in general no complex computations or hard real-time
constraints.

SIL COMPLEXITY TIME

1,2 3,4 LOW MED HIGH IND QUAL QUANT

Z YES NO(1) YES YES NO(1) YES YES NO

TRIO NO(1) NO(1) YES NO(1) NO(1) YES YES YES

STATE CHARTS YES YES YES YES YES YES YES YES(2)

SDL YES YES YES YES YES YES YES YES(2)

UML NO(3) NO NO(3) NO NO YES YES NO

PN YES NO YES NO NO YES YES YES(2)

LOTOS YES NO YES YES NO YES YES YES(2)

SCADE YES NO(1) YES YES YES YES YES YES(2)

B YES YES YES YES YES YES YES NO

Table 2. Prescription on specification methods. Legend (1): the NO answer derives
from the unavailability of tools of a sufficiently consolidated level, that possess all the
features required for the YES value; (2): the method is recommended for systems with
SIL 1 or 2, while for systems with SIL 3 or 4 the method is acceptable at the current
state of the art, but not strongly recommended; (3): the method is recommended only
for systems with SIL 1.
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4 A Success Story: The B Method

In the comparative case study from Section 3, the B method [1] was shown to
be one of the strongest verification approaches. B has rigorous mathematical
foundations and a well-developed underlying methodology, and is supported by
a reasonably advanced toolset. A series of railway signaling products have bene-
fited from the application of the B method in the design process. The success of
B has had a major impact in the sector of railway signaling by influencing the
definition of the EN50128 guidelines (see Section 2).

The B method targets software development from specification through re-
finement, down to implementation and automatic code generation, with verifi-
cation at each stage. It includes a notation - Abstract Machines - for specifying
a system: an Abstract Machine is defined as a set of states and a set of opera-
tions that modify the values of state variables; an invariant predicate is defined
on states; for each operation a precondition and a postcondition are defined, so
describing the effects of operations on state variables. It must be proved that
when executing an operation in a state that satisfies both the precondition and
the invariant, the state after the execution of this operation satisfies both the
postcondition and the invariant. Moreover, at each refinement step if must be
proved that the required safety properties of the system are preserved. So writing
a specification produces a series of proof obligations that need to be discharged
by formal proofs. The B method is accompanied by support tools, which include
tools for the derivation of proof obligations, theorem provers, and Ada code
generation tools.

The B method has been successfully applied to railway signaling systems,
especially by Matra Transport and Alstom, mainly in France. The first appli-
cation has been at the end of the eighties, concerning the SACEM system for
the control of a line of Paris RER [19]. B was introduced while the project was
already in progress, in order to ensure the two railway companies exploiting the
line (SNCF and RATP) about the correctness of the design. B has been adopted
for many later designs of similar systems by the same companies (especially Ma-
tra, which is now absorbed by Siemens). One of the most striking application
has been for the Paris Météor metro line, which is in operation since October
1998. This line was designed to reach traffic of 40,000 passengers per hour with
an interval between trains down to 85 sec. during peak hours. It is being man-
aged by the Automatic Train Operation system developed by Matra, consisting
of 86,000 lines of Ada (see [3]).

Of the 27,800 proven lemmas during the B development, around 90% were
proven automatically by support tools, leaving around 2,000 lemmas to be in-
teractively proven. Many errors were found during proof activities. By contrast,
no further bugs were detected by the various testing activities that followed
the B development. Moreover, no bugs have been reported since the line is in
operation.
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5 Classes of Railway Signaling Equipment

Railway signaling equipment can be roughly divided in two main categories.
Train control systems guarantee safe speed and braking control for trains, while
interlocking systems establish safe routes through the intricate layout of tracks
and points within a railway station, yard or section. Several other minor sig-
naling systems can be considered, which are often used to provide input for
main signaling systems. Some of them may share the criticality level of main
systems. Moreover, some signaling systems actually merge features of both cat-
egories above. For the purpose of our discussion, it will however be useful to
concentrate on the nature of the two major classes identified.

