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Abstract

In distributed systems it is important to know when a distributed algorithm has finished
its computation. No single process can decide when an algorithm has terminated with only
its local information. A termination detection algorithm is used to aggregate information
to a process which can then declare termination shortly after the distributed algorithm has
terminated.

Process crashes are inevitable in large distributed systems. Because of this, distributed
algorithms that can operate correctly even in case of process crashes are being developed.
Algorithms that have this property are called fault-tolerant algorithms. If we want to be
able to detect termination for such algorithms, we also need a fault-tolerant termination de-
tection algorithm. There are several nice algorithms for this problem, most notably Lai and
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Wu’s algorithm and Tseng’s algorithm. We designed and implemented a new fault-tolerant
termination detection algorithm that has similar performance to Lai and Wu’s termina-
tion detection algorithm. We base our algorithm on an existing fault-sensitive termination
detection algorithm by Mahapatra and Dutt.

Using a simulation environment we implemented our fault-tolerant termination detection
algorithm. Implementation was done alongside designing the algorithm for quick testing of
ideas. In addition we also implemented Lai and Wu’s algorithm and used the simulation
environment to compare the algorithms to each other, as well as to a fault-tolerant version of
Safra’s termination detection algorithm that had already been implemented in the simulation
environment.

The simulations show how the different algorithms behave when either the number of
processes in the network is increased or the number of process crashes is increased. This has
different effects on the different processes, most notably there was a decrease in the number
of control messages for our algorithm and a decrease in detection delay for Lai and Wu’s
algorithm with the introduction of crashes.

1 Introduction

Termination detection is a problem first proposed by Francez [5], and Dijkstra and Scholten [3]
in 1980. Their formulation of the problem was simple: Francez described it in such a way that
each process has a final state, and when all processes have reached their respective final states
the computation has terminated. Dijkstra and Scholten imagined a graph where nodes in the
graph can send messages to a successor and receive messages from a predecessor, and when no
more messages are in transit the computation has terminated. The definition has been refined
over the years and is now much more general, but before discussing this we have to define what
a distributed system is.

A distributed system is a set of processes distributed over a network with a set of communi-
cation channels between them. In this paper we are only interested in fully connected networks,
which means that there is a communication channel between each pair of processes. This is
because only in fully connected networks it is guaranteed that failing processes never make the
network disconnected. The processes are running a distributed algorithm for which termina-
tion needs to be detected. We will call this the basic computation and all messages sent by
the algorithm basic messages. Matocha and Camp wrote a taxonomy of termination detection
algorithms [11], where they defined a model for a distributed system. Each process can be either
passive or active and their behaviour is dictated by the following rules.

1. Initially, each process in the system is either active or passive.

2. An active process may become passive at any time.

3. Only an active process may send a basic message to another process.

4. A passive process can only become active if it receives a basic message.

Termination is then defined as all processes being passive and no basic messages being in
transit. Intuitively active processes are taking part in the basic computation while passive
processes are waiting until someone tells them to do some work. When all processes have become
passive, everyone is waiting for someone else to tell them what to do, and if there are no messages
in transit no one will start working again.

Since termination is a global state of the system, no single process can declare termination
with only local knowledge. The termination detection algorithm is there to gather information
alongside the basic computation such that termination can be declared shortly after termination
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has been achieved. A termination detection algorithm runs concurrently to the basic computation
and ideally does not interfere with the basic computation. All messages introduced by the
termination detection algorithm are called control messages.

The performance of a termination detection algorithm is measured using several metrics
which need to be taken into account when choosing an algorithm. The two most common
metrics are detection delay and message complexity. Detection delay is a measure of how long
after termination has occurred, termination is declared by the control computation. Message
complexity is a measure on the number of control messages sent. Bit complexity is also important,
it measures the total number of bits sent by the termination detection algorithm, but for many
cases this is simply the message complexity multiplied by a constant. For algorithms where the
size of the messages is dependent on for example the number of processes in the system or the
number of crashed processes, this metric might be important.

Some termination detection algorithms only work when the basic computation is a diffusing
computation. This is where initially only one process is active. Alternatively algorithms can
work when the basic computation is a non-diffusing computation. This is where initially more
than one process can be active.

1.1 Fault-tolerance

Fault tolerance is defined as the ability to continue operating correctly in the presence of faulty
processes. An algorithm that is not fault-tolerant is called fault-sensitive. As the number of
processes in distributed systems goes up, the probability of a process crashing in a given time
period increases linearly. Distributed algorithms running on a large number of processes for a
long time are therefore very likely to incur a faulty process. Since fault-sensitive algorithms can
not handle crashes, they would need to be restarted each time a process crashes. Fault-tolerant
basic algorithms are therefore desirable as they would not need to be reset.

Algorithms may have different degrees of fault-tolerance, defined by the number of process
crashes the algorithm can handle. A k-fault-tolerant algorithm can handle any k processes
crashing.

We want to be able to determine when termination has occurred for fault-tolerant basic
algorithms. A fault-sensitive termination detection algorithm would not help, because even
though the basic computation would be able to finish correctly in case of a failure, the termination
detection algorithm may not be able to continue operating correctly.

There are different types of process failures defined by different failure-models. The three
most common failure models are fail-stop, fail-recover and arbitrary failure. In this thesis we
use the fail-stop failure model, where when a process crashes it stops working completely. The
fail-recover failure model is such that after a process has crashed it can recover and join the
computation again, while the arbitrary failure model, after the failure happens the process can
send arbitrary messages and receive messages from other processes. The arbitrary failure model
is most often associated with hacked processes.

When a process crashes, the information that it has crashed may be sent to the other pro-
cesses; this is done with a failure detector. For fault-tolerant termination detection a perfect
failure detector is needed [13], which satisfies two properties:

• A process that does not crash during the run is never suspected to have crashed.

• Each crashed process is eventually suspected by every other process that does not crash
during the run.

Each process is equipped with a perfect failure detector. It is easy to implement such a detector
if there is a known upper bound on messages delay. In that case heartbeat messages can be
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used to know when a process has crashed. Each process sends a heartbeat message to let other
processes know that it has not crashed, if the heartbeat message is late by more than the upper
bound on message delay it is safe to say that the process has crashed.

1.2 Objectives

Using the Mahapatra-Dutt [10] fault-sensitive termination detection algorithm, we derive a novel
fault-tolerant termination detection algorithm. The fault-sensitive algorithm is a tree algorithm
where a tree called the active tree, which includes all active processes, is maintained. In the
algorithm a static tree structure is decided on before the algorithm starts. The active tree is
built such that it is always a subset of the static tree structure. This makes it possible to have an
efficient active tree with regard to detection delay. The fault-tolerant variant is a non-blocking
fault-reactive algorithm that fixes the static tree structure when crashes occur. This is done by
re-attaching the processes that have become detached from the static tree back to the root of the
tree. Additional information is then sent to the root process to make sure that it knows when all
processes have re-attached. To minimize the number of control messages the information is sent
with other control messages as needed. The algorithm is (n−1)-fault-tolerant, which means that
as long as there is at least one process still running the algorithm can detect termination. The
small detection delay is an important factor of the fault-sensitive algorithm and this is preserved
when making the fault-tolerant variant.

