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We focus on an approach to reducing the costs of running applications. MIPS, which is 
a traditional acronym for millions of instructions per second, have evolved to become a 
measurement of processing power and CPU resource consumption. The need for controlling 
MIPS attributed costs is indispensable given their significant contribution to operational 
costs. In this paper we investigate a large mainframe production environment running 
246 Cobol applications of an organization operating in the financial sector. We found 
that the vast majority of the top CPU intensive operations in the production environment 
involve the use of DB2. We propose approaching portfolio-wide efforts to reduce CPU 
resource consumption from the source code perspective. Our technique is low-risk, low-
cost and involves SQL code improvements of small scale. We show how to analyze a 
mainframe environment in an industrial setting, and to locate the most promising source 
code segments for optimizing runtime usage. Our approach relies on the mainframe usage 
data, facts extracted from source code, and is supported by a real-world SQL tuning project. 
After applying our technique to a portfolio of Cobol applications running on the mainframe 
our estimates suggested a possible drop in the attributed monthly CPU usage by as much as 
16.8%. The approach we present is suited for facilitation within a mainframe environment 
of a large organization.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Despite the often cited essay in the Harvard Business Review stating that IT doesn’t matter [9], information technology 
plays an important role in many organizations. In our contemporary world, business environments have become global and 
there is a major challenge to deliver adequate computing services which meet stringent performance goals and operate at 
low cost. It is a wrong assumption that IT operations have already been optimized to the point that there is nothing to gain 
by further improving them as this paper will illustrate. There are still more than enough opportunities to achieve significant 
savings. A quote by Benjamin Franklin – “A penny saved is a penny earned” – applies very well to current business reality. 
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The more is saved on IT-operations, the more capital there is available to invest in pursuing new business opportunities. IT 
related operational costs are high and offer ample possibilities for cost reduction. For the Dutch banks it was estimated that 
total operational IT costs oscillate at around 20%–22% of total operational costs [6]. Businesses have taken a strong stance 
on operational cost reduction and seek solutions to slash IT costs. For instance, Citigroup estimated that the removal of 
redundant systems from their IT portfolio would yield a savings potential of over 1 billion USD [25]. So far, organizations 
have tried a number of approaches to cut IT costs which include staff reduction, outsourcing, consolidating data centers 
or replacing old software and hardware with its newer counterparties. However, all these approaches carry an element of 
risk and might end-up costing more especially when complex software environments are involved. Migrating IT-systems to 
another environment is expensive and full of risks. Computer software is highly dependent on the environment it is running 
in and changing that environment means identifying and removing those dependencies. On the other hand, there exists an 
approach which allows for IT costs to be reduced at low-risk for both business and IT. It involves management of CPU 
resource consumption on the hardware platforms and is the subject of this research contribution.

The MIPS metric is a traditional acronym for millions of instructions per second. It has evolved to become a measurement 
of processing power and CPU consumption. MIPS are typically associated with running critical enterprise applications on a 
class of computers known as mainframes. The term originates from the compartments in which these computers used to be 
housed: room-sized metal boxes or frames [19]. From a business perspective mainframes have proven to be secure, fast and 
reliable processing platforms. While running computer software costs money on every computing platform for mainframe 
users the incurred costs are relatively high. As Nancy White, a former CIO of Certegy corporation, once said: “MIPS and 
salaries are my highest unit cost per month” [11]. Mainframe users have traditionally chosen to pay usage fees because 
of the shared nature of the platform (many users use one big computer). However even when they run their programs in 
a large cluster of virtual machines they are charged on the capacity they reserve and/or use. Moving to another platform 
(from mainframes) might bring cost savings, but such a step is not risk free.

The amount of MIPS used by the average IT organization is on the rise. IT industry analysts estimate that most large 
organizations utilizing mainframes should expect their systems’ CPU resource consumption to increase by 15–20 per cent 
annually. A Macro 4 project manager, Chris Limberger, explains financial consequences of this increase as follows [1]:

Each additional MIPS typically costs around GBP 2500 in hardware and software charges. So if a company running a 
10,000 MIPS system increases capacity by as little as ten per cent per annum, the incremental cost will be in the region 
of GBP 2.5 million. That’s pretty typical but if your business is growing and if you’re upping the level of activity on your 
mainframe, you can expect much more.

Despite the fact that the incurred usage costs are substantial, monitoring of CPU usage is not routinely implemented. So 
sometimes customers have no idea where the CPU resources are being consumed. The large availability of hardware and 
software tools for CPU cycle usage monitoring shows strong demand. Still it turns out that majority of managers (58%) 
admit that they do not continually monitor consumption of CPU resources [10]. Given the substantial cost implications for 
a business, the need for introducing measures which lead to reduction of MIPS utilization is indispensable.

1.1. Targeting source code

Where does the accrual of the amount of MIPS used happen? MIPS usage is directly driven by CPU usage, and CPU 
usage depends primarily on the applications’ code. Inefficient code of the applications is considered to be a major cause 
of MIPS usage [10]. Therefore by improving performance of the code it is possible to significantly lower CPU resource 
consumption. For instance, software run on mainframes typically constitutes management information systems. For this 
class of software interaction with a database is ubiquitous. At the source code level interaction with relational database 
engines is typically implemented using Structured Query Language (SQL) which was specifically developed for interfacing 
with relational systems [43]. As a general rule of thumb most (≈80%) performance hampering problems are traceable to the 
SQL code [11].

Efforts aimed at optimizing the software assets’ source code are a viable option for limiting CPU resource usage. In fact, 
code improvement projects have yielded operational cost savings. According to [12] a financial services company identified 
two lines of code that, once changed, saved 160 MIPS. Given the market price of MIPS the two lines of code contributed 
to a substantial cost reduction. Therefore, from the perspective of cutting operational costs having the capacity to capture 
inefficiencies occurring in the software portfolio’s code is vital. For the MIS class of software code optimizations in the area 
of database interaction loom as particularly worth extending the efforts.

The reality of large organizations is such that mainframe usage monitoring is not implemented in a structural way 
which allows tracking CPU resource consumption and translating it into management action plans. All this takes place 
in the face of presence of vastly available tools that support SQL performance monitoring. IBM manuals alone describe 
many potential ways to assess DB2 performance including DB2 Optimizer, SQL EXPLAIN statement, OS RMF and SMF data, 
OMEGAMON, RUNSTATS, Materialized Query Tables, Automatic Query Rewrite, or Filter Factors. There are also dozens of 
third party products that measure DB2 performance. While these tools are helpful in code optimizations leading to lowering 
CPU resource consumption whether or not they can be used depends on the actual circumstances in which the software 
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runs, or simply on its intrinsic nature. In our research it has turned out that due to business constraints we were unable to 
use any of these monitoring tools.

1.2. Business reality

Our case study involves a large mainframe production environment comprising 246 Cobol systems which propel an 
organization operating in the financial sector. The underlying source code contains 23,004 Cobol programs with over 19.7 
millions of physical lines of code. Approximately 25% of the programs interacts with DB2. The portfolio spans decades with 
the oldest program dating back to 1967. Some programs, written in the 70s, are still being altered and used in production. 
The development environment for this portfolio resembles a technology melting pot as it is highly diversified. The code 
is quite diverse. Some is hand written while at least five different code generators were also used, all compiled using 
four different compilers. These characteristics clearly exhibit that executives deal with a complex IT entity. And, assuring 
operational risk management in such a context is a non-trivial task.

The portfolio serves millions of clients worldwide in various domains including retail, investment and corporate services. 
The portfolio is business critical; if any of the 264 systems fail then the business might not be able to carry on. The appli-
cations must meet stringent up-time and performance requirements. Any action that might endanger operational continuity 
is unacceptable. Alterations to the production environment are naturally possible but are avoided unless they are strictly 
necessary. Other than operational risk the managers must also bear in mind a large effort involved, for instance, in testing, 
validating and releasing. And, while cost cutting is of high importance the requirement for properly functioning software 
takes precedence.

Constraints Extending efforts to enable portfolio-wide control of CPU resource usage must be fit into the reality in which 
this business operates. In this context we faced a number of constraints of which two were essential for our choices. One 
being of a contractual nature. The other concerning operational risk.

The IT-portfolio is maintained by a third party. As a result the organization did not have direct access to the mainframe 
itself. Gaining access to the machines turned out to be far from trivial under the existing outsourcing agreement. Only a 
small group of dedicated people from the contractor side had access. Such setup was put in place to allow the contrac-
tor almost unrestricted control over the mainframe and enable fulfilling strict conditions stipulated by the service level 
agreements. In these circumstances we were able to obtain off-line access to mainframe usage reports and source code. 
Particularly, we had data on the CPU usage consumption in the IMS-DB2 production environment, and the source code, that 
is it.

Moreover, in this particular portfolio small time delays potentially can have a large impact on the continuity of business 
operations. In the 246 systems hard coded abnormal terminations of transactions (so called ABENDs) were implemented if 
certain database operations took too long to operate, like an AICA ABEND. Within this company a very small adaptation of 
the system time immediately created havoc and led many transactions to be canceled. On one occasion when an engineer set 
the system time slightly back because of detected deviations between real and system time the hard coded resets fired. Since 
applying profiling tools might have influence on performance it can also trigger these hard coded resets erroneously. Not 
a single IT-executive within the firm wanted to take such risks given the significant problems the system time adjustment 
incident caused.

Naturally, to improve CPU resource consumption one must resort to conducting some sort of measurements. One possi-
bility is to instrument source code with debugging lines to enable, for instance, recording the execution times of particular 
actions. And, use the obtained measurements to determine which code fragments are likely to be CPU intensive. Obviously, 
such an endeavor could work if we dealt with several programs still in development but it becomes completely unrealistic 
for an operational portfolio of 246 systems. By doing so we would have been taking an unknown risk for the produc-
tion environment. Furthermore, there is a prohibitively high cost involved. In [46] the authors discuss the cost realities of 
large scale software modifications. Simple single-site releases of business-critical systems easily cost 20 person days, which 
amounts to 20,000 USD when you take a daily fully burdened rate of 1000 USD. So a release of the 246 systems portfo-
lio, let alone any code changes, can cost 4,920,000 USD (246 · 20 · 1000 = 4,920,000). Clearly such costs are intolerable to 
executives especially when considering a cost-reduction project at low-risk.

In our research we had the opportunity to analyze a portfolio of 246 applications on top of which a large financial 
institution operates. Changing the code was an evolutionary process: as soon as one of the 246 systems was due for main-
tenance, also the performance issues were taken into account. Exceptions were candidates that posed serious performance 
issues. The idea of automated changes and a big bang of recompiling, installing and testing 246 systems simultaneously is 
hugely expensive and risky whereas our approach was low-risk, low-impact and evolutionary.

Moreover, our case study focuses on online transactions of the DB2 systems. These types of workloads were identified 
by our customer as crucial in handling day to day operations. It was indispensable for these transactions to complete 
in reasonable times to assure a manageable load on the servers and, far more important, to cater for an adequate user 
experience. The client admitted that apart from these workloads the IT department also did oversee a large collection of 
batch programs. In particular, computationally expensive SQL queries used in the data warehousing context were mentioned. 
Batch programs, however, were not identified by the managers as bearing significant business concerns at the time of our 
case study.
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Summarizing, in our setting any approach that influences the performance of the applications was out of the question. 
This is not only due to the hard coded ABENDs that are present but also due to the effort relating to monitoring the 
execution behavior in such a large IT entity. Clearly, usage patterns of the 246 systems change and in order to monitor them 
one would need to deploy profiling tools or enable detailed logging (e.g. collecting specialized SMF records). Such actions 
might contribute to lowering performance and increase usage costs as a result of extra CPU load. So observing the behavior 
of systems using standard means bears the risk of not being easily able to cover the entire portfolio.