5.1 Train Control Systems

A variety of train control systems exist, which may depend on the degree of
authority over the driver (ranging from giving a mere support to the driver,
to the completely automatic, driverless, systems), on different means to convey
information to the train (either to the driver or to on-board equipment) and on
the nature of this information. However, the basic general principle on which
train speed control is based is common: the braking curve concept (Figure 1).
The preceding train, or a fixed obstacle, defines a curve for the maximal safe
speed of the train in any point of the line at a given time. The train has to
maintain its own speed below the curve. Since the preceding train moves, the
curve follows it, giving free headway to the train. The main challenge is to make
sure that knowledge on board of the train regarding the curve is sufficiently
accurate.
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Fig. 1. The braking curve principle

When information is continuously exchanged between on-board and wayside
computers, a guaranteed bandwidth is required, and safe communication pro-
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tocols need to be used. Hence, in modern train control systems, complexity is
shifting from basic safety rules to communication protocols.

The examples of SACEM and Météor systems show that formal methods can
be applied to the entire system development. However, when dealing with main
lines, matters get complicated by heterogeneity, compatibility and interoperabil-
ity issues. The rolling stock is in general intended to be capable of running on
differently equipped lines, with mixed freight/passenger traffic. Every national
railway has its own tradition, especially for what concerns signaling rules and
procedures. Before the advent of the open European market, every national com-
pany maintained contacts with (mostly national) signaling equipment providers,
and the strict relation, typical of a protected market, between the first and the
latter favored a nation-wide specific approach to signaling. This has had the ef-
fect that different countries in Europe have different train control systems, which
require different on-board equipment. The new rules of the open railway mar-
ket require instead that a train of a company is given equal access to all tracks
in Europe. This means that a train should be interoperable. The only way to
achieve this goal is currently to equip the cab with several versions of on-board
equipment, one for each traversed nation, or to change the locomotive at each
border.

For this reason the ERTMS/ETCS (European Rail traffic Management Sys-
tems / European Train Control System) project was launched, aiming at a single
train control system for the future transeuropean railway network. The project
plans, after the current initial test phase, to gradually install the ERTMS/ETCS
equipment side by side to the traditional national equipment, also exploiting the
three successive ERTMS/ETCS levels, referring to the increasing degree of infor-
mation flowing from way-side to on-board equipment. In level 2 and 3, GSM-R
(GSM radio communication specific to the railway industry) is adopted to con-
tinuously transfer information to the train on the status of the line ahead.

ERTMS/ETCS makes use of standardized components (European Vital Com-
puter on board, Radio Block Center, Eurobalise, ...) and protocols (Eurora-
dio), produced by a consortium of the main European signaling manufacturers,
based on consolidated techniques. Specifications issued by ERTMS/ETCS [28]
are structured as a natural language requirement document, including tables,
state diagrams and sequence charts to add some formality.

Several formal modeling and verification studies have been conducted regard-
ing ETCS protocols and components, starting from a model of ETCS given by
coloured Petri nets [43], to the use of statecharts with the aim of proving safety
properties by model checking an early version of the radio-based train control
system [18], to the recent studies of real-time properties using stochastic Petri
nets [47] or CSP-OZ-DC [30].

Formal methods have also been used by consortium companies in their de-
velopment cycle. For example, Ansaldo, after having addressed with SDL and
Message Sequence Charts the modeling and verification of the Radio Block Cen-
ter [16], has given a formal specification of the Euroradio protocol by means of
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UML State Diagrams, performing a verification by simulation following given
scenarios expressed as UML Sequence Diagrams [27].

In the case of ETCS, the attention of the formal methods community has
shifted from the consolidated train control logic (the braking curve principle),
to the safety and real-time performance of radio-based control, which is going to
be the sole mean by which the conditions of the track ahead are communicated
to the train, since even signals will no more be present on the line.

5.2 Interlocking Systems

The control and management of a railway area consists of two separate tasks.
First, control instructions for the track and points are devised in the logistic layer,
which is usually managed by human experts. Second, it has to be guaranteed
that the execution of control instructions does not jeopardize safety; that is,
collisions and derailments have to be avoided. This is done by means of a so-
called interlocking, which is a medium between the infrastructure at the one
side, and the logistic layer and its interfaces on the other side.

An interlocking is an embedded system that controls pieces of equipment (like
signals, points, track circuits, automatic blocks) so interconnected that their
functions should be performed in proper sequence and for which interlocking
rules are defined in order to guarantee safe operations. A simple example of an
interlocking system is shown in Figure 2, taken from a real Italian interlocking
system [20]. Line segments represent track segments in the infrastructure; some
of them have track circuits, that is, sensors of the presence of a train, which are
numbered inside circles, joints between segments represent points. Lollypop-like
drawings represent signals of various type. Numbered labels are at- tached to
each important part of a route. This example (a station consisting of a single
track line) constitutes of eight allowed routes, two points, eight signals, six track
circuits and two automatic blocks.