We implement both the fault-sensitive version as well as the fault-tolerant version of the
algorithm in a simulation environment created by G. Karlos [6]. One objective is to compare
different termination detection algorithms in a practical setting, as most are only compared at a
theoretical level. Another objective is to see if and how having a simulation environment helps in
developing a fault-tolerant distributed algorithm. Lai and Wu’s algorithm is a tree based fault-
tolerant termination detection algorithm and therefore has similar properties to our algorithm,
this was the reason it was chosen as an algorithm to compare to.

Using the simulation environment we compare the performance of several distributed ter-
mination detection algorithms, fault-sensitive and fault-tolerant. Specifically we measure the
detection delay and the message complexity. We compare the metrics we achieve using the
simulation environment with the expected values for each algorithm. This is to see if the sim-
ulations are giving us reasonable values. Discrepancies give us insights into how the simulation
environment can be improved, or possibly that expectancies were wrong.

This thesis is structured as follows. First we discuss how other authors have created fault-
tolerant termination detection algorithms. After that the Mahapatra-Dutt algorithm is explained
in detail. This leads into how the algorithm was transformed to being fault-tolerant where
some ideas from other authors are used. Additionally, a pseudo-code is given for the fault-
tolerant version. The simulation environment is then explained in detail. After that we show
simulation results of all algorithms implemented and discuss the results of the simulations. In the
discussion, improvements on both the fault-tolerant version of the Mahapatra-Dutt algorithm
and the simulation environment are given. Lastly we have the conclusion where the results are
summarized and future work is discussed.

2 Achieving Fault-Tolerance

There already exist fault-tolerant termination detection algorithms achieving fault-tolerance with
many different methods. There are also sub-classes of fault-tolerance; a natural split in the
algorithms is into fault-preventive and fault-reactive algorithms. Fault-preventive algorithms do
work before any process crashes, to make sure that when a crash occurs it is handled properly.
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Fault-reactive algorithms however pay the price upon a crash. Often the message complexity of
fault-preventive algorithms is dependent on the degree of fault-tolerance, while for fault-reactive
algorithms it depends on the number of crashes during the run.

The first fault-tolerant termination detection algorithm is Misra’s algorithm [12]. This algo-
rithms is fault-preventive and achieves fault-tolerance by having multiple tokens going through
the network at the same time. The number of tokens in the network determines the degree of
fault-tolerance and is therefore determined beforehand with the degree of fault-tolerance in mind.
Having k tokens in the network multiplies the number of control messages by k.

Various other algorithms have been proposed since then and we look at three of them: the
Lai and Wu algorithm, Mittal et al. and Lifflander et al. [8, 13, 9] The reason we look at these
algorithms is that both Lai and Wu and Lifflander et al. base their algorithms on the Dijskra-
Scholten termination detection algorithm [3] and Mittal et al. defines a general transformation
of fault-sensitive termination detection algorithms to fault-tolerant termination detection algo-
rithms.

Lai and Wu [8] were the first to propose a fault-reactive termination detection algorithm.
They based their algorithm on the Dijkstra-Scholten termination detection algorithm [3] as pre-
viously stated and identified three issues that needed to be taken into account for the algorithm
to become fault-tolerant. The first problem has to do with the root of the tree crashing. The
root of the tree takes care of declaring termination in the algorithm and as such another process
should take its place. When this happens all processes need to agree on the new root. Lai and
Wu fix this issue by having a deterministic algorithm for choosing a new root, each process has
a unique identity and the process with the lowest identity that has not crashed becomes the new
root. The second issue is that when a process crashes the other processes need to know whether
there are any undelivered messages from the crashed process. To fix this issue they make an
additional assumption on the network such that any communication channel in the network can
be flushed. Flushing a communication channel means to deliver all messages that are in transit in
that channel. For processes to be able to do this a new return-flush message is introduced. When
sent to a process this messages is returned to the sender by the network when the communication
channel between the two processes has been flushed. This way the process also knows when the
channel has been flushed. The third problem is that a crashed process might disconnect the
tree. This is solved by flattening the active tree and making all processes join the active tree
again. This is the biggest drawback of the algorithm as the amount of work needed to be done
by the root when a crash occurs is in the worst case linear with the size of the network. Since
the number of crashes is also linked to the size of the network this algorithm does not scale to
very large networks. There is an additional condition for declaring termination which is that all
processes need to have reported the same set of crashed processes to the root. The set is sent
with the acknowledgement messages.

Lifflander et al. [9] took a different approach: instead of tolerating all kinds of crashes they
only try to recover from ones that are most likely to occur in real systems. As with Lai and Wu’s
algorithm this algorithm is based on the Dijskra-Scholten termination detection algorithm. They
implement three different extensions, Indep, RelLazy and RelEager, which provide different
levels of fault-tolerance. Fault-tolerance is obtained by keeping some network information at
each process. Indep only handles independent failures; processes that do not communicate with
each other are called independent. Each process keeps track of which process is its grandparent
and the tree is fixed by making processes whose parent crashed reattach to their grandparent.
Dependent failures are fixed using RelLazy and RelEager only if possible, otherwise the
algorithm states that an unrecoverable failure has occurred. RelEager aims to fix the tree as
quickly as possible by increasing the amount of network information kept at each process. Instead
of just having information about a processes grandparent the algorithm also has each process
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keep a list of possible grandchildren. This algorithm scales very well to large networks because
all fixes done to the tree structure are done at a local level. The drawback of this algorithm is
however that not all crashes can be recovered from and is in fact not even 1-fault-tolerant as
root crashes are not addressed.

Mittal et al. [13] proposed a transformation to make fault-sensitive termination detection
algorithms fault-tolerant. The idea of the transformation is roughly to run the fault-sensitive
termination detection algorithm until a crash occurs. At that point the processes stop the current
instance of the fault-sensitive algorithm and start a new instance of the termination detection
algorithm on the set of working processes. Failure detector types can be ordered from weakest
to strongest where a stronger failure detector type can detect all failures that a weaker failure
detector type can. Mittal et al. proved that a perfect failure detector is the weakest type of
failure detector needed for fault-tolerant termination detection. The fault-sensitive termination
detection algorithm has to be able to handle a non-diffusing computation and work for a fully con-
nected network. This transformation creates a non-blocking fault-reactive termination detection
algorithm which can handle any number of crashes as long as one process remains active.

As stated previously there exist other fault-tolerant termination detection algorithms. See
[14] for a literature study. Additionally, we have a fault-tolerant variant of Safra’s algorithm [6]
which has currently not yet been published, but is used in this thesis.