1.3. Goal of the paper

The paper focuses on the analysis of a large software portfolio from the perspective of lowering operating costs through 
optimization of the underlying source code. In this work we present findings from our analysis of the business which relies 
on the software, analysis of the source code base, and also analysis of the work carried out by a third party vendor which 
involved optimization of the DB2 related code with the objective of reducing operating costs.

The goal of this paper is to show how our work led to creating a set of techniques for uncovering SQL source code inef-
ficiencies which can be applied beyond our studied context to a broader set of IT organizations. Specifically, the objectives 
are to produce a set of techniques that provide:

– Environmental Isolation – The techniques for uncovering SQL source code inefficiencies can run in an analysis environ-
ment (the hardware/software where the analysis is carried out) that is physically separate from the target or production 
environment (the hardware/software where the systems under study run). This allows for the identification of deficient 
code without monitoring, changing, or even having access to the target (production) environment.

– Platform Independence – The target and analysis environments are able to run on totally diverse platforms; e.g. different 
hardware types running different operating systems. For example, the target environment could be an IBM zSeries 
mainframe running under z/OS, while the analysis environment is Unix running on an HP server.

– Extensibility – The techniques are applicable to any SQL based DBMS, running under any operating system, on any 
hardware. This means that the techniques work equally well analyzing SQL code written for DB2, Oracle, SQL Server, 
etc.

1.4. A light-weight approach

In this paper we present an approach that gives executives an option to plan a source code improvement project without 
having to engage many resources and take unnecessary risks. For instance, in the investigated industrial portfolio we found 
a relatively small number of source files which were likely to be responsible for higher than necessary CPU resource con-
sumption. In fact, these programs constituted approximately 0.5% of all the programs in the portfolio. And, we found these 
in a single day by combining best practices for DB2, static code analyses, and historical mainframe usage data.

As it turned out our light-weight approach pinpointed the same hot spots for SQL improvements which were identified 
in an earlier small-scale pilot SQL-tuning project. The pilot encompassed some selected applications supporting operations 
of a single business unit. It was executed by an expert team specializing in SQL code performance improvements. The 
longitudinal data showed reduction of 9.8% in annual MIPS related costs for the optimized part of the portfolio. Due to the 
sensitive nature of the data we dealt with we cannot provide any monetary figures that characterize cost savings resulting 
from this project, or any other costs involved in operating the studied mainframe. According to the management the value 
of the estimated savings significantly outweighs the cost of the project.

Since the pilot showed large cost reduction potential it was decided to scale up the SQL related performance improve-
ments to the portfolio level. Executives were convinced that expanding the approach used in the pilot on a much larger 
portion of the portfolio could imperil the business operations. Therefore, we designed our approach. Our proposition in-
corporates heuristics for possibly inefficient SQL expressions. We discuss the set of heuristics we proposed and present the 
results of applying these across the entire portfolio. Moreover, the input from the small-scale SQL-tuning pilot gave us details 
concerning the actual code changes and their effect on the CPU consumption. We discuss the inefficient code identified by 
the expert team and the improvements they introduced. We present the results of applying our approach to a much larger 
portion of the portfolio which span across multiple business units. We analyzed two scenarios for code improvements that 
were determined on the basis of our approach. Based on the data from the small-scale SQL-tuning pilot we estimated the 
possible effects on the CPU consumption for both scenarios. Our approach turned out to be fully transparent for business 
managers; even those with no deep IT background. After writing this paper we found out that our proposition is being 
applied by others in the industry [21].

In our approach we rely on finding opportunities for improving applications’ source code so that CPU usage can be 
strongly decreased. CPU usage is a major component of mainframe costs, however, it is not the only component. IT savings 
are only real if CPU cost reduction techniques are not eclipsed by increases in other resource consumers such as disk space, 
I/O, journaling, logging, back-ups and even human activities. For example, suppose you reduce the CPU cycles by eliminating 
ORDER BY clause in some SQL query at the cost of adding an index. This requires physical I/Os and disk storage. Although 
it is typical that CPU costs are higher than storage costs, trade-offs of that sort need to be taken into account and evaluated 
on case by case basis to assure net savings for IT. Therefore, in any code optimization project based on our approach it is 
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advised to consider broader implications so that code alterations have a net positive effect on the overall IT costs. Of course, 
the actual changes are to be carried out by specialists who take other aspects into consideration, as well.

The approach we present has two advantages. The first advantage is that the analysis does not have to run in the same or 
similar environment as the production system. Let us take as an example a target environment of an IBM zSeries mainframe, 
running z/OS and DB2 and an analysis environment of an HP server running Unix or almost anything else. The advantage 
here is that performing an analysis on a laptop rather than an IBM mainframe is considerably cheaper and, given usage 
constraints, probably much faster. The second advantage equally significant is the possibility of using the approach on a 
different target environment. This approach could work whether the target environment is an Oracle application running on 
an HP server or an SQL Server application running on a Dell computer. The bottom line is that our approach can be used 
on virtually any SQL based application regardless of underlying hardware or operating system.

1.5. Related work

There is a vast amount of work devoted to database related software engineering. Here let us mention the work of Chris 
Date [16,15,14], Michael Blaha [8,7,53], Peter Aiken [2] and Kathie Hogshead-Davis [17]. In Europe Jean-Luc Hainaut [18]
and Jean Henrard [28,26,27] have worked on the re-engineering of databases to promote performance.

Software engineers have plenty of resources to reach for when working towards optimal code within DB2 environments. 
IBM alone has a rich collection of technical manuals devoted to writing efficient queries [32,35,30,43,40,34,39,41,33]. There 
are also articles from industry practitioners with recommendations concerning DB2 SQL queries tuning [55,54].

Research devoted to control of CPU resource usage in mainframe environments is essentially conducted in the commercial 
sector. In [12] two factors that impact CPU resource consumption are given: the inefficient applications’ code and recurring 
applications’ failures. We use these findings to steer our work and therefore in this paper we concentrate on an approach 
dealing with code monitoring. Many industry surveys and guidelines are available, for instance, in [10–12,20], and provide 
valuable insights into CPU resource consumption issues relating to DB2. We incorporate this knowledge into the approach 
we propose and, in addition, we share the insights obtained from analysis of the case study.

The financial institution we studied exists in a world of stringent industry performance requirements. It is therefore 
imperative that the approach we develop seamlessly reflects and fits in with their industry standards. In [62] the author 
presents a solution to the problem of time-optimized database queries execution. That university project reached the in-
dustry in the form of a commercially distributed database product, known as MonetDB, to enable delivery of IT-systems 
with improved database response time. Their research focused on speed, ours focused on costs. We, on the other hand, 
address the omnipresent IT management issue of controlling MIPS attributed costs and strive to provide executives with 
management tools to manage those costs. Similarly as in [57] we also investigate an industrial portfolio. Our approach is, in 
fact, fitted into the realities of large organizations. It should be noted that our work reports on a completed and successful 
analysis project. Not only was our proposition developed on top of an exceptionally large case study but also results were 
presented and discussed with the executives.

Application of source code analysis to extract information is omnipresent in the literature. In [46] the authors show how 
source code analysis supports reduction of costs in IT transformation projects. Literature provides examples of its application 
in supporting recovery of software architecture [3] or migration of the IT-portfolio to a service oriented architecture (SOA) 
model [24]. There are also numerous instances of automated software modifications [47,59,58] aided with code analysis. 
In our work we also rely on source code analysis to extract information relevant from the MIPS control perspective. In 
that aspect our approach is similar to a technique for rapid-system understanding presented in [56]. It turned out that 
sophisticated parser technology is not necessary to reach our goals. A lexical approach to analysis is accurate enough for 
our purposes.

1.6. Organization of this paper

This paper is organized as follows: in Section 2 we present CPU usage realities of the mainframe production environment 
which we used as our case study. We provide fact-based argumentation behind focusing on the improvements in the area 
of DB2. In Section 3 we embark on the problem of inefficient usage of SQL language in the source code of the applications. 
We introduce an extraction method for locating potentially inefficient DB2 related code. In Section 4 we show how we 
identify Cobol modules which host the interesting, from the analysis point of view, code fragments. In Section 5 we discuss 
the MIPS-reduction project which was carried out by a DB2 expert team and involved SQL code tuning in the IT-portfolio 
we used as our case study. In Section 6 we present our approach in the setting of the entire IT-portfolio. We apply it to the 
case study and show how to estimate savings from DB2 code improvements. In Section 7 we examine the practical issues 
relating to the implementation of our approach within an organization. In Section 8 we discuss our work in the context 
of vendor management and redundancies in mainframe usage. Finally, in Section 9 we conclude our work and summarize 
findings.

2. MIPS: cost component

Mainframe usage fees constitute a significant component in the overall cost of ownership. The fees are directly linked 
to the application workloads deployed on the mainframe. Measurements of the mainframe usage costs typically involve 
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two terms: MIPS and MSUs. Although mainframe usage measures are colloquially called MIPS, and often used as a rule of 
thumb for cost estimation, the actual measure is expressed by means of MSUs. The two measures function in parallel on 
the mainframe market and constitute input for mainframe usage pricing models.

In this section we first explain the two measures. Next, we discuss transactions as they constitute the prime subject 
of our analyses. And finally, we embark on the analysis of the MSU consumption for the IMS production environment in 
which the MIS applications of the studied IT-portfolio were deployed. We present our findings concerning DB2 usage and 
MSU consumption. We argue that improvements in the interaction between client applications and DB2 have the potential 
to yield savings for the organizations. We also emphasize that DB2 related source code alterations are characterized with 
low-cost and low-risk for the business.

2.1. MIPS and MSU

MIPS was originally used to describe speed of a computer’s processor [45, p. 136]. Since MIPS are dependent on the 
CPU architecture they are hardly useful in comparing the speed of two different CPUs. For instance, multiplication of two 
numbers takes a different number of CPU instructions when performed on particular mainframe and PC processors. For 
this reason some computer engineers jocularly dubbed MIPS a misleading indicators of performance [42,49]. Despite the fact 
that nowadays Misleading Indicator of Performance are somewhat arbitrary figures they still find their application in the 
industry since they play a role in determining usage fees.

MIPS is a measure of processor speed alone and for this reason it has come under fire for its inaccuracy as a measure 
of how well a system performs. How software executes within a mainframe depends not only on the CPU but also on other 
factors, such as memory usage or I/O bandwidth. To embrace these extra factors IBM began licensing its software according 
to MSUs. MSU stands for Million Service Units and expresses the amount of processing work a computer performs in an hour 
which is measured in millions of z/OS service units [45, p. 136], where z/OS is the operating system on IBM mainframes. 
MSU is a synthetic metric which superseded MIPS for its accuracy as it embraced aspects such as hardware configuration, 
memory usage, I/O bandwidth, complexity of the instruction set, etc.

MIPS and MSUs are not independent from each other. Originally, when MSUs were introduced they were comparable to 
MIPS. One MSU was approximately 6 MIPS [45, p. 136]. This relationship has disappeared over time and nowadays MSUs 
hardly track consistent with the MIPS. In fact, if they did there would be no real need for them.

The fact that MIPS is, in principle, a CPU speed measure has led to confusion over its use as a measure for mainframe 
usage. A CA senior vice president, Mark Combs, explains it this way [22]:

MIPS can’t measure the actual consumption of work, while MSUs can. MIPS are also capacity based, meaning that users 
who pay according to MIPS are often paying for capacity they don’t need. With MSUs, users can choose capacity- or 
consumption-based pricing. Shops that run close to 100% utilization most of the time might go with capacity-based 
pricing, while those who run only at 40% most of the time would go with consumption based to save money.