A route can be set free only if all points on the route have been correctly
placed, and no train is present. The signals can be set to green only if the route
in front is set to free. These sentences express two examples of generic prin-
ciples that hold for every interlocking systems. Such rules aim at allowing only
safe combinations of points positions, signals, etc., in order to avoid collisions.
The signal indications, handled by the interlocking system, govern the correct
use of the routes, authorizing the movement of trains. The rules usually enforce
a predefined sequence of actions. For instance, issuing a route request command
first triggers a check that all the track elements involved in the route are free. In
that case, commands are issued for the positioning of points for that route and
for locking the track elements. This phase may be followed by a global centralized
control over the correct state of the commanded elements, after which the route
is locked and signal indications for the route are set.

Note however that the generic rules expressed above need to be conjugated
on every specific lay- out; for instance, the rules should be set for the route 1-3
in figure 1 taking into account point 1, track circuit 10, 11, I, and so on.
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Fig. 2. The simplest track layout.

A route can be set free only if all points on the route have been correctly
placed, and no train is present. The signals can be set to green only if the
route in front is set to free. These sentences express two examples of generic
principles that hold for every interlocking systems. Actually, the precise and
complete set of such rules depends on the kind of railway station, yard or section
(see, e.g., [31]), and also on national policies traditionally established by railway
companies or regulatory boards. Since an interlocking system is safety-critical,
the formalization of such rules is a top requirement.

In the traditional process adopted by many railway companies to develop
relay-based interlocking systems, the generic principles were encoded into relay
circuit templates. When a new interlocking plant was installed, these general
principles had to be adapted to the particular layout of the section in use. The
adaptation process was also guided by some more or less formalized rules. At
the end of the process there was a diagram containing the command and control
circuits for each logical or physical object in the station.

An example of this kind of diagram is shown in Figure 3; this diagram, taken
from the same Italian interlocking, represents a circuit for the establishment of
route 1-3 in Figure 2, taking into account point 1, track circuits 10, 11, I, and
so on. The ladder diagram in Figure 3, expresses the fact that the energizing of
relay CD 1 3 is dependent on many other relay contacts.

Such a circuit is generated based on templates supplied to help the engineers
in the design of new stations. The templates are then associated to layout objects
and replicated for each object. In a circuit template there are all the contacts
needed to manage that kind of object; the only action to perform on it is the
substitution of these generic contacts with the ones dictated by the layout. The
structure of all diagrams related to routes is always the same, but the numbers
and names of some contacts (serial or parallel) are different from one route to
another.

The safety of old times, relay-based, interlocking systems was based on single
fail-safe concepts, exploiting the intrinsic characteristics of relay technology. The
introduction of computers in the control and command chain has subverted this
approach to safety, since failure modes of computer-controlled equipment may
be much more diverse and difficult to predict.

The first approach followed by some railway companies was to maintain the
traditional and well-established relay-based principle diagram as the trusted
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Fig. 3. An instantiated relay schema referred to route 1-3

source of information for computer-based interlocking developers, looking for
conformance of the new interlocking systems to such sources, by means of costly
and tedious, but possibly not exhaustive, testing. This approach has put on man-
ufacturers’ shoulders the burden of conceiving a family of interlocking products,
together with means to instantiate the generic product by taking into account
some proprietary, formalized version of principle diagrams suitable to be (more
or less automatically) interpreted or compiled into running code, that has to
be shown compliant to the trusted source. Actual approaches have varied from
manufacturer to manufacturer as witnessed in [6, 34, 42, 25]. The development of
computer-controlled interlocking systems has seen an increasing interest in the
use of formal methods, due to their ability to precisely specify the logical rules
that guarantee the safe establishment of routes. B notations (see Section 4) are
not really suitable to express the interlocking logical rules, since these require
the system states (logical variables, corresponding to the old relay states) to be
accessed globally by many logical rules, while Abstract Machines encapsulate
their state variables, which are accessible only via operations.

Rather than being adherent to old relay technology, what is needed is an
innovative approach that encompasses a complete formalization of the whole
system. Domain specific languages have been proposed for the formalization of
interlockings [38, 44], the most prominent one being EURIS [4, 21], which will
be discussed in Section 5.3. More recently, the possibility of using commercial
support tools has pushed forward the use of general-purpose languages, as shown
in Section 3, and a recent trend has indicated Statecharts (in their Statemate,
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Stateflow or UML state diagrams dialects) as a means for defining a standard
formalization, see e.g. [2].