Safra’s algorithm is a token ring-algorithm. This is where a token is passed around the network
in a pre-determined ring structure gathering information about the network. The algorithm is
centralized, there is a leader process that sends out the initial token and when it receives it back
decides whether or not termination has been reached. Each process keeps track of the number of
basic messages it has sent minus the number of basic messages it has received. Additionally, each
process has a color, white or black. Initially each process is colored white and when a process
receives a basic message it changes its color to black. The token goes around the network, only
being sent forward when the process holding the token is passive. The token sums the value of
all the basic messages sent minus the number of basic messages received. The token also has a
color, it starts out as white but changes to black when it reaches a black process. Each process
is changed to white by the token before it is sent from it. Termination can be declared by the
leader when the sum of basic messages sent minus the number of basic messages received is equal
to zero, and the token is white upon reaching the leader process again.

The improved version of Safra’s algorithm has two big improvements. The first is that not
all basic messages need color the process that receive it black, only in certain cases does this
apply. The second is that the algorithm is made decentralized. To do this a change is needed in
the way processes are colored. Instead of only coloring itself, a process can color all processes up
to a certain process in the direction of the ring structure. The token now keeps track of which
process is the farthest away black process instead of having a color of its own.

The fault-tolerant version is based on the improved version of the algorithm, but a few
adjustments are needed to make it fault-tolerant. In case of a crash, the ring structure needs to
be recovered. Each process keeps track of their successor, and when a process is notified that its
successor has crashed, a new successor is computed. When a process crashes, its value for the
number of sent messages minus the number of received messages cannot be accessed anymore.
Because of this, processes keep track of the number of sent basic messages minus the number
of received basic messages per process. That way when a process has crashed, its value can be
disregarded. This means that each process has n − 1 counts to keep track of. The token has
n counts, one for each process. Intuitively, these counts represent the total number of basic
messages sent to or from a process that have not yet been delivered. When all basic messages
have been received and all processes are passive, the value for each of these counts in the token
will eventually become zero for all running processes.
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Figure 1: Active tree is represented with a thick solid blue line and static tree is represented by
all solid lines. Messages being sent are represented with dashed lines.

3 The Mahapatra-Dutt Algorithm

3.1 Fault-sensitive algorithm

We base our fault-tolerant algorithm on the static tree termination detection algorithm by Ma-
hapatra and Dutt [10]. This algorithm uses so-called static tree structure covering the entire
network that has been decided upon before the start of the algorithm. In their paper they use
slightly different terminology compared to what we have seen before; passive processes are now
called idle processes and active processes are called busy processes. Processes are either in a
so-called active tree or they are not, if they are, the process is said to be active, otherwise inac-
tive. A process is said to be loaded if it is busy or it has sent basic messages that have not been
acknowledged by the control algorithm, otherwise it is said to be free.

The algorithm has a predetermined tree structure which determines how the active tree grows.
The active tree is a subset of the static tree but grows and shrinks throughout the computation.
Termination is declared by the root when it is the only process left in the active tree and it is
free. An acknowledgement is required for every basic message; this acknowledgement is sent after
the process receiving the basic message has joined the active tree. Before leaving the active tree,
a process must have no children in the active tree and be free, meaning that all basic messages
sent by it have been acknowledged. This is done to make sure that when a process leaves the
tree, all processes that were made busy because of it have joined the active tree. Termination
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can therefore not be declared before they leave the active tree as well.
The algorithm can handle non-diffusing computations because the active tree starts with all

the processes in the network. To leave the active tree a process sends a Stop message to its
parent process. To join the active tree again a process sends a Resume message to its parent in
the static tree. Both Resume messages and basic messages need to be acknowledged. This is
done with an Acknowledge message in both cases.

Intuitively this algorithm works by making sure that any busy processes will join the active
tree before the process that sent the basic message that made it busy leaves the active tree.
When the active tree has disappeared, all processes have become idle and all basic messages
have been sent. At that point, termination can be declared.

Figure 1 has an example sequence of messages being sent. In figure 1a we assume that
processes 2 and 7 are busy but have not sent any basic messages that have not been acknowledged.
Process 7 starts by sending a basic message to process 5 and then becomes idle. When process
5 receives the basic message it becomes busy but can not acknowledge the basic message yet
since it is not in the active tree. Process 5 proceeds to join the active tree by sending a Resume
message to process 2, as is shown in figure 1b. Since process 2 is already in the active tree, it
sends an Acknowledge message back to process 5. When process 5 receives the message, it
knows that it has joined the active tree and sends an Acknowledge message to 7. This step
is shown in figure 1c. Finally process 7 has received an acknowledgement for its basic message
and may leave the active tree, as shown in figure 1d. Only leaf processes in the active tree may
leave the tree, so after this processes 3 and 5 are the only ones that may leave the tree.

With this example you may have spotted that the processes need to have some extra informa-
tion; process 5 has to know that it should send the Acknowledge message to process 7. This
information could be kept at the node but Lai and Wu add this information to the Resume and
Acknowledge messages. Each Resume and Acknowledge message has information about
the sender and receiver of the basic message that induced the control messages.

The algorithm supports non-FIFO ordering of messages. So a Stop message might arrive
before the Resume message that is supposed to add the process to the active tree. This is
handled by counting the difference in the number of Stop and Resume messages sent by each
child. If one more Stop message has been sent, the node is not a part of the active tree.

This algorithm has some nice properties. The worst-case detection delay is Θ(D) where D
is the depth of the tree. The worst-case message complexity is Θ(MD + N) and the average
message complexity is Θ(M + N) where M is the number of basic messages, D is the depth of
the tree and N is the number of processes. We would like to keep these metrics low after the
conversion to a fault-tolerant algorithm.

3.2 Fault-tolerant algorithm

The idea behind the fault-tolerant variant of the Mahapatra-Dutt algorithm is to fix the static
tree when a crash occurs and continue with the algorithm. We introduce new variables that are
present in each process. Each process keeps track of a set of known crashed processes; this is
updated whenever the node is notified of a new crash by the failure detector. Additionally each
node keeps track of the number of crashed nodes in a variable we shall call KC; the value of
this variable is attached to all messages, both basic and control. The value of this variable is
updated whenever a message is received with a higher KC-value attached to it or when a crash
notification is received and the size of the set of crashed processes is greater than the current
value. Lastly we add a list of variables, ChildCounts, used to calculate the size of the tree.
When a Stop message is sent, the sum of ChildCounts plus one is sent; this should equal the
size of the subtree rooted at that process. Each process keeps track of the reported size of the
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tree from each of its children. We define a new condition for declaring termination, which is that
the size of the tree is equal to the number of nodes that have not crashed.

While designing the fault-tolerant variant, we ran into a few issues. These issues are the
same ones that Lai and Wu [8] ran into when making the LTD variant of the Dijkstra-Scholten
algorithm fault-tolerant. This was to be expected since both algorithms are tree algorithms. We
however solve them in a slightly different way.

The first issue comes from the fact that the algorithm is a centralized algorithm where the
root of the tree is in charge of declaring termination. If this root crashes, a new process has
to take its place. We solve this in the same fashion as Lai and Wu: each process has a unique
process identifier and the node with the smallest identifier becomes the root. Since this can be
calculated by each process independently, no communication is needed to decide this.