Regardless of the chosen pricing model both MIPS and MSUs have a direct financial implication. For the purpose of our 
study we rely on the fact that either increase in MIPS capacity or accrual of MSUs results in the growth of mainframe usage 
fees which businesses have to include in their operational costs. In our paper we assume the use of the consumption-based 
charging model and interpret the available MSU figures as a measure of consumed MSUs. We will consider reduction in 
MSUs consumed by a particular mainframe executed object as equivalent to the reduction of mainframe usage costs.

2.2. Transactions

A software portfolio is typically partitioned over a number of information systems. Each system implements some func-
tionality which is deemed necessary to support some business operation. To illustrate this, let us consider an IT-portfolio 
supporting operations of a mobile network provider. Let one of the IT supported business operations be registration of the 
duration of a phone call made by a particular subscriber. Additionally, let us assume that for implementation of this opera-
tion two systems are needed: one providing functionality to handle client data, and another one enabling interaction with 
the technical layer of the mobile network infrastructure such that calls can be reported. Implementation of a call registration 
operation involves a number of atomic computer operations each of which is accomplished through functionality provided 
by one of the information systems available in the portfolio. One would refer to such a bundle of computer operations 
serving a particular purpose, which is implemented through the available IT infrastructure, as a transaction.

In the portfolio we investigated we dealt with 246 Cobol systems. From discussion with the experts it became known 
to us that IT-systems in the portfolio follow the SOA model. In a portfolio which adheres to the SOA model certain systems 
are meant to provide functionality in a form of shared services. These services are then used by other systems in order to 
implement a specific operation, such as a transaction. On mainframes transactions can be instantiated through, so called, IMS 
transactions. IMS stands for Information Management System and is both a transaction manager and a database manager 
for z/OS [19]. The system is manufactured by IBM and has been used in the industry since 1969. Mainframe usage resulting 
from code execution is reported through MSUs. In order to keep track of the processor usage for each execution of a 
transaction the number of consumed MSUs is measured and reported. A collection of these reports provides a repository 
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Fig. 1. Time series of the average weekly ratios of MSUs to transaction volumes for two groups of transactions: those which trigger database calls and those 
which do not.

which enables embracing the overall MSU consumption incurred by the IMS transactions in the IT-portfolio. We used this 
pool of data as one of the essential inputs in our analyses.

2.3. Database impact

The database is one of the components of the environment in which information systems operate. For mainframe en-
vironments the most frequently encountered database engine is DB2. DB2 is IBM’s software product which belongs to a 
family of relational database management systems. DB2 frequently refers to the DB2 Enterprise Server Edition which in the 
mainframe environments typically runs on z/OS servers. Although DB2 was initially introduced for mainframes [19], it has 
gained wider popularity since its implementation also exist for personal computers (Express-C edition) [29].

In the context of MIS systems most written programs are client applications for DB2. The SQL language is the common 
medium to access the database. Interaction with DB2 is, in particular, part of the IMS transactions. This is due to one of 
the characteristics of IMS transactions. They aggregate computer operations to accomplish some complex task. And, a DB2 
operation is one of the many possible operations performed on the mainframes. DB2 utilization is known for being a 
resource intensive operation. Given that the use of CPU cycles has effect on the associated mainframe usage fees the SQL 
code run on the mainframes should be, in principle, optimized towards CPU cycles utilization.

MSU consumption In order to get insight into how the database usage participates in the MSU consumption in the studied 
IMS production environment we analyzed the available mainframe usage reports. We had at our disposal characteristics 
concerning the top 100 most executed IMS transactions. The characteristics formed time series in which observations were 
measured on a weekly basis for each top-ranking transaction. For each reported transaction the following data was available: 
the total number of executions (volume), the total number of consumed MSUs and database calls made. The time series 
covered a consecutive period of 37 weeks.

For our analysis we distinguished two groups of IMS transactions: those which trigger calls to the database and those 
which do not. We carried out a comparison of the average cost of executing the IMS transactions belonging to the two 
groups. We expressed the cost of execution as the average number of MSUs consumed per transaction measured on a 
weekly basis. In order to make a clear cut between the transactions which make database calls and those which do not we 
used the numbers of database calls reported for each transaction. We then computed the average weekly ratios of MSUs to 
transaction volumes for both groups. This way we formed two time series which we analyzed.

In Fig. 1 we present two plots of the time series. The horizontal axis is used to express time in weeks. Each tick indicates 
a week number. The vertical axis is used to present the ratios of the average weekly MSUs to transaction volumes. The range 
of values covered by the vertical axis is restricted to the values present in both of the time series. The solid line is a plot of 
the time series constructed of the ratios for IMS transactions which made calls to the database. The dashed line shows the 
ratios for transactions which did not make calls to the database.

Analysis of the ratios reveals that the average number of MSUs required to execute an IMS transaction differs between 
the groups. In Fig. 1 this fact is clearly visible by the relative position of the time series plots. Nearly during the entire time 
the ratios expressing the average MSU consumption by the transactions not using the database are below the other ratios. 
Only between weeks 31 and 33 we see that these ratios are above those expressing the average MSU consumption by the 
database using transactions. We found this case interesting and examined closer the MSU figures for rankings covering the 
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Fig. 2. Distribution of the percentages of the total weekly aggregated transaction volumes of the database interacting IMS transactions.

period between weeks 31 and 33. Our analysis revealed one IMS transaction which had an exceptionally higher than usual 
MSU consumption reported in those weeks. For this transaction the average weekly number of MSUs consumed in the period 
from week 1 until 30 was approximately 1299.227. In weeks 31 through 33 the reported consumptions were 5327.130, 
8448.990, and 7022.570, respectively. In each case these values were at least four times the average usage between weeks 1 
and 30. We did not have enough information to investigate why the temporary peaks occurred. We suspect that one reason 
could be some non-optimal change to the transaction’s implementation and its migration to the production environment. 
We noticed that the transaction did not occur in the top 100 rankings for the weeks 35 and 36. This might suggest its 
removal from the production environment.

We compared how the average weekly MSU consumption by the IMS transactions from the two groups differs. We took 
the long-term average of the ratios for both of the time series. For the transactions which trigger calls to the database the 
average was 0.0002573. For the transactions which do not, 0.0001914. After we removed the outlier, the transaction which 
caused the peak between weeks 31 and 33, the average number of MSUs consumed to process an IMS transaction which 
does not trigger calls to the database came down to 0.000158. These calculations clearly show that on the average the 
database interacting transactions are more MSU intensive than those which do not interact with the database. Considering 
the computed averages we observe a difference by nearly as much as 63%.

Database importance The single fact that IMS transactions that perform database calls use more resources than transactions 
that do not is in itself not a proof that calls to the database are responsible for the major resource usage. While it is likely a 
more thorough analysis of the proportion of MSUs consumed as a result of executing the Cobol’s object code and the MSUs 
related to DB2 operations within the transactions is necessary. Otherwise, there are a number of other possibilities, for 
example, it could be the case that the database-involving transactions are simply more complicated than the non-database 
transactions. Nevertheless, as it turned out the importance of database in the production environment is significant. To 
investigate this we analyzed the proportion of the database interacting transactions volume in time. Again, we considered 
the data from the weekly top 100 rankings. For each week we totaled the reported aggregate transaction volumes of those 
transactions which triggered calls to the database. We then computed the percentages of the total transaction volumes in 
each week.

In Fig. 2 we present the distribution of the percentages of the total weekly aggregated transaction volumes of the 
database interacting IMS transactions. We restricted the range of values presented on the horizontal axis to 60% through 
90% in order to clearly present the distributions. We did not find any percentages in the data sample outside this range. As 
we see in the histogram the bars are concentrated to the middle part of the plot. This clearly exhibits that the transactions 
interacting with the database occupy the majority of the top executed transactions. A great portion of the core business 
applications which code we inspected are used to handle customer data which are stored in the database. So, our findings 
are in line with that.

2.4. CPU usage sources

There are all kinds of CPU usage sources. For instance, screen manipulations, algorithms characterized by high computa-
tional complexity, expensive database queries, etc. When facing the task of reducing CPU resource consumption any of these 
elements is a potential candidate for optimization. However, from the perspective of maintenance of a business critical port-
folio it is unlikely that an executive is interested in a solution that could imperil operations of a functioning IT-portfolio. It 
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is commonly desired that an approach embodies two properties: low-risk and low-cost. By choosing to improve interaction 
with DB2 at source code level it is possible to deliver these two properties.

Improvements done in the area of DB2 are low-risk. By low-risk improvements we mean software maintenance actions 
which do not introduce significant changes to the IT-portfolio. Especially with regard to source code. Our approach does not 
encourage a major overhaul. As we will show in most cases minor modifications in a few lines of code or configuration 
changes in the database are sufficient to achieve changes in the MSU consumption. This small scope of alterations is partly 
due to the fact that DB2 engine provides a wide range of mechanisms which allow for affecting the performance of execution 
of the arriving database requests. Also, the SQL language allows for semantic equivalence. This opens vast possibilities to 
seek for other, potentially more efficient, expressions in the source code than the existing code. Due to the fact that database 
execution performance improvement deals with relatively small changes usually little labor is required. This makes the DB2 
related improvements low-cost approach to reducing CPU resource consumption.

Based on the analyzed mainframe usage data we have found evidence that in terms of the average number of MSUs 
consumed the database interacting IMS transactions cost more than other transactions. Also, these transactions are among 
those most commonly executed. These observations suggest that by embarking on improvements of the DB2 interacting 
transactions we address a meaningful cost component on the mainframe.

3. DB2 bottlenecks

In this section we focus on communication between DB2 and the client applications. First, we present what factors 
impact performance of DB2. In particular, we concentrate our attention on the way SQL code is written. Next, we show 
cases of inefficient SQL constructs and propose a set of source code checking rules. The rules are syntax based and allow for 
isolation of code fragments which bear the potential to hamper the CPU when processed by the database engine. Finally, 
we discuss how we implemented the source code checking process to facilitate the analysis.

3.1. Performance

Performance of DB2 depends on various factors such as index definitions, access paths, or query structure, to name a 
few. A DB2 database engine provides administrators and programmers with a number of facilities which allow to influence 
these factors [35]. However, these facilities require accessing the production environment. When approaching reduction of 
CPU resource consumption from source code perspective it becomes necessary to examine the SQL code. Therefore in our 
approach we employ DB2 code analysis to seek for possible improvement opportunities.

The way one writes SQL code has a potential to significantly impact performance of execution of requests sent to DB2. 
This phenomenon is not different from how performance of the execution of programs written in other programming 
languages is affected by coding style. Virtually any code fragment is inevitably destined to perform inefficiently when 
inappropriate language constructs or algorithms are used. Writing efficient SQL code requires extensive experience from 
the programmers, solid knowledge of the language constructs, and also familiarity with the mechanics inside a database 
engine. In most cases following recommendations of experienced DB2 programmers and fundamental SQL programming 
guidelines allows obtaining code which runs efficiently. Even though it is the functional code that the consumers are after 
these days code efficiency cannot be neglected. This is particularly important in the face of growing complexities of queries 
encountered in, for instance, data warehousing applications.

For business owners inefficient SQL code is highly undesired in the IT-portfolio at least from one perspective; it hampers 
the speed in which operations are accomplished for the customers. And, of course, in case of mainframe environments it 
costs money since it wastes CPU resources. Even though static analysis of the programming constructs used in SQL is not 
sufficient to conclude whether the code is inefficient, it certainly leads to finding code which has the potential of being 
inefficient. Such code is a good candidate for an in-depth analysis, and if determined as inefficient, for optimization. SQL 
code optimizations involve, for instance, rewriting, changing the manner in which it is executed, its removal in case it 
turns out to be redundant, or reconfiguration of the database so that the time needed to execute the query is improved. 
Application of any of these depends on particular instances of the SQL code. The bottom line is that these instances must 
first be found.