The latter trend has to do with the transition from the traditional protected
market to the European open market, but on different grounds than for train
control systems (see Section 5.1). With the previous national protected market,
interlocking systems were developed by national manufacturers for the national
railway company. Still, railway signaling is the responsibility of the national so-
cieties that are in charge of the railway infrastructure (e.g., RFF, RFI, ProRail)
and not of the open market railway operators. On the other hand, traditionally
national industries have been merged and reorganized in a few multi-national
companies. They therefore have to merge different know-hows about railway sig-
naling production, in order to unify their product lines. In this scenario, the
strict collaboration between national railway companies and national railway
industries, in which there was no need for a precise specification (every misun-
derstanding was resolved by phone) vanishes; there is greater reliance on precise
contractual specifications to define the responsibility of each involved party.

The European railway community has come to realise that a drastic over-
haul of current interlocking design is needed, for four main reasons. First, current
methods to design interlockings, like SSI and VPI from Alstom andWESTRACE
from Westinghouse Signals, are based on the earlier designs of interlockings us-
ing relays (i.e., electrical switches), and as a result do not fully exploit the addi-
tional capabilities of computer hardware and software. Second, due to their lack
of modularity, current methods are not suitable to build interlocking systems for
very large railway stations; dividing such stations into separate parts, which is
the most common solution, causes undesirable communication overhead in cur-
rent methods. Third, different European nations so far use different interlocking
technologies, with raising costs due to the lack of standardization Fourth, formal
methods cannot easily be integrated into current methods; see e.g. [36, 17, 23],
for some work in this direction, mostly based on the adoption of model checking
techniques for formal verification of interlocking systems. It is in this light that
the Italian railway infrastructure agency has issued the document for software
procurement discussed in Section 3.

Euro-Interlocking is a joint project by the main European railway compa-
nies and suppliers to develop both European functional requirements and stan-
dardized interfaces for interlocking systems. In this case, interoperability is not
an issue, as interlocking systems do not (directly) communicate with trains.
Standardization has the sole purpose to reduce costs, by means of standardized
components and standardized interlocking rules. Inside Euro-Interlocking, the
EIFFRA working group [40] focuses on textual requirements and requirement
management tools such as Telelogic DOORS, together with model-based require-
ments. This is done by means of UML state diagrams and statecharts to describe
the behavior, and OCL to describe properties of the interlocking systems. In this
context, SNCF-RFF modeled their (relay-based) principle schemata using State-
mate, producing 90 generic statecharts for interlocking elements [41]. These have
been instantiated on an example medium-size station, to obtain 115 instances
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of 25 statecharts (out of the 90). Simulation by Statemate and visualization of
scenarios by Waveforms were used to verify the correctness of the definition and
instantiations.

5.3 EURIS

The restrictions that the interlocking logics imposes on the states of the sys-
tem for different railway stations, yards and sections are reasonably consistent,
depending mostly on the parameters of the autonomous elements, such as sig-
nals and points. Based on this observation, Peter Middelraad from the Dutch
company ProRail evolved a modular specification method/language EURIS (Eu-
ropean Railway Interlocking Specification) [4], to describe fully automated in-
terlocking logics. EURIS assumes an object-oriented architecture, which consists
of a collection of generic building blocks, representing the elements in the infras-
tructure such as signals and points, and of two clearly separated entities in the
outside world, representing the logistic layer and the infrastructure. The building
blocks, which together make up the interlocking logic, communicate with each
other by means of data structures called telegrams. The building blocks can also
exchange telegrams with the two entities that model the logistic layer and the
infrastructure. This model can be depicted as follows.

LOGISTIC  LAYER

INFRASTRUCTURE

building
block

building
block

building
block

To give an example, suppose that the logistic layer decides that a train should
be moved via route R. This request is passed on to the interlocking layer, which
attempts to claim route R; this mission is divided into smaller tasks, which
are performed by exchanging telegrams between building blocks. If all building
blocks concerned agree that route R can be established without jeopardizing
safety, then the interlocking reserves this route, after which it passes on the
necessary instructions to the infrastructure.