The second issue is that when a crash occurs, all children of the crashed process have become
disconnected from the tree. We decided on having all the children of the crashed process become
children of the root. We have devised the algorithm in such a way that the processes could in
theory attach to nodes other than the root, but for the implementation this is the simplest design.
Here we ran into the problem that the root has to know when all processes have reattached to
the tree. For this reason we introduced the ChildCounts variables. The size of the tree has
changed and therefore needs to be re-calculated. To do this the active tree is reset, meaning that
all nodes become part of the active tree and the ChildCounts variables are reset, setting it to 0
for each child. This way the size of the tree is counted again with the Stop messages. The idea
of resetting the active tree comes from Mittal et al. [13] but can also be seen as an adaptation
of how Lai and Wu [8] fix the issue. We make sure every process is part of the active tree and
information sent to the root lets it know whether or not all processes have reattached to the tree.

The way we reset the active tree is that the count for the difference in Stop and Resume
messages is set to zero for all children. Additionally only Stop and Resume messages where
the value of KC sent with the message matches the value stored in the process are accepted.
This way those types of control messages sent before resetting the active tree do not interfere.
All basic messages that were sent before the crash and had not yet been acknowledged still need
to be acknowledged, except those sent to a crashed process. Since a process joins the active
tree as soon as it knows that a crash has happened it can also send all acknowledgements it
had not already sent. All acknowledgements that a process had yet to send because of Resume
messages can also be disregarded. The reason we can do this is that eventually all processes will
know of all crashes that have occurred and therefore will have joined the active tree, making an
acknowledgement for joining the active tree redundant.

We split up the Acknowledge messages into two distinct messages, one for acknowledging
basic messages, MAck, and one for acknowledging resume messages, RAck. Additionally, we
make every process keep track of all basic messages and Resume messages it has received and
not yet acknowledged. This is done to be able to send acknowledgements for basic messages im-
mediately when a process is notified that a crash has happened. Additionally, acknowledgements
for Resume messages sent before the process crash can be thrown away since all processes will
eventually become part of the active tree when they are informed of the process crash.

The third issue we encountered is what to do with messages still in transit from a crashed
process. This is simply solved by making every process block all further messages from a process
as soon as they are notified of it crashing.

We add an additional condition on both leaving the active tree and declaring termination,
that KC equals the number of crashed processes known by the process in question. This is to
make sure that the process knows of all changes that have been made to the tree structure before
leaving the tree. Specifically it has to know if its parent has crashed, as the Stop message should
then be sent to another process.
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List of variables in each process:
nnodes . Number of nodes in the distributed system
ID . Unique process identifier, [0, nnodes− 1]
root . Current root of the static tree
parent . ID of parent process
children . Child processes of the node
idle . Boolean stating whether the process is idle or busy
free . Boolean stating whether the process is free or loaded
inactive . Boolean stating whether the process is part of the active tree or not
KC . Number of processes that have crashed
child inactive[ ] . Active status of children, 1 means not in active tree
child counts[ ] . Child subtree sizes
num unack msgs[ ] . List, number of unacknowledged basic messages sent to each process
Crashed . Set of processes whose crash notifications have been received
owned . Boolean stating whether the process has to send an acknowledgement or not
ownedBy[ ] . Processes that have yet to receive an acknowledgement for a basic message
rAckNext . Processes that have yet to receive an acknowledgement for a resume message
function Reset

free← 0
inactive← 0
for all i ∈ Children do

child inactive[i]← 0
child counts[i]← 0

end for
for all i ∈ {1, . . . , nnodes} do

num unack msgs[i]← 0
end for
owned← 0
ownedBy ← [ ]

end function
function Update KC(otherKC)

if otherKC > KC then
for all i ∈ ownedBy do . Acknowledge all basic messages received

Send message(M ACK, i)
end for
Reset . All nodes are reset

end if
end function
function Send message(m, target) . Is run when a message is being sent

if m is basic message then
num unack msgs← num unack msgs + 1

else if m is STOP then
count← 1 +

∑
i∈children child counts[i]

append count to m
end if
Send m, KC to target . KC is sent with each message

end function
function Receive message(sender, m, message KC) . Is run when a message is received

Update KC(message KC)
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if m is basic message then
idle←False
free←False
if inactive then

Send message(RESUME, parent)
inactive←False
owned←True
ownedBy ← ownedBy ∪ {sender}

else
Send message(ACKNOWLEDGE, sender)

end if
else if m is M ACK then

num unack msgs[sender]← num unack msgs[sender]− 1
else if m is RESUME then

if message KC 6= KC then
return

end if
child inactive[sender]← child inactive[sender]− 1
if inactive then

inactive←False
Send message(RESUME, parent)
rAckNext.append(sender)

else
Send message(R ACK, sender)

end if
else if m is R ACK then

if message KC 6= KC then
return

end if
if owned then

for p ∈ ownedBy do
Send message(M ACK, p)

end for
owned←False
ownedBy ← [ ]

end if
for p ∈ rAckNext do

Send message(R ACK, p)
end for
rAckNext← [ ]

else if m is STOP then
if message KC 6= KC then

return
end if
if Count(m)> child counts[i] then

child counts[i]← Count(m)
end if

else if m is DCONN then
children← children \ {sender}
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else if m is CONN then
children← children ∪ {sender}
inactive←False

end if
end function
function Crash notification(p) . Process is notified that process p has crashed

Crashed← Crashed ∪ {p}
block channel from p
if p ∈ children then

children← children \ {p}
rAckNext← rAckNext \ {p}

end if
num unack msgs[p]← 0
if p ∈ ownedBy then

ownedBy ← ownedBy \ {p}
end if
Update KC(Size(Crashed))
if p = root then

newRoot(root) . Computes new root of the tree
if root ∈ children then . New root is a child of this process

children← children \ {root}
end if

end if
if p = parent∧ID 6= root then

parent← root
Send message(CONN, root)

end if
end function
function Turn free . Called when process is idle and

∑
i num unack msgs = 0

free←True
end function
function Turn inactive . Called when free =True, inactive =False,
∀i ∈ children : child inactive = 1 and KC = Size(Crashed)

inactive←True
if ID 6= root then

Send message(Stop, parent)
end if

end function
function Declare termination . Called by the root when inactive =True and
1 +

∑
i∈children child counts[i] = nnodes− Size(Crashed)

Termination
end function

4 Simulation Environment

The simulation environment was originally written by G. Karlos [6] using the Ibis Java library
to handle threads and Java’s synchronized methods to handle correct variable access. His repos-
itory was forked and changed substantially, most notably with the addition of new termination
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detection algorithms and additional input parameters. It is a multi-threaded environment where
the basic algorithm of each process is run by a single thread. The input parameters that can
be specified are which control algorithms to run, how many processes are in the network, the
number of processes that crash, the level of activity, the maximum wait time, and the maximum
number of basic messages. Writing to a comma-separated value file has not been implemented
for all algorithms, only the ones written by G. Karlos.