3.2. Playground

We concentrate on the analysis of the use of the SQL language in the source code of the software applications. SQL 
facilitates support for various data manipulation tasks. It provides for a whole range of operations. For instance, creation of 
database objects, maintenance and security, or manipulation of data within the objects. SQL’s syntax is based on statements. 
The statements are commonly categorized according to the type of function they perform. Normally the following three 
categories of the language are distinguished: Data Definition Language (DDL), Data Manipulation Language (DML), and Data 
Control Language (DCL) [52, p. 18]. Statements classified as DDL allow to create, modify or delete database objects. The 
DML statements allow for manipulation of the data within objects through operations such as insertion, deletion, update or 
retrieval. The last subset, DCL, allows controlling who, among the database users, has rights to perform specific operations.
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Table 1
Examples of the types of SQL statements encountered in the IT-portfolio used as a case study.

Statement category Statement example Instances Percentages

DCL GRANT 0 0.00%
DCL REVOKE 0 0.00%
DDL CREATE 0 0.00%
DDL DROP 0 0.00%
DML SELECT 14 387 68.91%
DML DELETE 1948 9.33%
DML INSERT 2147 10.28%
DML UPDATE 2397 11.48%

Apart from those major three subsets there also exist auxiliary statements which do not fall into any of the above 
categories. An example of such a statement is the SET statement of DB2 which assigns variables with values. Although this 
statement is typically used inside a body of an SQL’s stored procedure it is also encountered used independently. In such 
cases it typically serves as a means to copy values of the database registers into a program’s local variables, also known in 
the context of embedded SQL as host variables.

The division of SQL into subclasses provides a way to map specific subsets of statements to programmers’ tasks. For 
instance, a programmer writing client applications is very likely to limit the scope of SQL statements to the DML group. 
From the perspective of business applications, which by their nature are clients of the database, the DML subset constitutes 
the great majority of SQL’s vocabulary used in the programs. In fact, the internal documentation for SQL coding standards, 
which belongs to the organization that provided us with the data, states that only usage of the SELECT, INSERT, DELETE 
and UPDATE statements is permitted in the code embedded in Cobol programs.

In Table 1 we give examples of the SQL statements for each listed subset and, whenever available, provide numbers of 
their occurrences we found in the organization’s portfolio. In the DML category we list statements which allow querying 
(SELECT), adding (INSERT), removing (DELETE) or updating (UPDATE) the data. Interestingly, the SELECT statement is 
generally claimed to be the most frequently used SQL statement [50]. This claim turns out to be true at least for the source 
code we studied. Occurrences of the SELECT statement account for almost 69% of all DML statements.

In the DDL category we show two examples of statements: CREATE and DROP. These statements allow for creation and 
deletion of database objects such as tables, indexes, users, and others, respectively. They hardly ever occur inside the code 
of client applications since manipulation of database objects is taken care of normally during the database setup process, or 
on some other occasions. In fact, we found no occurrences of these statements in the IT-portfolio under study.

A similar situation holds for the DCL subset of statements. In Table 1 we give examples of two such statements: GRANT 
and REVOKE. They are used to grant rights to users to perform specific operations on database objects or to revoke these 
rights, respectively. Due to the nature of the operations these statements perform they are used occasionally by database 
administrators.

In our analysis we concentrate on the SQL code which is embedded in the applications’ source code. In particular, we 
primarily focus on investigating the SELECT statements. While it is possible to formulate inefficiency heuristics for other 
types of statements, the SELECT statement offers a highly desired feature. It is characterized by a complex structure which 
offers vast capabilities to code queries in numerous ways so that semantic equivalence can be preserved. Obviously, this 
property is very much sought after from the code optimization perspective. Other than that, the statement is commonly 
addressed by the DB2 experts community for inefficiency related problems. And, as it turned out, it is the most frequently 
occurring statement in the studied portfolio. In SQL code analysis we also concentrate on prohibitive use of SQL code in 
applications. Let us recall that according to the company’s proprietary coding standards the embedded SQL is meant to be 
limited to DML type of statements. Therefore, when formulating characteristics of the possibly inefficient SQL constructs we 
look also at these deviations.

3.3. Potentially inefficient constructs

Given an SQL statement at hand we want to analyze its structure and determine whether it carries any signs of being 
potentially expensive for DB2 processing. Let us emphasize that on the basis of the SQL code we are only able to detect 
signs of potential inefficiency. Thorough analysis of the actual environment in which the statement is executed allows 
to determine whether the statement is indeed running inefficiently. For instance, despite the fact that the operation of 
sorting datasets is in general deemed to be expensive its execution is likely to go unnoticed when performed on a data set 
comprising a hundred of records. However, it is expected to take considerable amount of time when performed on a data set 
with over one million records. Nevertheless, analysis of SQL code delivers information which when considered at the level 
of an IT-portfolio enables a low-cost and reasonably accurate assessment of the amount of code suitable for improvements.

In order to exemplify how analysis of an SQL’s statement code brings us to finding potentially inefficient constructs, let 
us consider a general coding guideline that recommends avoiding the lack of restriction on the columns which are to be 
fetched as a result of processing a SELECT statement passed to DB2 [35, p. 215]. On the level of an SQL query’s code lack 
of restriction on the columns is implemented by the use of the * character in the SELECT clause of the SELECT statement.
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Table 2
Programming constructs potentially leading to inefficient use of hardware resources during DB2 processing.

Construct ID Meaning

AGGF Aggregate function present in a query. Under the AGGF identifier all aggregate functions are included except for STDDEV, 
STDDEV_SAMP, VARIANCE, and VARIANCE_SAMP.

AGGF2 SQL query contains one of the following aggregate functions: STDDEV, STDDEV_SAMP, VARIANCE, and VARIANCE_SAMP.
COBF SQL statement is used to load to a host variable a value obtained from one of the database’s special registers.
DIST The DISTINCT operator is present in a query.
GROUP Query contains GROUP BY operator.
JOINx Join operation present in a query. The subscript x is used to indicate the number of tables joined.
NIN NOT IN construction applied to a sub-query.
NWHR Missing WHERE clause in a query.
ORDER Query contains ORDER BY operator.
UNION UNION operator is used.
UNSEL No restriction on the column names in the SELECT clause of a SELECT statement.
WHREx WHERE clause contains a predicate which contains host variables and constants only. The x provides the total number of 

such predicates in the WHERE clause.
WHRHx WHERE clause contains a predicate which contains host variables and column names. The x provides the total number of 

such predicates in the WHERE clause.

Let us now consider two semantically identical programs with SELECT statements where one carries an unrestricted 
and the other a restricted SELECT clause. Semantic equivalence in SQL is possible since as a high level language it enables 
specification of relational expressions in syntactically different but semantically equivalent ways. In consequence of this a 
query that obtains the required data from the database has possibly many forms. As an illustration let us assume that 
there exists a DB2 table called PEOPLE which consists of 50 columns, among which two are named FNAME and LNAME. 
Suppose also that the programs require for processing a list of all pairs of the FNAME and LNAME that exist in the table. 
The following are two possible SQL query candidates which allow fetching the required data.

1. SELECT * FROM PEOPLE

2. SELECT FNAME, LNAME FROM PEOPLE

In the first query the SELECT clause contains the * character. Execution of the query results in fetching all rows from 
the table with all possible columns defined in the table PEOPLE. In a real-life scenario this table possibly contains hundreds 
of thousands of rows (e.g. a table with names of clients of a health insurance company). In the second query instead of 
using the * character the needed column names are listed explicitly between the keywords SELECT and FROM, as per SQL 
language convention. In this case the database will only return the specified values. Generally, restricting what columns 
are to be fetched during query execution allows DB2 to retrieve only the needed data and thus constraining usage of the 
hardware resources to the necessary demand. In a real-life scenario the second query is expected to consume less resources 
than the first one. And, in case of execution on a mainframe be more efficient cost-wise.

There are more syntax based signs in the SQL statements which allow classifying them as potentially expensive. We 
used the organization’s proprietary guideline on internal SQL coding standards, IBM’s recommendations concerning DB2 
SQL queries tuning, experts recommendations, and also our experience in order to identify practices which are known to 
have a negative effect on DB2 performance [32,35,55,54]. Based on these sources of knowledge we determined a set of 
syntactic rules which point at potentially inefficient SQL statements. The point of the rules was to have the means to check 
if the coding recommendations are followed. Namely, for a given SQL statement some recommendation is not followed if we 
recognize that the statement’s code complies with some syntactic rule. For instance, the aforementioned recommendation 
concerning explicit listing of the column names which are to be fetched by a query is violated if in the code of the 
corresponding SELECT statement there exists a * character in the SELECT clause.

Each syntactic rule is associated with a programming construct. For each such programming construct we assigned 
an identifier in order to allow for simple reference throughout the paper. We first summarize the selected programming 
constructs in Table 2, and then treat them in greater detail.

Table 2 presents the list of SQL programming constructs which potentially lead to inefficient use of hardware resources 
when sent to DB2 for processing. In the first column we list programming constructs identifiers. In the second column we 
explain how each selected programming construct is detectable at the code level of an SQL statement.

The first two programming constructs listed are AGGF and AGGF2. Both of them are related to the presence of aggregate 
functions in an SQL query. In SQL, aggregate functions constitute a special category of functions that return a single value 
which is calculated from values present in a selected table column. SQL provides a number of those functions. The actual 
set differs depending on the version of the database engine. For instance, the SQL reference manual for DB2 9 for z/OS lists 
the following functions as aggregate: AVG, COUNT, COUNT_BIG, COVARIANCE, COVARIANCE_SAMP, MAX, MIN, STDDEV, 
STDDEV_SAMP, SUM, VARIANCE, VARIANCE_SAMP and XMLAGG [33, p. 252]. Previous versions of DB2 support smaller 
subsets of these functions [43,37]. Evaluation of a query containing an aggregate function is deemed costly if the aggregate 
function is not used in a manner which enables DB2 to carry out processing efficiently. For most of the functions there 
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exist conditions that must be satisfied to allow for evaluation with minimal processing overhead [32, p. 753]. Based on 
the SQL manual we split the aggregate functions into two groups, namely those functions for which there exist conditions 
which when satisfied enable DB2 to evaluate efficiently and those for which evaluation is costly regardless of the way 
the aggregate functions are used. The latter group is formed by the four functions: STDDEV, STDDEV_SAMP, VARIANCE, 
VARIANCE_SAMP, and identified by AGGF2. For the remaining functions, identified by AGGF, there exist conditions under 
which cost-effective evaluation is feasible. Since verification on the syntax level whether the conditions are met requires not 
only full parsing of a query but also additional information on the tables and defined indexes for our purposes we restrict 
code analysis only to reporting existence of an aggregate function in a query.