EURIS not only denotes a specification method, it is also the name for
a graphically oriented imperative specification language that is based on this
method. A so-called Logic and Sequence Chart (LSC) specifies a building block.
Each LSC consists of the graphical representation of procedures, which can adapt
and test the values of variables, and which can ultimately trigger the transmission
of a telegram. Such telegrams can be received by neighboring building blocks,
by the overlying logistic layer, and by the underlying infrastructure. Conversely,
each building block can also receive telegrams from neighboring building blocks,
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from the logistic layer, and from the infrastructure. The communication channels
between the building blocks, the logistic layer, the infrastructure, and the initial
values of variables, are recorded outside the LSCs.

In EURIS, the heart of a specification defines the way that different kinds
of building blocks handle incoming telegrams. Intuitively, these building blocks
represent the separate elements in the infrastructure, such as signals and points.
As soon as all types of building blocks have been specified in full detail, the spec-
ification of a particular railway area layout is constructed by simply connecting
its separate building blocks in the appropriate manner. The object-oriented ap-
proach of EURIS allows design of interlockings for large railway stations without
extra effort, and makes it possible to have different interlocking design patterns
for different countries.

UniSpec [4] is a particular instance of the EURIS method, which has been
developed by ProRail as a complete set of generic elements to compose interlock-
ing A simulator enables animation of the behavior of a UniSpec specification.
After designing a set of LSCs, the user can join instantiations of these LSCs
according to the topology of a railway area. The result is checked for design rule
errors and compiled, after which situations at the controlled railway area can be
simulated via a graphical interface.

In a project funded by the Dutch company Holland Railconsult, researchers
from Utrecht University formulated a formal operational semantics for EURIS
[5], which, following the EURIS simulator, is based on a discrete time model.
This semantics was presented in the setting of discrete-time process algebra. In
a follow-up project, funded by ProRail, researchers from CWI in Amsterdam
devised a textual variant of EURIS called LARIS [32], with the aim of improv-
ing the clarity of the graphical LSCs. Verification efforts of EURIS specifications
were undertaken at CWI in Amsterdam. A prototype compiler from EURIS to
µCRL [8] was implemented, and the EURIS specification of the Dutch station
Woerden-Harmelen was tackled with the help of the µCRL toolset. Thus a sym-
bolic version of the state space of this interlocking system has become available
for analysis. The correctness of a EURIS specification of a (smaller) imaginary
railway station was established using the µCRL toolset.

The verification effort concerning Woerden-Harmelen resulted in several ad-
vances in the realm of formal verification. Namely, the state space belonging
to the interlocking system at this station is so large that new verification tech-
niques had to be implemented for the µCRL toolset, to cope with such large
state spaces. They are based on partial order reduction [13], distributed state
space generation [9], and minimization of such a distributed state space [10–12].

The ownership of EURIS has shifted from ProRail to Siemens, with the aim
of guaranteeing stronger commercial support and tool development. Currently
EURIS is at the heart of the GRACE toolset of Siemens [39].



17

6 Conclusions

We have seen that the history of application of formal methods to railway sig-
naling is not disjoint from the history of the organization of railways, which
has undergone dramatic changes in the last decades, due to the advent of the
European Community enforced open market. A shift towards behavioral, state-
machine based formalisms has been witnessed, with more attention towards for-
malisms supported by commercial tools. Tools that give the ability of simulating
and model-checking specifications, and of generating code from them will have
an added value. But these tools may be very expensive, prohibitive for small
companies that produce software for major ones or produce minor equipment
which should anyway satisfy directives. Still some more time will pass before a
clear satisfactory indication will emerge.

Formal methods for specification and verification are– slowly and with difficulties–
reaching some appreciation and use in the industrial environment: there are many
notations, methods, and (prototypal) tools originating from the academia, which
however lack industrial strength in terms of tool stability, documentation and
user support; on the other hand, there are very few technically sound methods
and tools coming from industry.

International standards like EN50128 can have a positive role in promoting
the adoption of systematic and technically sound development methods, but can
also be technically outdated, obscure, ambiguous or too accommodating.

Thorough verification of complex, hard real-time systems is still infeasible
in practice using the (industrial strength) tools. The verification technology is
however rapidly evolving.

References

1. J.R. Abrial. The B-Book. Cambridge University Press, 1996.

2. M. Banci and A. Fantechi. Geographical vs. functional modelling by statecharts
of interlocking systems. In Proceedings 9th Workshop on Formal Methods for In-
dustrial Critical Systems (FMICS’04), Linz, Volume 133 of Electronic Notes in
Computer Science, pp. 3–19. Elsevier, 2005.

3. P. Behm, P. Benoit, A. Faivre, and J.M. Meynadier. Météor: A successful appli-
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