Choosing an algorithm is done by specifying a number: 1, 2, and 3 are algorithms implemented
by G. Karlos, they are Safra’s termination detection algorithm [4], an improved version of that
algorithm, and a fault-tolerant version based on the improved version, respectively. Algorithms
4 and 5 are the Mahapatra-Dutt static tree termination detection algorithm [10] and our fault-
tolerant version of this algorithm, respectively. Finally, algorithms 6 and 7 are the LTD variant
of the Dijkstra-Scholten [7] termination detection algorithm modified to only handle diffusing
computations and the Lai-Wu fault-tolerant termination detection algorithm [8] based on the
LTD variant of the Dijkstra-Scholten algorithm.

We chose to implement the Lai-Wu algorithm to compare it with our fault-tolerant termi-
nation detection algorithm. Since we were implementing the Lai-Wu algorithm, it made sense
to also implement the fault-sensitive algorithm they based their fault-tolerant termination de-
tection algorithm on. The LTD variant of the Dijsktra-Scholten algorithm was therefore also
implemented. Both the Dijkstra-Scholten and the Lai-Wu termination detection algorithm im-
plementations only work on diffusing computations. This is only a slight change to the algorithm
and should not affect the performance of the algorithms negatively during the simulations.

The simulation environment has many random length delays used to simulate either network
latency or a process working. All random numbers are drawn from a uniform random distribution
using the java.util.Random library.

The number of processes is an integer in the range 4−1024 but is also limited on the hardware
that it is run on as well as which algorithm is run. The number of processes simulated might
depend on the hardware, as each thread needs a certain amount of memory to operate. Modern
computers should however not have any problem simulating 1024 processes. The 1024 maximum
is only an artificial limit set on the input parameter and changing this would not be difficult.

The number of processes that crash is an integer greater than or equal to zero but lower than
the number of processes. The simulation chooses which processes to crash uniformly random
one after another. The processes chosen are then crashed in the order they were chosen with a
random delay in between the crashes. The random delay is drawn from the range of 0 to 2000 ms.
After each crash has occurred, all non-crashed processes are notified of the crash within 5 seconds
of the crash happening. This delay is randomly chosen per processes being notified on the range
of 0 to 5000 ms.

The level of activity is an integer in the range 2−4 and determines how many basic messages
every active process sends. When a process becomes active, it randomly chooses a number,
nActivity, below or equal to the level of activity chosen. The process then performs nActivity+1
actions. Each action consists of a random sleep period of up to 1000 ms and sending messages
to a number of processes up to the level of activity. This means that with level of activity `,
the number of messages sent by a process when it becomes active is up to about `2. What this
means in practice is that with a level of activity of 2 the computation usually dies out quite
quickly, while level 3 is not likely to stop unless the number of processes is very small. When the
activity has been simulated the process becomes passive and becomes active again only when a
basic message is received.

This is where the maximum number of basic messages option comes in handy. This parameter
has one special input value which is −1. If the simulation environment is given this value, there
is no limit set on the maximum number of messages. Any non-negative value given will be the
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limit on the number of basic messages allowed to be sent. This limit is not a hard limit, and
there might be one or two extra messages sent. The reason for this is that two or more processes
might check to see if the limit has been reached at the same time when the limit has almost been
reached. If the processes subsequently send messages this might take the number of messages
over the limit.

Lastly, we have the maximum wait time, which is given in milliseconds. This is a time out
mechanism which stops all threads when the time has been reached. This is important if there
is an algorithm that is not able to declare termination or if something went wrong in the run.
This is a very important tool during development of the algorithm to find bugs or flaws in the
algorithm, because it allows for automation of running the algorithm many times without having
to worry about runs possibly never ending. This might be the case if there are any deadlocks
present in the implementation or if the implementation contains some other types of errors.

Processes send messages to each other through methods in a network object, which in turn
calls a receive method in the receiving process. At the time of writing, both the basic algorithm
and control algorithm have to be written for each control algorithm. The same basic algorithm
is used for each of the control algorithms, but since they are written in the same class, the basic
algorithm has been copied for each of the algorithms. There is also a nodeCrasher class that
decides which processes to crash and then calls a crash method in the appropriate process object
and notifies the other processes of the crash as well. Running on top of all this is the simulator
which initiates all of the objects and starts the simulation; this is also where the timeout limit
is set. If the object has not received a notification of termination within the time limit, it stops
the processes and prints a warning stating that termination was not declared.

The detection delay is measured by the network object, each time a process becomes passive,
it sends a message to the network that logs the time. When termination is declared, the detection
delay is calculated to be the time of declaration minus the time at which the last process turned
passive. Similarly, the number of basic messages as well as the number of control messages are
recorded in the network class and printed when termination has been declared.

For the static tree algorithm, there needs to be some way of determining the tree structure
before the algorithm starts. The way we have done it is by using an echo algorithm to create
the tree each time a simulation is run. The algorithm starts at the root and sends a message
to all the processes in the network in random order. When a process receives the message for
the first time, it sets the sender to be its parent and starts sending to other processes to see if
they want to be its children. All messages received after the first time are acknowledged right
away with a reject message. When a process has received either a reject message or an accept
message from all processes, it sends an accept message to its parent. When the root has received
a reject message or an accept message from all processes, it signals that the basic algorithm can
be started.

The simulation environment is a prototype and needs much work to be able to be used
effectively in developing distributed control algorithms. More on how this could be done can be
found in section 6.

The code for the simulation environment and all the algorithms implemented can be found
at https://github.com/KristinnArdal/TDS.

5 Results

5.1 Simulations

Two sets of simulations were made on the algorithms. The first set of simulations was made
on all algorithms. All simulations use the activity level of 3, as this makes it very likely that
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the maximum number of basic messages set will be reached. These simulations were used to
see the relation between number of processes in the network with both the detection delay and
the message complexity. The number of processes in the system varied between 128 and 1024
processes, doubling the number of processes in each step. In these simulations the number of
basic messages was kept the same. The number of messages was chosen such that using only
128 processes the simulation would not take too much time and for 1024 processes all processes
would most likely be active at some point during the simulation. With these conditions in mind,
the number of basic messages chosen was 10 000. This way the average number of messages sent
by a process is 78 and 10 for 128 and 1024 processes respectively.

The second set of simulations was made on the three fault-tolerant algorithms. These simula-
tions introduced crashes into the system. The number of processes in the network used for these
simulations was set to 512. The reason for this is that we wanted to use one of the previously
used process counts to be able to compare with the simulations without crashes. Additionally
we wanted the simulations to run somewhat quickly, and more processes in the network means
that it takes less time to send the required basic messages. The number of processes that we
crashed varied from 2 to 64, doubling the number each step. It is worth noting that crashing n
processes takes on average n seconds. Notifying all other processes of the crashes might take an
additional 5 seconds. All algorithms require that all processes have been notified of all crashes
that occur before being able to declare termination. This means that the simulations would at
minimum take around n+5 seconds. Before introducing crashes, a simulation with 512 processes
and 10 000 messages took on average slightly less than 30 seconds. What we expect to see then
is an increase in detection delay for 32 and 64 crashes.