Another programming construct we list in Table 2 is COBF. COBF refers to the redundant use of SQL in Cobol pro-
grams. By redundant use we mean those inclusions of the SQL code which are easily replaceable by semantically equivalent 
sets of instructions written in Cobol. An example of it is a situation when SQL code is used to access the DB2’s special 
registers with the pure intention of copying their values into host variables of the Cobol program. DB2 provides storage 
areas, referred to as special registers, which are defined for an application process by the database manager. These reg-
isters are used to store various information, such as current time, date, timezone, etc., which can be referenced inside 
SQL statements [37, p. 101]. Four of these special registers involve information which is retrievable through an invocation 
of the built-in, or also referred to as intrinsic, Cobol function called CURRENT-DATE. For the following special registers 
CURRENT DATE, CURRENT TIME, CURRENT TIMESTAMP and CURRENT TIMEZONE the stored values are retrievable 
through that function. Let us recall that in the studied portfolio occurrences of non-DML statements were not permitted. 
From the CPU resource usage perspective while it is not clear that replacing any SQL code by semantically equivalent Cobol 
code guarantees reduction in CPU resources usage it is still worth while considering such code alteration. Especially, in cases 
when relatively non-complex operations, such as current date retrieval, are performed. Therefore we chose to include COBF 
construct on the list of possibly inefficient programming constructs.

One of the main CPU intensive database operations is sorting. Sorting is a common operation in data processing. SQL 
provides a number of programming constructs designed to be used as part of the SELECT statement which increase 
the probability that the database will perform sorting at some stage of query’s execution. An obvious candidate is the 
ORDER BY clause which literally tells DB2 to perform sorting of the result set according to columns specified as parame-
ters. Therefore detection of the presence of the ORDER BY clause is an immediate signal that there might exist a possibly 
high load on the CPU. Typically, elimination of sorting, if possible, is attainable through adequate use of indexes. Although, 
this move is likely to reduce load on the CPU it does affect data storage costs which after all might eclipse savings resulting 
from MSU consumption. This fact should be kept in mind when introducing code changes. Whereas the ORDER BY con-
struct is the explicit way to tell the database that sorting is required there are also other constructs which implicitly increase 
the likelihood of sorting. These constructs are: UNION, DISTINCT, GROUP BY and the join operation [55,54,35]. In Table 2
they are labeled by UNION, DIST, GROUP, and JOINx , respectively. The UNION construct is a set sum operator. Whenever 
DB2 makes a union of two result sets it must eliminate duplicates. This is where sorting may occur. Similarly, when the 
DISTINCT construct is present elimination of duplicates takes place. In fact, presence of the SELECT DISTINCT construct 
typically suggests that the query was not written in an optimal manner. This is because the database is told that after the 
rows have been fetched duplicate rows must be removed. According to [35, p. 584] the sort operation is also possible for 
the GROUP BY clause, if the join operation is present, or the WHERE clause contains a NOT IN predicate. We report any 
occurrences of the sorting related constructs encountered in queries. In case of the join operation we additionally report the 
total number of tables involved. The number serves as the subscript in the JOINx identifier.

The WHERE clause is a very important component of the SELECT statement. In principle, each SQL query should be 
restricted by the WHERE clause to limit the number of rows in the result set. For this reason we check for the presence of 
this clause and label any SQL query with NWHR in case the WHERE clause is missing. Whenever the WHERE clause is used 
it is important that the predicates it contains are structured and used in an manner which enables DB2 to evaluate them 
efficiently. There are a number of conditions which govern the structuring of the content of the WHERE clause. Most of 
them require an in-depth analysis of how the predicates are used and structured inside the WHERE clause, the configuration 
of the database, and also require considerations as to the data to which the query is applied to.

We focus on several checks in the WHERE clause which already give an indication of the potential overhead. One com-
monly addressed issue is the ordering and the use of indexes for predicates which contain host variables. In [55,54] the 
interested reader will find details concerning this subject. In order to capture the opportunity for improvements in that 
respect we check the WHERE clauses for the presence of predicates which contain host variables and each time the total 
number of those predicates exceeds one we report it with the WHRHx identifier. The subscript is used to specify the number 
of occurrences of such predicates in the query.

Similarly as COBF, WHREx refers to potentially redundant invocations of SQL statements. This time we look at those 
predicates in the WHERE clause for which evaluation does not involve references to the database. In order to explain this let 
us consider the following SQL query embedded inside a Cobol program:
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It is a simple SQL query which returns a set of rows with three columns: c1, c2, and c3. The results are obtained from 
table1. The constraint imposed on the result set is given in the WHERE clause through a conjunction of two predicates: 
:HOST-VAR=’Andy’ and c1>100. Obviously, the only situation in which this conjunction is true is when both predicates 
evaluate to true. From the structure of the first predicate we see that its valuation has nothing to do with the values in the 
columns of the table1. The host variable :HOST-VAR is tested for equality against a constant ’Andy’. Only the value 
of the second predicate depends on the table’s content. In this particular case it is possible to avoid invocation of the SQL 
query by rewriting the existing query and changing the way in which it is embedded inside a program. The following is a 
semantically equivalent improvement:

In the rewritten code fragment the WHERE clause from the original query was truncated by removing the
:HOST-VAR=’Andy’ predicate. Also, the new query was wrapped into the Cobol’s IF statement. The removed predi-
cate from the SQL query was used as the predicate for the IF statement. In the new situation the query is passed to DB2 
for processing only when the Cobol’s IF statement predicate evaluates to true. Of course, in the presented example the 
improvement was relatively simple. In real-world SQL statements predicates such as :HOST-VAR=’Andy’ may occur in 
more complex WHERE clauses and their improvements be more sophisticated. Nevertheless, the discussed constructs in the 
WHERE clauses ought to be avoided. The number of occurrences of such constructs within the WHERE clause are reported 
in the subscript of the WHREx identifier.

In Table 2, we also listed the UNSEL construct which corresponds to the use of unrestricted SELECT clause. This con-
struct follows the general recommendation found in [35, p. 215] and was explained earlier in the paper.

3.4. Getting the data

In order to conduct analysis of the SQL code embedded in the source code of a large software portfolio an automated 
process is a necessity. Let us recall that we did not have access to the mainframe and therefore we could not easily rely on 
the facilities offered by z/OS to carry out our analysis. Due to the fact that the source code was made available to us on a 
unix machine we considered the use of tools provided by that platform.

To detect whether an SQL statement contains any of the potentially inefficient SQL constructs listed in Table 2 we must 
examine the SQL code. To accomplish this task there are essentially two venues to consider: parsing or lexical scanning. 
The parsing option embodies SQL parser selection, SQL statements parsing, and slicing through the resulting code to check 
whether the sought after SQL constructs are present. With lexical scanning it is necessary to construct regular expressions 
capable of matching the desired constructs within an SQL statement. Due to the fact that the SQL constructs listed in Table 2
followed simple textual patterns it was sufficient to employ regular expressions to detect them within SQL statements. To 
do this we required a technology that is suited to process efficiently a large volume of source files. Let us recall that we 
dealt with a software portfolio of a large size (23,004 Cobol programs that implement 246 applications). Therefore we opted 
for incorporating Perl. Perl is a programming language (and a tool) primarily meant for text processing [60,61]. In particular, 
it is well suited for a light-weight analysis of the source code. It performs well when processing sheer amounts of data. Perl
contains a strong regular expressions processing engine and therefore it is adequate to accomplish our tasks. In this way we 
allowed for an inexpensive, highly scalable, and simple solution to facilitate our analysis.

Tooling In order to accomplish SQL code analysis we distinguish two phases. First, isolation of the SQL code from the 
applications’ sources. Second, verification of the extracted SQL statements against the presence of the programming con-
structs listed in Table 2. To facilitate these phases we developed a toolset comprising two Perl scripts. To illustrate the low 
complexity of our toolset in Table 3 we provide some of its key characteristics.

In Table 3 we provide characteristics of the developed toolset used to examine the SQL code. In the first column we list 
the scripts by filename and in the second we explain their role. In columns 3 and 4 we provide the total number of lines of 
code and the estimated time it took to develop them, respectively. Clearly the 470 lines of code represent a relatively small 
amount of Perl code. The scripts were delivered in as little as 12 hours. That included design, implementation and testing. 
Our toolset sufficed to obtain the data required for our analysis.
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Table 3
Characteristics of the developed toolset used to examine the SQL code.

Script Role LOC Development time

sql-explorer.pl Used to scan the contents of the Cobol programs and extract 
the embedded SQL code.

121 4 hours

sql-analyzer.pl Used to analyze the extracted SQL code. Particularly, to deter-
mine the presence of the potentially inefficient SQL constructs 
listed in Table 2.

349 8 hours

Total 470 12 hours

Fig. 3. Call-graph of an IMS transaction.

4. Reaching for code

In approaching CPU usage reduction from source code perspective we must reach for relevant source files. In this section 
we elaborate on the demarcation of the applicable source files given essential information on the IMS environment. First, we 
will explain how the mapping between the IMS transactions and their implementation is organized. Next, we discuss the 
process of analyzing Cobol code which leads to the extraction of data required to identify the relevant source files. Finally, 
we present properties found for the source code associated with the IMS transactions from the studied IT-portfolio.

4.1. Implementation of transactions

IMS transactions bound to a particular mainframe environment are typically identified by some name. In the studied 
IT-portfolio the IMS transactions were identified by the names of Cobol programs which served as starting points in the ex-
ecution of transactions. The source code of the Cobol program which identifies a transaction commonly represents, however, 
only a small part of the implementation of the transaction. What is typical for Cobol environments, but also encountered 
in other programming languages, is that a single program invokes a number of other programs when it is executed. Those 
relationships among programs are known as call dependencies. For this reason in order to find source modules which 
implement a given IMS transaction it is essential to carry out a call dependency analysis.

Formally speaking, implementation of an IMS transaction is best represented by a directed graph T IMS = G 〈V, E〉. In the 
context of an IMS transaction V denotes the set of nodes which represent Cobol modules. E denotes the set of edges which 
represent call relations between the Cobol modules. The edges are characterized by a direction since a call relation always 
originates at one Cobol module and leads to another. We refer to the T IMS graph as a call-graph.

Fig. 3 depicts a call-graph of one of the IMS transactions taken from the portfolio under study. The plot of the graph 
was prepared by means of the dot program which is part of the Graphviz package, an open source graph visualization 
software [23]. The data required to feed the dot program to construct the graph originated from our analysis of the 
portfolio’s source code. Nodes in the graph represent Cobol programs. The edges of the graph, depicted by means of arrows 
connecting pairs of different nodes, indicate call dependencies amongst Cobol programs. The direction of the arrow indicates 
how two modules depend on one another. An arrow originating from node A and reaching node B indicates that a Cobol 
program (A) contains a reference to a Cobol program (B). In Fig. 3 the labels conform to a pattern: a letter followed by 
a number, and an optional letter in the end. The letters in the first position are used to associate Cobol modules with 
IT-systems which they implement. The remaining characters are used to identify different modules within the systems. In 
the graph presented in Fig. 3 we see call-graph of an IMS transaction A005. The node A005 represents the Cobol module 
which serves as the starting point in the transaction’s execution. At runtime executables associated with the Cobol modules 
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Fig. 4. Call-graph of one of the most executed IMS transactions found in the studied production environment.

represented by the nodes, which appear in the call-graph, have the potential to be executed. Their execution is governed by 
the program’s logic and the flow of data. By analyzing the labels of the nodes in the call-graph it is also apparent that the 
implementation of the presented IMS transaction spans across 8 different IT-systems.

In a production environment it is not unusual to encounter IMS transactions which involve large numbers of Cobol 
programs. In Fig. 4 we present a call-graph of one of the most executed IMS transactions found in the studied production 
environment. It contains 89 nodes what corresponds to 89 different Cobol programs. The programs are part of 15 IT-systems. 
Given the large number of nodes and relations in the call-graph in Fig. 4 it is obvious that it is infeasible to manually analyze 
the graph. Similarly, as in case of SQL code analysis, in order to determine the relevant Cobol modules we had no choice 
but to rely on automation.

4.2. Portfolio exploration

Reaching for the implementation of the IMS transactions boils down to carrying out source code dependency analysis. In 
our context we operated at the level of a portfolio of applications, in particular, the IMS transactions. The granularity level 
at which we explored the dependencies in the source code was limited to the individual source files. Specifically, we were 
interested in the call relations amongst the Cobol modules.



566 Ł.M. Kwiatkowski, C. Verhoef / Science of Computer Programming 98 (2015) 551–588
In dependency analysis two types of dependencies are distinguished: static and dynamic. Static dependencies between 
two source modules arise when one module contains in its code an explicitly defined call to the other module. Dynamic 
dependencies arise when a reference to a module is established at runtime. On the code level this typically means that the 
control-flow is determined on the basis of the value of some variable.

We restricted ourselves to finding those call relations which are retrievable from source code. With the kind of access 
to the portfolio we had we chose to analyze source code using lexical means. Such approach bears certain limitations. 
In principle, lexical analysis does not allow for the full exploration of dependencies established at runtime. To do this 
one would require construction of a control-flow graph for each studied transaction in order to explore all possible paths 
traversable during execution. Accomplishing this demands, however, access to the environment in which the transactions 
are deployed. Given the constrains under which we operated we chose to limit the relevant source files for SQL analysis to 
those which are retrievable in a lexical manner.

In the studied Cobol sources we distinguish two types of source files: modules and include files. The latter type of files is 
also known as the copybooks. In our call-dependencies exploration we analyzed the code of the Cobol modules and ignored 
the copybooks. In the Cobol programming language copybooks are typically used to store data definitions. Their essential 
role is to allow for simple sharing of the data definitions among various Cobol applications. Given the context of our work 
we are only interested in locating the source files which contain the embedded SQL. Since it is not anticipated from the 
copybooks to contain either the executable Cobol statements or the embedded SQL we decided not to involve them in the 
analysis.

With the taken approach we were able to capture the static code dependencies. Also, we were able to extract certain 
potential dynamic dependencies. This was possible by capturing the names of the variables, whenever they were used in 
the implementation of the calls, and retrieving from the code values of the string constants assigned to them. We treated 
the values as names of the potentially called modules.

Cobol dependencies In the Cobol programming language implementation of call relations is done by means of two state-
ments: CALL and COPY [48]. The CALL statement transfers control from one object program to another within the run 
unit [36]. The statement has an elaborate structure that allows for inclusion of various parameters which affect the way 
the call is made, the result returned, and the exceptions handled. The only mandatory parameter that the CALL statement 
requires is a reference to the program to be called. There are two possibilities to provide this reference, either through a 
literal or an identifier. In the first case the literal is simply the name of another Cobol program which is embraced by the 
’ characters. Cobol calls which are implemented in this way are referred to as static since at the compilation time it is 
known upfront what Cobol programs must be available to run the compiled program. The other way to provide reference 
to a Cobol program in the CALL statement is through an identifier. The identifier holds a name of some variable which is 
defined in the Cobol program. The variable is expected, at a certain point during execution of the program’s code, to hold 
the name of the Cobol program to be called. This type of CALL statement usage implements what is known as a dynamic 
call.

The other statement, COPY, is a library statement that places prewritten text in a Cobol compilation unit [36]. The 
prewritten text is included in a text file (a copybook). The statement begins with the word COPY and ends with a . 
character. In between the COPY keyword and the . character there is room for parameters. Among the parameters that the 
COPY statement takes there is only one which is mandatory and that is the name of the file to be included. The remaining 
parameters affect the way in which the statement is processed, in particular, what transformations are done to the text 
which is included. The effect of processing a COPY statement is that the library text associated with the name is copied 
into the compilation unit, replacing the entire COPY statement, beginning with the word COPY and ending with a period, 
inclusive. COPY statements are typically used to include into Cobol programs predefined data structures. As explained earlier, 
we skip copybooks in the process of retrieval of the embedded SQL.

Implementation We approach extraction of call relations on per Cobol module basis. For each scanned module we obtain 
a set comprising names of the referenced modules. In order to create such a set it is indispensable to analyze the CALL 
statements encountered in the module’s code. By extracting the literals from the CALL statements we obtain the static call 
relations. By extracting the identifiers and analyzing assignments of constants to them we obtain names of the modules 
potentially called. Such retrieval of names provides for approximation of the dynamic call relations. We accomplished the 
extraction of the call relations from Cobol modules by means of a self-developed Perl script.

Code demarcation The extracted data enabled us to associate each Cobol module with a set containing names of the Cobol 
modules participating with it in call relations. For the purpose of our work for each selected IMS transaction we are in-
terested in constructing a set comprising all the modules which form its implementation. By obtaining the set of all call 
relations for all of the modules in the portfolio we have enough data to analyze the call-graph of any transaction in the 
portfolio.

Given a specific IMS transaction we begin analysis of its call-graph by finding the Cobol module which implements the 
starting point for the transaction. Let us refer to this module as the root module. Starting from the root module we explore 
all the reachable modules on the basis of the call relations. This process is called a graph traversal. Graph traversal is 
typically done using Breadth-First Search (BFS) or Depth-First Search (DFS) algorithms [13]. Both algorithms begin at some 
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Table 4
Distribution of the fan-in metric for the set of Cobol modules implementing the top 
100 IMS transactions.

Fan-in [#] Frequency [# of modules] Relative frequency

0 100 0.13021
1 447 0.58203
2 109 0.14193
3 44 0.05729
4 13 0.01693
5 15 0.01953
6..10 20 0.02604
11..15 11 0.01432
16..25 4 0.00521
26..50 1 0.00130
51..55 1 0.00130
56..60 0 0.00000
61..70 1 0.00130
71..76 0 0.00000
77 1 0.00130
78 1 0.00130
>78 0 0.00000

Total 768 1.00000

chosen root node and explore all the reachable nodes. As a result they produce a list of visited nodes. We chose DFS since 
it was best suited for our internal representation of the call relations data. Applying the graph traversal procedure to the 
main modules of the IMS transactions enabled us to obtain the source files relevant for SQL code analysis.

4.3. Code properties

Call dependencies are important when approaching CPU usage reduction through code improvements. Naturally, alter-
ations to the source code of programs which are dependencies for other programs have impact not only on the overall 
functionality but also the execution performance. The impact that changes to an individual source file have on the perfor-
mance depends on the frequency of executions of its object code. When considering a call-graph of an application it is clear 
that improvements done to the code of those modules which object code is frequently executed have higher impact on the 
performance than alterations made to the modules which object code is executed less frequently. For the purpose of select-
ing a possibly small set of modules in which code improvements can allow attaining a significant reduction in CPU usage 
having the information on the number of executions of individual programs is in principle desired. However, obtaining such 
information requires a meticulous analysis of the environment in which the programs are executed. Given the constraints 
under which our approach was applied we had to resort to reaching for an alternative information.

In an effort to obtain some approximation to the information on the frequency of program executions we examined 
call relationships among the source files. This way we were able to get insight into the intensity of reusability of individual 
programs in the implementations of the applications. We captured the intensity by counting the number of references to the 
modules. Clearly, by considering the number of references instead of the number of executions we allow for imprecision. For 
instance, we might deem as a good candidate for optimization a source code module which is referenced by 100 programs 
each of which only executes its object code one time per day. Nevertheless, with our goal to support CPU usage reduction 
through code improvements in a large portfolio this information gives us some indication of importance of the module 
in the execution sequence. And, with the constrains under which our approach is deployed the information is obtainable 
without much effort.

Source code analysis resulted in each module being associated with a set of names of modules which it references. 
Having this data at our disposal we carried out two analyses. The first analysis dealt with investigation of the distribution of 
the number of call relations of the modules. The second dealt with measuring the relationship between the modules altered 
and the number of IMS transactions these alterations affect.

Modules fan-in In the first analysis we studied the distribution of the number of references made to modules. In software 
engineering this number is commonly referred to as fan-in and used as a structural metric. Our analysis of the distribution 
of the fan-in metric was restricted to those Cobol modules which implement the top 100 most executed IMS transactions. 
Following the code demarcation process each IMS transaction was associated with a set of modules. Performing the union 
operation on these sets resulted in isolating 768 distinct Cobol modules. For those modules we determined the fan-in 
metric. The modules counted as references were limited to the pool of the selected modules. This way we inspected the 
distribution of the fan-in within a particular group of IMS transactions.

Table 4 presents the distribution of the fan-in metric for the set of Cobol modules implementing the top 100 IMS 
transactions. In the first column we list the classes for the values of the fan-in metric. In the second and third column we 
provide the frequencies of module occurrences in each class and the relative frequencies, respectively. Out of the 768 Cobol 
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Table 5
Distribution of the modules among the IMS transactions.

IMS transactions [#] Frequency [# of modules] Relative frequency

1 409 0.53255
2 118 0.15365
3 56 0.07292
4 34 0.04427
5 64 0.08333
6 10 0.01302
7 8 0.01042
8 10 0.01302
9 17 0.02214
10 17 0.02214
11..15 13 0.01693
16..20 7 0.00911
21..25 0 0.00000
26..28 2 0.00260
29..31 2 0.00260
32 1 0.00130
>32 0 0.00000

Total 768 1.00000

modules the value of the fan-in was greater or equal to 1 for 668 of them. The remaining 100 modules were the starting 
points for the analyzed IMS transactions with a fan-in value of 0.

The fan-in metric values range from 0 until 78. From Table 4 we see that the frequency decays sharply along with the 
increase in the value of the fan-in metric. We clearly see from the distribution that the vast majority of modules have 
very few incoming call relations. Those with fan-in metric of value one constitute over 58%. We also find outliers. For the 
fan-in metric values greater than 26 we find only 5 modules. The top most referenced module has as many as 78 incoming 
call-relations. The distribution we observe suggests that in the implementation of the top 100 IMS transactions there are 
only very few modules for which code alterations have impact on a large number of other modules.

Change impact Next to the analysis of the distribution of the fan-in metric among the modules which implement the top 
100 IMS transactions we also studied the relationship between the IMS transactions and the modules. Analysis of the fan-in 
metric revealed to us that in the portfolio we find a group of modules in which each is referenced at least once by some 
other module. From the CPU resources usage reduction point of view the following question is relevant: how are these 
modules distributed among the IMS transactions? For each of the 768 modules we counted how many times it occurs in 
implementations of the IMS transactions. We then analyzed the distribution of the obtained counts.

Table 5 presents the distribution of the module counts among the IMS transactions. In the first column we list the classes 
with the numbers of IMS transactions affected through alterations to an individual module. In the second and third column 
we provide the frequencies of module occurrences in each class and the relative frequencies, respectively. The distribution 
characterized in Table 5 resembles the one in Table 4. In this case we observe that the frequency decays along with the 
increase in the number of IMS transactions. We find that nearly half of the modules (46.74%) belong to implementations of 
at least two different IMS transactions. We also find a few outliers. There is one module which when altered has a potential 
to affect as many as 32 IMS transactions.

The facts revealed through this analysis are meaningful from the perspective of planning a code improvement project. In 
a scenario in which the goal is to improve performance of IMS transactions it is generally desired to change a few Cobol 
modules and yet impact as many IMS transactions as possible. Based on the analysis we see that in the portfolio under study 
there exist many opportunities for choosing modules in such a way that multiple IMS transactions get affected. Exploitation 
of such opportunities yields ways to seeking configurations of modules which allow maximizing reduction in CPU resources 
usage while limiting code changes.