5.2 Safra’s algorithm

Let us first look at the three algorithms that had already been implemented by G. Karlos. These
algorithms are token algorithms, and the number of control messages is not directly related to
the number of basic messages. We first look at simulations without crashes introduced. In figure
2 we can see how the number of control messages depends on the number of processes in the
network. The fault-tolerant version of the algorithm is based on the improved Safra’s algorithm
and the number of control messages is approximately the same. The number of control messages
is approximately linear with regard to network size for all three of the algorithms.

The improved Safra’s algorithm improves the detection delay of the algorithm, as can be seen
in figure 3. Here we see that the detection delay of the improved Safra’s algorithm and the fault-
tolerant Safra’s algorithm are pretty much the same. As with the number of control messages,
this is because the fault-tolerant version is based on the improved Safra’s algorithm. We also
see that the detection delay linearly increases with the number of processes in the network. This
was to be expected, as the token has to visit more processes to gather the required information
for declaring termination. Sending the token around the network takes an amount of time that
is linear with respect to the size of the network.

Now let us introduce crashes to the system and see how the detection delay and the number
of messages depend on the number of crashed processes. We only introduce crashes for the fault-
tolerant Safra’s algorithm and we have 512 processes as stated before. As previously stated, we
expect an increase in detection delay for both 32 and 64 crashes. We however did not make
any prediction on the number of control messages. Looking at figure 4 we see an increase in
control messages starting at 32 crashes. The increase in control messages is even more dramatic
when we have 64 process crashes. We want to also see how the number of control messages
changes when the crashes do not happen at the end of the basic computation. We do this simply
by restricting our view to only 16 or fewer crashes. The number of control messages decreases

15



0
50

0
15

00
25

00
35

00

Number of processes in the network

M
ed

ia
n 

of
 th

e 
nu

m
be

r 
of

 c
on

tr
ol

 m
es

sa
ge

s

128 256 512 1024

Safra's algorithm
Improved Safra's algorithm
Fault−tolerant Safra's algorithm

Figure 2: The number of control messages with respect to the number of processes in the network.
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Figure 4: The number of control messages of fault-tolerant Safra’s algorithm with respect to
number of crashed processes in the network. The first part has crashes occurring before the
basic computation has terminated, while the second part has crashes occurring after the basic
computation has terminated.

slightly with the number of crashed processes. This is in line with what we saw in figure 2; when
process crashes occur, the number of processes in the system decreases and therefore the number
of control messages decreases as well.

The detection delay of the algorithm with respect to the number of crashes can be seen in
figure 5. As we suspected, a huge increase in detection delay happens at 32 and 64 process
crashes. We would also like to see what happens to the detection delay when all crashes happen
before the end of the basic computation. We do this by simply limiting our view to the first
part of figure 5. We can see that the crashes have hardly any effect on the detection delay when
they happen before the end of the basic computation. The detection delay stays pretty much
constant. We see a slight increase, but this increase is such a small part of the detection delay.

5.3 Static tree algorithm

For the static tree algorithm we have both the fault-sensitive version and the fault-tolerant
version. The fault-tolerant version is a fault-reactive algorithm, meaning that we should see
an approximately identical number of control messages when there are no crashes. In figure 6
we see that the number of control messages increases with the size of the network. This is to
be expected as the tree structure grows, since a Resume messages has to travel farther up the
tree on average. The increase in control messages is approximately linear with the number of
processes. The detection delay is around the same for both algorithms and can be seen for the
fault-tolerant version in figure 7. The detection delay of this algorithm is totally different from
what we saw in Safra’s algorithm. The detection delay is only around 100 ms for 128 and 256
processes but jumps to around 125 ms for 512 and 1024 processes. Sending a message takes on
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Figure 5: Detection delay of fault-tolerant Safra’s algorithm with respect to number of crashed
processes in the network. The first part has crashes occurring before the basic computation
has terminated, while the second part has crashes occurring after the basic computation has
terminated.

average 25 ms, which means that on average 4 sequential control messages need to be sent after
the last process has turned passive for the control algorithm to declare termination. This goes up
to around 5 sequential control messages when the network has 512 or 1024 processes respectively.
This increase comes from the structure of the static tree: increasing the number of nodes, the
average depth of the static tree increases; this increase leads to an extra control message at the
end of the simulation.

Now let us introduce crashes into the system. As before we expect an increase in detection
delay at around 32 process crashes. We see an increase in both control messages and detection
delay at exactly this number of crashed processes in figures 8 and 9 respectively. The figures are
split in two parts, fewer than or equal to 16 process crashes and more than 16 process crashes,
because of the dramatic increase in both figures. We want to see the effect of process crashes
that happen during the basic computation on the number of control messages and detection
delay. We therefore limit our view to only 16 process crashes or fewer. We see that when we
introduce process crashes, the distribution for the number of control messages starts to spread
out. Additionally the number of control messages decreases. The reason for the decrease in
control messages is threefold: acknowledgement messages can be disregarded because of a crash,
processes might stay in the active tree for a longer time when a crash occurs, and finally the tree
structure becomes flatter and flatter every time a process crashes.

Processes staying in the active tree for a longer time results in a reduction in Resume
messages. The reason a process might stay longer in the active tree when a crash occurs is that
it might hear from another process that a process has crashed, in which case it will not leave the
active tree until all of its children and itself have been notified of the same number of process
crashes. The decrease in number of control messages is quite significant, or about 10% in total
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Figure 6: The number of control messages with respect to the number of processes in the network.

128 256 512 1024

50
10

0
15

0

Number of processes in the network

D
et

ec
tio

n 
de

la
y 

[m
s]

Figure 7: Detection delay with respect to the number of processes in the network.
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when we have 16 process crashes. The simulation has processes crash one after another with
a random delay in between. Notifying all the processes of the crash however takes more time
than the delay in between crashes. Changing this behavior in the simulation by making the time
between crashes longer on average than the time it takes to notify all other nodes might change
this pattern entirely. Then we might see an increase in the number of control messages.

Having a flat tree or shallow tree structure means that there will be fewer control messages,
as joining the tree might take fewer Resume messages. This however also makes that a few
processes have to do most of the work of the control algorithm. For this reason we do not want
the tree to be very flat. When a process crashes all of its children reattach to the root process
making the tree become flatter. However, in case of few process crashes this flattening effect on
the tree will be very limited.

We now look at the effect that process crashes during the basic computation have on the
detection delay. As before we limit our view to only 16 process crashes or fewer. In the first
part of figure 9 we see that when we introduce process crashes, the detection delay decreases.
We have already discussed that process crashes make the tree structure become flatter. The
detection delay is directly related to the depth of the active tree when termination occurs. For
this reason the detection delay decreases with the introduction of crashes. We should see the
detection delay become lower and lower with the number of process crashes but this does not
happen. The reason for this might be that the root has more control messages to receive and
the increase from this is what we see. Another reason might just be that more simulations are
needed to get a better approximation of the detection delay. This reason however seems unlikely,
given the fact that we would expect a steady decrease with the number of process crashes, but
we see the inverse relation. Unlike the number of control messages, the detection delay should
not be affected by how the crashes are simulated, given that they occur and are handled before
the basic computation has terminated.