5. MIPS-reduction project

A team of experts specializing in optimizations of mainframe related costs carried out an improvement project, dubbed 
as the MIPS-reduction project, on the source code of the IT-portfolio under study. In this section we present our analysis 
of the code changes and the impact of the project on the MSU consumption. The objective of the project was to reduce 
the consumption of MSUs of the selected IMS transactions. The reduction was to be obtained through optimization of the 
DB2 related fragments in the source code which implement functionality of the transactions. The project was evaluated 
by comparing the average ratios of MSUs to transaction volumes before and after the changes were made. Our analysis 
shows that in the course of the project relatively innocent looking changes were made to either the code of the Cobol 
modules involved in the inspected IMS transactions or to the database configuration, e.g. index modification. Nevertheless, 
these changes were sufficient to cause a noticeable decrease in the ratio of MSUs to transactions volume. This effect was 
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Table 6
Characteristics of the portion of the IT-portfolio’s source code covered in the MIPS-reduction 
project.

IMS transactions inspected 6
Cobol modules covered 271
DB2 modules 87
DB2 modules with SQL statements 81
Modules with the potentially inefficient SQL constructs 65
# of instances of the potentially inefficient SQL constructs 424

observable for both the IMS transactions initially selected for optimization and those impacted by the changes through 
interdependencies in the code.

5.1. Project scope

The portion of the IT-portfolio’s source code covered in the project was determined on the basis of the selected IMS 
transactions. The expert’s selection was limited to the pool of IMS transactions which were part of IT services of a particular 
business domain in the organization. In the selection process the primary point of departure was the ranking list of the top 
most executed IMS transactions in the production environment. After restricting the ranking to the relevant IMS transactions 
the choice fell on those transactions for which the average weekly ratio of the MSUs to transactions volume was the highest. 
From this ranking five IMS transactions were selected. The experts also found an additional IMS transaction, which was not 
in the ranking. Due to reported excessive CPU usage and the fact it was part of the business domain, for which the project 
was commissioned, it was selected for code improvements. All of the six selected IMS transactions were interacting with 
the production’s environment DB2 database.

In Table 6 we provide some characteristics of the portion of the IT-portfolio’s source code which was involved in the 
MIPS-reduction project. For the 6 IMS transactions selected for the project we obtained the list of modules which formed 
their implementation. This process boiled down to finding the source files associated with the implementations of the 
transactions. As a result 271 Cobol modules were retrieved. Amid those modules 87 (≈32%) were identified as DB2 modules
(Cobol programs with embedded DB2 code). It means that in each of those modules at least one EXEC SQL code block 
was present. The total number of modules containing SQL statements which were relevant from the MIPS-reduction project 
perspective was 81. This represents approximately 0.35% of all Cobol programs (23,004) in the portfolio’s source code. In the 
remaining 6 modules we found only the SQL’s INCLUDE statements. From the modules relevant for the SQL code analysis 
we isolated 65 in which at least one potentially inefficient SQL construct was identified. The constructs were identified with 
the SQL analysis tool, which is part of our framework. In total 424 instances of the potentially inefficient SQL constructs 
were found. The figure encompasses all the potentially inefficient SQL constructs listed in Table 2.

5.2. Selected modules

The expert team made the selection of the code that underwent improvements in a semi-automated process. The process 
included analysis of the time spent on execution of the DB2 modules involved in the implementation of the selected IMS 
transactions. In the course of this analysis 6 Cobol-DB2 programs were selected. We scanned the selected programs to 
acquire characteristics of the SQL code.

In Table 7 we list in the first column the identifiers of the SQL constructs defined in Table 2. We list only the identifiers 
of those constructs for which at least one instance was found in the inspected code. In the inspected portion of the port-
folio’s source code we found no SQL statement which contained AGGF2, DIST, GROUP, NIN, UNSEL, or UNION programming 
constructs. The next six columns are used to list instances of each construct encountered in the SQL code of the modules 
selected for optimizations. In the last two rows we summarize occurrences of the instances of the potentially inefficient 
programming constructs and the EXEC SQL blocks in the modules. From Table 7 it is clearly visible that in every module 
we find some SQL statement which exhibits the presences of the programming constructs dubbed by us as potentially inef-
ficient. As we will show in all of these modules, except for Module 1, at least one of the recognized programming constructs 
was the direct cause of the triggered improvement actions, which resulted in changes to the code.

5.3. Changes

We now discuss the code changes done to the Cobol modules selected in the MIPS-reduction project by the expert 
team. We present the situation encountered in the code before and after the alterations were made by the expert team. 
For most of the modules we illustrate the code changes by providing code snippets taken from the original modules. For 
confidentiality reasons the variable, column and table names occurring in the snippets were changed.

Module 1 The original module Module 1 contained three SQL queries embedded inside cursors. In these queries we found 
occurrences of the AGGF, JOIN4, ORDER, and a series of WHRHx programming constructs. The only aggregate function found 
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Table 7
Characteristics of the SQL statements found in the DB2-Cobol modules which implement IMS transactions selected for the MIPS-reduction project.

Construct ID Module 1 Module 2 Module 3 Module 4 Module 5 Module 6

AGGF 1 7 2 0 3 0
COBF 0 0 0 2 0 0
JOIN2 0 2 0 0 0 0
JOIN4 1 0 0 0 0 0
ORDER 1 4 2 1 1 0
WHRE1 0 1 0 0 0 0
WHRE2 0 1 0 0 0 0
WHRE3 0 7 2 0 1 0
WHRE4..10 0 0 1 0 0 0
WHRH2 1 5 2 0 4 2
WHRH3 1 4 2 3 3 4
WHRH4 1 1 1 0 0 0
WHRH5..10 0 3 0 0 0 0

Instances in total 6 35 12 6 12 6
EXEC SQL blocks 8 40 20 12 14 28

was present inside a sub-query of one of the cursors. It was used to return the maximum value. Two of the cursors 
contained ORDER BY clauses. The expert team discovered that the scenario in which these potentially expensive looking 
queries were used inside the program’s code led to inefficient hardware resource usage. They identified what is known as a 
nested cursor situation. Presence of such a situation means that for two different cursors one is opened inside the other one. 
In case of the three cursors each time a row was fetched using one of the cursors, one of the two remaining cursors was 
opened, values were retrieved and the cursors closed. Let us recall that for SELECT statements embedded inside cursors 
the query’s invocation takes places each time a cursor is opened. In the scenario found in the program the nested cursors 
were opened and closed several times.

The improvement to the encountered situation involved changes to both the queries and the program’s logic. According 
to the experts it was possible to supplant the three queries with a single one and obtain a result equivalent to those in 
the original program setting. Based on this conclusion all the three cursors were combined to form a single cursor, and the 
relevant Cobol code fragments were adequately adapted.

Module 2 In the original module Module 2 we found fifteen SQL queries. Inside the code of the queries we found pro-
gramming constructs of AGGF, JOIN2, ORDER, and various instances of WHREx and WHRHx . After the analysis the experts 
concluded that the ORDER BY clauses present inside two of the SELECT statements, embedded inside cursors, were the 
cause of the burden on the CPU. The ORDER BY clauses were removed after the existing cluster index on the table was 
extended with two additional column names used in the original ORDER BY clauses.

Module 3 In the original module Module 3 a cursor was declared with the following SQL query:

The ORDER BY clause in this deceptively simple query was identified as a performance hampering element. The solution 
was two-fold. First, the existing cluster index was extended with the field DOCID. And secondly, the ORDER BY clause was 
removed from the query.

Module 4 In module Module 4 the SQL programming constructs of COBF, ORDER, and WHRH3 were found. In this mod-
ule code changes were triggered by the two instances of the COBF programming construct. In this module there were 
two EXEC SQL blocks which contained code dealing with the retrieval of a value from the DB2’s special register: 
CURRENT DATE. It is starkly redundant to make DB2 calls for pure retrieval of these values while they are obtainable 
in a far cheaper way, in terms of CPU usage, through calls to the Cobol intrinsic functions. The expert team made a decision 
to replace the found EXEC SQL blocks with equivalent Cobol code. The following code fragment illustrates what changes 
were made to the code in module Module 4 with respect to one of the two EXEC SQL blocks. Changes concerning the other 
block were done in an analogous manner.



Ł.M. Kwiatkowski, C. Verhoef / Science of Computer Programming 98 (2015) 551–588 571
Whereas the above illustrated code transformation is a valid optimization solution it does, however, pose a risk for 
migration of this code to a newer version of a Cobol compiler. According to [31] the semantics of the CURRENT-DATE 
function changes in the Enterprise Cobol for z/OS. This will imply that in case of a compiler upgrade additional changes will 
be inevitable for this module.

Module 5 Module 5 contained the following SELECT statement:
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In this query we found programming constructs labeled by us earlier as AGGF, ORDER, WHRE3, WHRH2 and WHRH3. 
The experts focused on the WHERE clause inside the nested sub-query. The particularly interesting fragment of the SQL 
code is between lines 23 and 36 where three predicates concatenated with OR operators are present. In each OR separated 
block (lines: 23–26, 28–30, 32–35) a host variable :H-DF-IND-DB2 is compared with different constants. The condition 
specified in the sub-query’s WHERE clause will hold true if and only if the value of the host variable is either 0, 1 or 2. Such 
use of the above presented query in the code leads to potentially redundant invocation of a call to DB2. Regardless of the 
actual value held by the host variable :H-DF-IND-DB2 the query will always be executed. To circumvent this situation 
from happening it is desired to first make appropriate comparisons with the host variable :H-DF-IND-DB2 and only if 
any of them holds true make a DB2 call to execute the query. Such logic is programmable by means of Cobol conditional 
statements.

In this module, the presented query was rewritten in such a way that three new queries were introduced. Each new 
query differed from the original with the WHERE clauses. The comparison of the host variable :H-DF-IND-DB2 with the 
constants was removed from the new queries. The control over invocation of the queries was embedded into a ladder of 
Cobol IF statements.

Module 6 In the original Module 6 six cursors were found each of which contained the WHERE clause. All the WHERE 
clauses were analyzed and the potentially inefficient programing constructs of type WHRH2 and WHRH3 were found. In five 
of these cursors the WHERE clauses contained a predicate which involved comparison of a database retrieved value with a 
country code. In all five cursors this predicate was placed as second in a chain of AND operators. According to the experts 
inefficient ordering of the predicates in the WHERE clauses was negatively affecting the speed of execution of the query. 
The country code check, which was carried out as first, was not restricting the dataset well enough and thus hampering the 
performance. All five cursors had their WHERE clauses rewritten by changing the order in which the predicates are checked. 
The following code fragment illustrates the conducted transformation.

The code fragment shown above presents the WHERE clause of one of the five queries found in the Cobol program. In 
the original situation in all of the queries the (PH_COUNTRY=:H-COUNTRY) predicate was listed as first in the sequence 
of the AND operators (line 2). After changes to the code were made this predicate was replaced with the second one. In 
addition to the changes made in the code two indexes were created in the database to satisfy two of the cursors.

5.4. Impact analysis

We now present the analysis of the impact that the MIPS-reduction project had on the IMS transactions in the portfolio. 
Let us recall, we have observed that modules in the studied IT-portfolio are interdependent on one another. This observa-
tion turned out to hold true, in particular, for the Cobol modules which implement the IMS transactions selected for the 
MIPS-reduction project. Interdependencies in the code cause that the effects of code changes propagate to other parts of the 
portfolio. And, as explained earlier, this has implications for both the functionality and the execution performance of appli-
cations. As a consequence apart from the IMS transactions initially selected for the MIPS-reduction project also other IMS 
transactions became affected due to the carried out code changes. The expert team identified in total 23 IMS transactions 
which were affected in the aftermath of the project and used them for assessment of the project’s performance.