5.4 Lai and Wu algorithm

We now look at the last two algorithms, the LTD variant of the Dijkstra-Scholten termination
detection algorithm and the Lai-Wu termination detection algorithm. The Lai-Wu algorithm is a
fault-reactive variant of the Dijkstra-Scholten algorithm based on the LTD variant. This means
that the number of control messages for the algorithms should be identical in a system where
there are no crashes. Looking at figure 10, we can see that this is the case.

The number of control messages approaches 10 000 when the number of processes increases.
Without crashes, the maximum number of control messages for the algorithms is equal to the
number of basic messages, and in these simulations we had 10 000 basic messages. For the
original Dijsktra-Scholten algorithm the number of control messages would be exactly equal to
the number of basic messages. The LTD variant is an optimization on the number of control
messages. The reason we see an increase in the number of control messages with the number of
processes is how the LTD variant reduces the number of control messages. The algorithm works
by having each basic message require an acknowledgement message. The LTD variant makes
it possible for a process to acknowledge multiple basic messages from the same process in one
message. The simulation chooses a process at random to send a basic message to. Increasing the
number of processes makes it less likely that the same process will be chosen more than once in
a short amount of time.

The detection delays for the algorithms are almost identical, and we can see the detection
delay of Lai and Wu’s algorithm in figure 11. The algorithm has an average detection delay
of around 275 to 300 ms for 128 to 1024 processes. This means that there are on average 11
to 12 sequential control messages needed after termination has occurred for termination to be

20



●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
18

00
0

20
00

0
22

00
0

24
00

0

0 2 4 8 16

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

20
00

0
25

00
0

30
00

0

32 64

Number of crashed processes

N
um

be
r 

of
 c

on
tr

ol
 m

es
sa

ge
s.

Figure 8: The number of control messages of the fault-tolerant static tree algorithm with respect
to the number of crashes processes in the network. The first part has crashes occurring before
the basic computation has terminated, while the second part has crashes occurring after the
basic computation has terminated.

declared.
As with the other algorithms we now introduce crashes to the network. We expect the number

of control messages to increase with the number of crashes, and as with the other algorithms
we expect to see an increase in the detection delay when we have 32 or more process crashes.
In figure 12 we see the number of control message in the network with crashes. There is a
definite increase in control messages from the very start, but the increase becomes much more
dramatic at 32 process crashes. For 32 and 64 process crashes, processes are crashing after the
basic computation has terminated. Because of this processes often leave the active tree directly
after they are notified of a crash. We would therefore expect the number of control messages to
increase linearly when we have more than 32 processes. When we look only at process crashes
that happened during the basic computation, this however looks slightly different. Looking at
only 16 or fewer process crashes, the increase is not really linear; there is a small spike in the
number of control messages when we have only 2 process crashes, but for 4, 8, 16 process crashes
it becomes almost linear. The reason for this might be that the first crashes create more control
messages than the next ones. The simulation environment is on average sending notifications
for 5 process crashes at any given time. The way Lai and Wu handle process crashes is that
they have every process send their set of detected process crashes with their acknowledgement
messages. Only when a process has been notified of all crashes it has seen from other processes,
does it leave the active tree. If notifications for multiple processes are going around, this might
make the processes having to wait. Having process crashes being handled before the next process
crashes might give us more insight into how this works.

If we now look at the detection delay, we can see in figure 13 a large increase in detection delay
at 32 process crashes. Here we have the same reason as we had for the other processes; process
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Figure 9: Detection delay of fault-tolerant static tree algorithm with respect to the number of
crashed processes in the network. The first part has crashes occurring before the basic compu-
tation has terminated, while the second part has crashes occurring after the basic computation
has terminated.
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Figure 11: Detection delay with respect to the number of processes in the network.

crashes are happening at the end of the simulation, and all processes have to be notified of the
crashes before the control algorithm can declare termination. We now look at only crashes that
happened during the basic computation; we limit our view to only 16 or fewer crashes. Here we
see a very strange effect: the detection delay decreases dramatically when crashes are introduced;
the detection delay is cut in half when we have crashes. This might seem counter-intuitive, but
the reason for this comes from the way the tree is built. When the algorithm starts, the active
tree grows quickly with each basic message and becomes quite deep. When a process crashes,
the tree is flattened. The tree does not become as deep as it was before, since so many processes
are already a part of the active tree. The more time the algorithm has after the last crash, the
more likely it is to grow bigger. This can be seen in the graph, as for 2 and 4 process crashes
the detection delay is slightly larger than for 8 and 16 process crashes.

This result suggests that the Lai-Wu algorithm is more suited for non-diffused computations
as the tree is less likely to grow as deep.

6 Discussion

There are two parts of this thesis that need to be discussed: the fault-tolerant version of the
algorithm and the simulation environment. We start with discussing the fault-tolerant version
of the algorithm that we developed.

6.1 Fault-tolerant algorithm implementation

The fault-tolerant version of the algorithm is very similar to the Lai-Wu algorithm, with the
exception being how reattaching to the tree is handled. We could do a more similar thing to
what Lai and Wu do, which is to make all processes report to the root either saying they want to
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Figure 12: The number of control messages of Lai and Wu’s algorithm with respect to the
number of crashed processes in the network. The first part has crashes occurring before the
basic computation has terminated, while the second part has crashes occurring after the basic
computation has terminated.

reattach or not. We however want to avoid the situation where the root becomes a bottleneck,
which is exactly why we have chosen to reset the active tree when a process crashes and let
processes report on the tree size with the Stop messages rather than report directly to the root
saying it attached to the tree. In the worst case the number of control messages sent because
of the crash is O(n + c) where n is the number of processes in the system and c is the number
of children that need to be reattached to the tree. This is slightly larger than Lai and Wu’s
O(n), but these messages are spread out such that each process only gets messages equal to the
fan-out of the process after recovery. We are however not likely to hit the maximum number of
control messages in our algorithm, as that would mean that the crash occurs very close to the
time of termination. Additionally some control messages can be skipped when a process crashes,
reducing the cost further. It is also worth noting that the reason we can restart the algorithm
efficiently is that the tree is static. Every process is already a part of the static tree, they just
have to join the active tree, which is important for termination detection. Since the active tree
has the same structure as the static tree, this can be done locally at each process. This approach
is very similar to what Lai and Wu do, they have every process join the active tree but they
flatten the tree to only be two layers.

Reattachment is done to the root but could be done to any other process that is not in
the sub-tree of the process. This is however a bit more tricky, as processes need to have more
knowledge of the tree structure. This could however be done before the run, since the static tree
is usually decided upon before the run as well. Each process could for example keep track of their
entire parental chain up to the root and choose the first ancestor that has not crashed to attach
to. If all of the ancesters have crashed, reattaching to the root is possible. This should keep the
tree more hierarchical, as always attaching to the root can make the tree flat very quickly. This
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Figure 13: Detection delay of Lai and Wu’s algorithm with respect to the number of crashed
processes in the network. The first part has crashes occurring before the basic computation
has terminated, while the second part has crashes occurring after the basic computation has
terminated.

also increases the number of control messages incurred by a crash to O(n + c · d) where d is the
depth of the tree. This is because reattaching to the tree at a process that is not the root might
lead to a Resume message being sent all the way to the root after a Stop message has already
been sent the whole way. We chose to attach to the root as it is the simplest to implement. This
however means that when we have many crashes, the tree structure gets flatter quickly, making
the root have to do more and more work.

In the simulation environment we are measuring the detection delay and message complexity
of the algorithms. To get the best detection delay possible for the static tree algorithm, one
could choose a tree where the root process is the parent to all other processes. This however
would increase the work load of the root process significantly. We did not measure the load
distribution per process. This could be done by simply calculating the number of messages being
sent to and from each process. This would give us a very low-level representation of the load
distribution. Another way could be to use a logical clock to measure the longest sequential chain
of send and receive events. Using either of these measures, one could measure the difference in
load distribution the static tree structure has in the algorithm. One could also examine what
effect different reattachment policies have on the system.

6.2 Improvements on the simulation environment

The simulation environment needs a total re-design for it to become more usable. The current
version has the programmer do too much for each control algorithm. There needs to be consis-
tency in the network and basic computation between algorithms so that they can be accurately
compared with one another. Currently the basic computation has to be written for each algo-
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rithm, meaning that if one were to write a new control algorithm, the basic algorithm could
be made completely different from how it is in the other algorithms. The basic computation
should be made completely separate from the control algorithm. The control algorithm could
have hooks into the send and receive events of the basic computation as well as having its own
interface for sending and receiving control messages. This could be done using an abstract class
that defines this interface for all control algorithms.

This would mean that all control algorithm could share the same classes for the simulation
start up, network and basic algorithm. Changes in any of these algorithms would then be
shared among the control algorithms. After this has been done, changes to the network or basic
algorithm become much easier to implement and test. The rest of the discussion is on changes
that would be much simpler to implement after the code had been re-designed.

Having done this it would be no problem having different basic computation models and
being able to change between them using an input parameter. The way it is implemented now
makes it very difficult to change the basic computation, since only changing it for one algorithm
means that comparisons with other algorithms performance become invalid. For it to be valid
every algorithm would have to have the same basic algorithm.

The network latency in the simulation environment is random for each message with a max-
imum upper bound. A better way would be to give each connection a latency distribution
function, which could be determined when initiating the network. When sending a message,
the message delay could then be drawn from the distribution. This takes more space, as each
connection needs to be designated a distribution and there are n2 connections, but would make
for a more realistic network latency model.

The way crashes are handled is that the processes that are to crash are decided before the
control algorithm starts, and a simulated crash of those nodes is initiated after a random amount
of time. The random amount of time is drawn from a uniform distribution of the range 0− 2 000
ms. The upper limit of this time has been chosen arbitrarily and does not depend on the number
of processes in the network, how many processes will crash, or the level of activity. The reason
for this short time interval is that we do not know how long the computation will last and
therefore the processes are crashed sooner rather than later. A better approach would be to have
it depend on some of the input variables. One could for example model the computation time
of the algorithm with respect to the number of processes in the network, level of activity, and
maximum number of basic messages. This model could then be used to calculate the expected
run time of the algorithm, and each process that should crash is crashed within the expected
end of the computation. The model for this would then also depend on the basic algorithm, if
the option for multiple basic algorithms has been implemented.

7 Conclusion

We created a fault-tolerant variant of the Mahapatra-Dutt static tree termination detection
algorithm. We implemented it in a simulation environment and ran simulations using said
environment. Implementing the algorithms helped a lot in understanding the issues that we
faced when making the algorithm fault-tolerant. We were able to test out ideas very quickly and
see what their advantages and disadvantages are. The resulting algorithm is an (n − 1)-fault-
tolerant termination detection algorithm.

We implemented the fault-sensitive static tree termination detection algorithm as well as the
fault-tolerant variant. In addition to that, G. Karlos had already implemented Safra’s algorithm,
an improved version of Safra’s termination detection algorithm and a fault-tolerant variant based
on the improved version. We wanted to have another tree algorithm to compare with our algo-
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rithm. We therefore implemented Lai and Wu’s termination detection algorithm as well as the
algorithm they based their algorithm on, the LTD variant of the Dijkstra-Scholten termination
detection algorithm.

We ran two sets of simulations on all the algorithms; one where there were no process crashes
and the number of processes in the network was varied and one where the number of process
crashes was varied, keeping the number of processes in the network constant. The first set of
simulations was done on all algorithms, while the second set was only done on the fault-tolerant
algorithms.

The simulations show us that Safra’s algorithm has very few control messages when compared
to the other algorithms, but has a high detection delay. The improved and fault-tolerant versions
of Safra’s algorithm lower both the number of control messages and detection delay. The detection
delay is however still quite high when compared with the other algorithms.

The two static tree algorithms both have the highest number of control messages but the
number actually decreases when we introduce crashes. The detection delay of both algorithms
was very low, even when compared to the Lai-Wu algorithm. The detection delay reduced slightly
when crashes were introduced to the network.

The number of control messages for the Lai-Wu algorithm was much lower than for the static
tree algorithms, but when crashes were introduced the number of control messages increased.
The detection delay was not very high, but when crashes were introduced this actually decreased,
as each time a crash occurs the tree structure is flattened.

All algorithms had increased control messages and detection delay when crashes occurred
after the basic computation had terminated. This is because termination can not be declared
until all processes have been notified of all crashes that have occurred.

The simulation environment has huge potential but is at the moment of writing not very
user friendly. The reason for this is that the code needs an overhaul such that introducing new
control algorithms or changing any of the features of either the basic algorithm or the network
becomes simple. I can see this simulation environment or something similar to this becoming an
important part in developing other distributed control algorithms or even adjusting distributed
control algorithms to other basic computation models.

The overhaul on the simulation environment might make a good BSc project. Many of the
ideas have already been outlined in section 6. This would hopefully attract more people to using
the simulation environment when developing new algorithms.

Using the simulation environment was very advantageous while developing the fault-tolerant
static tree algorithm. We were able to quickly test out ideas for the algorithm and see whether
they worked or not. While this environment is advantageous for developing termination detection
algorithms and testing them it is not able to prove that termination is always declared. The
environment can be used to find flaws in the algorithm, but it was not designed to try every
possible path of the execution and can therefore not be used to prove termination. There are
other techniques available for exactly that purpose, notably model checking [1] and theorem
proving [2], which should be used instead of this one if proving correctness is desired.
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