In Table 8 we present a transactions-modules dependency matrix which shows the relationships among the project af-
fected IMS transactions and the altered Cobol modules. The data required to construct the matrix was obtained by retrieving 
from source files implementing the transactions. The retrieval was accomplished by means of our tools. The columns cor-
respond to modules changed in the course of the project and are labeled Module 1 through Module 6. The rows, labeled T1 
through T23, represent transactions pinpointed for the project assessment. Presence of a module i in the implementation of 
a transaction j is indicated with the symbol X placed on the intersection of the corresponding column and row.

The first observation which follows from the obtained transactions-modules dependency matrix is that a relatively low 
number of Cobol programs has a wide range of coverage of the IMS transactions. Also, the range in which the changed 
modules affect the transactions differs a lot. Module 6 is only part of implementation of the transaction T18, whereas 
Module 2 is part of implementation of nearly all listed transactions except for T11 and T21. This observation suggests that 
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Table 8
Transactions affected by MIPS-reduction project changes: code based impact analysis.

Transaction Module 1 Module 2 Module 3 Module 4 Module 5 Module 6

T1 X X
T2 X
T3 X
T4 X
T5 X X X
T6 X X X
T7 X
T8 X X X
T9 X X X X
T10 X
T11
T12 X X
T13 X
T14 X
T15 X
T16 X
T17 X X
T18 X X X X
T19 X
T20 X X X X
T21 X
T22 X X X
T23 X

the Module 2 turned out to be a shared bottleneck for nearly all affected transactions. One transaction for which our analysis 
did not reveal any relationship with the changed Cobol modules is T11. We were unable to disclose the reason for the 
transaction’s inclusion in the impact analysis of the MIPS-reduction project. We believe that one of the reasons it was listed, 
despite the fact no code relationship was discovered, is that the DB2 indexes created or expanded in the course of the 
project had some effect on the transaction’s performance.

5.5. MSU reduction

The primary goal of the project was to reduce MIPS usage fees in the production environment which were linked to 
execution of the IMS transactions. The performance metric used for evaluation of the project’s impact on the MSUs was the 
ratio of the MSUs consumed to the transactions volume in the given time frame for a given set of IMS transactions. Decrease 
of the ratio in time was considered meeting the project’s goal. Obviously, the higher the decrease the higher the reduction 
of MSUs, and thus the better the result of the project. The expert team evaluated the actual impact of the MIPS-reduction 
project by comparing the weekly ratios of the MSUs to transaction volumes in two points in time: before and after the 
changes were migrated to the production environment. For this evaluation the experts considered the 23 transactions listed 
in Table 8.

We analyzed the effectiveness of the MIPS-reduction project in a time frame spanning across several weeks before 
and after the project changes were migrated to the production environment. We did this by studying the behavior of the 
performance metric in time. We took the available weekly data concerning the top 100 most executed IMS transactions. In 
the considered time frame 19 out of 23 IMS transactions affected by the MIPS-reduction project were consistently occurring 
in the weekly rankings. For these 19 transactions we had at our disposal totals for their weekly MSU consumption and 
transaction volumes. We aggregated these figures to obtain weekly totals for the MSU consumption and transaction volumes 
for the bundle of the 19 transactions. From these totals we calculated the weekly MSUs to transactions volumes ratios.

Fig. 5 presents the obtained time series of the average weekly ratios of the MSUs to transactions volume for the set of 
IMS transactions affected by the MIPS-reduction project. The horizontal axis denotes time. Each tick on the axis represents 
a week number. The time series covers the period of 36 consecutive weeks. The vertical axis is used to express the average 
weekly ratios of MSUs to transaction volumes. The period in which the MIPS-project evaluation took place is distinguished 
in the plot by the vertical dashed lines which range from week 14 until 19. From the plot it is clearly visible that between 
week 14 and 19 the average ratio of the MSUs to transaction volumes decreased. Before week 14 the ratio ranged from 
0.000271 until 0.000299. After week 19 the ratio decreased and oscillated between 0.000250 and 0.000271. The expert 
team estimated that the project reduced the annual MIPS related costs attributed to the optimized IMS transactions by 
9.8%. The figure was provided by the expert team. Due to the confidentiality agreement we are unable to provide the 
monetary value of this reduction. According to the management the value of the estimated savings significantly outweighs 
the cost of the project.

External influence In order to verify that the reduction in MSUs was solely due to the MIPS-reduction project we checked 
the portfolio source code for changes. In particular, we scrutinized whether the source code which implements the func-
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Fig. 5. Time series of the average weekly ratios of the MSUs to transactions volume for the transactions affected by the MIPS-reduction project.

tionality of the affected IMS transactions was altered between weeks 14 and 19. Let us recall, the initial number of Cobol 
source modules covered by the project was 271. This number was the total number of Cobol modules which implemented 
the set of the six selected transactions targeted for MSU consumption improvements. In addition to those six transactions 
the expert team identified other 17 IMS transactions which also became affected by the MIPS-reduction project. To obtain 
the list of Cobol modules which implemented the 23 IMS transactions we analyzed their call-graphs. In total we found 328 
Cobol modules. For each of those modules we looked up in a version control system whether any code alteration were 
reported and, if altered, migrated to the production environment. The check concerned alterations to source code in the 
time frame between weeks 14 and 19. Apart from the changes with respect to the modules altered as part of the project 
we found three other modules which were modified and brought into the production environment in the time. We studied 
carefully what the nature of modifications in these modules was. Two of the modules contained SQL code but it was not 
altered. All the modifications we found referred to minor changes in the Cobol code.

Production environment We also studied transaction and database calls volumes in the production environment in the 
period when performance of the project was measured. The objective of this analysis was to investigate whether there were 
any observable changes in the volume of transactions or the number of calls made to the database by the IMS transactions 
before and after project changes were migrated to the production environment. One variable which has effect on the MSU 
consumption by a transaction is the number of database calls made by the transaction. Decline in the number of calls has 
a positive effect on the MSUs since it lowers their consumption. For the analysis we considered the time series of the 
weekly total transaction volumes and the associated total volumes of database calls for the IMS transactions affected by 
the MIPS-reduction project. The time series covered the same time frame as in the analysis of the average weekly ratios 
of the MSUs to transaction volumes. Given that the data we had at our disposal were consistently reported for 19 out of 
23 transactions we restricted our analysis to those 19 transactions. We aggregated the weekly transaction and database 
volumes to obtain weekly totals of these properties for a bundle of the 19 transactions. The obtained totals formed two 
time series which we analyzed.

In Figs. 6 and 7 we present plots of the time series of the total transactions volume and the total volume of database 
calls made by the IMS transactions affected by the MIPS-reduction project, respectively. In both plots the horizontal axes are 
used to denote time. Each tick represents a week number. In Fig. 6 the vertical axis denotes the total number of transactions, 
and in Fig. 7 the total number of database calls. Given that the number of database calls is dependent on the number of 
transaction invocations it is not surprising that the two plots look alike. In fact, the Pearson’s correlation coefficient is high 
(0.8951222) what confirms the strong correlation. The plots in Figs. 6 and 7 do not exhibit any significant changes neither 
to the transaction nor to the database calls volume. In fact, the number of database calls is on the rise during the entire 
time frame.

5.6. Summary

The MIPS-reduction project has shown that changes carried out to the DB2 related code had impact on the MSU con-
sumption. We have observed a decline in the average weekly ratios of the aggregated MSUs and the transaction volumes 
after the project took place. According to the expert team the estimated annual savings related to the execution of the 
IMS transactions affected by the project were approximately 9.8%. It turned out that amid the 87 DB2-Cobol programs, 
which were relevant from the project perspective, changes to only six of them were sufficient to arrive at substantial sav-
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Fig. 6. Time series of the total volume of IMS transactions affected by the MIPS-reduction project.

Fig. 7. Time series of the total volume of database calls generated by the IMS transactions affected by the MIPS-reduction project.

ings. As our analysis has shown in all of those modules the SQL constructs deemed as potentially inefficient were present. 
Furthermore, in all of the modules their presence was directly or indirectly linked with the improvements carried out.

Based on our analyses the observed reduction in the MSU consumption was linked with the MIPS-reduction project. The 
decrease did not happen due to a decline in either the number of database calls or transactions invocations. Also, other 
changes done to the code in the portfolio did not exhibit signs which would question the project’s role in reducing MSU 
consumption. The observations derived from the MIPS-reduction project provide a real-world evidence that analysis of the 
code from the angle of the presence of potentially inefficient SQL constructs provides for discovering meaningful candidates 
for code optimization.

6. Portfolio-wide control

In this section we present how we approach control of the CPU resource usage at the level of a portfolio of mainframe 
applications. First, we show that for a large mainframe environment control of the CPU resource usage requires a structured 
approach. On the basis of the case study we show that both the proportions of the DB2 related code in the portfolio 
and the potentially inefficient SQL statements are high; hence making it clearly far from trivial to effectively carry out 
improvements. Next, we present how by combining the data available from the mainframe usage reports along with the 
source code extracted facts it is possible to narrow down the amount of sources that require scrutiny. For the portfolio 
under study we were able to restrict ourselves to less than 1% of all Cobol modules. To aid the process of locating the 
likely performance hampering Cobol modules we use the code derived data on the potentially inefficient SQL programming 
constructs and data concerning code interdependencies. Finally, we present how to assess the expected savings in MSU 
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Table 9
Potentially inefficient programming constructs found in all of the portfolio Cobol sources.

Construct ID DB2 modules % of DB2 modules Instances % of Instances

ORDER 1953 34.28 3232 23.72
WHRH2 1327 23.29 2488 18.26
AGGF 945 16.58 2017 14.80
WHRH3 744 13.06 1175 8.62
NWHR 704 12.36 1038 7.62
WHRH4 379 6.65 573 4.20
JOIN2 345 6.05 575 4.22
UNSEL 345 6.05 591 4.34
WHRH5..10 345 6.05 637 4.67
COBF 276 4.84 369 2.71
DIST 160 2.81 266 1.95
GROUP 82 1.44 189 1.39
JOIN3 79 1.39 141 1.03
UNION 41 0.72 54 0.40
WHRH11..20 33 0.58 82 0.60
JOIN4..7 27 0.47 53 0.39
WHRE3 13 0.23 48 0.35
NIN 12 0.21 26 0.19
WHRE1 11 0.19 22 0.16
WHRH21..50 7 0.12 11 0.08
WHRE2 6 0.11 19 0.14
WHRE4..10 3 0.05 5 0.04
WHRE11..30 2 0.04 8 0.06

consumption for particular code improvement projects. To enable quantification of the potential savings we constructed two 
formulas which are based on the data available from the evaluation of the MIPS-reduction project. These formulas serve 
as rules of thumb for estimating the percentage of the average monthly MSUs saved for a given IMS transaction given the 
number of altered DB2-Cobol modules. We illustrate how to plan code improvement projects by presenting two scenarios 
for source code improvements.

6.1. DB2 code

We analyzed the source code of the IT-portfolio to obtain insight into the state of the SQL code. The analysis covered 
246 IT-systems which were built of 23,004 Cobol modules (the number does not include copybooks). Of these modules, 
DB2-Cobol programs constituted nearly 25% (5,698). The DB2-Cobol programs were identified by seeking the source code 
for the presence of the EXEC SQL blocks. In total we found 55,643 EXEC SQL blocks. Inside the blocks there were 14,387 
SELECT statements which were used either as plain SQL queries or were embedded inside cursor declarations. The content 
of the remaining EXEC SQL blocks comprised SQL communication areas (SQLCA), INCLUDE statements, and the remaining 
SQL commands permitted in the Cobol programs’ code.

We also measured the extent of the potentially inefficient programming constructs in the portfolio. In order to accom-
plish this task we applied our code analysis tools. Detailed results of this analysis are presented in Table 9.

In Table 9 we present results of the SQL code analysis which covered all the DB2-Cobol sources. In the first column we 
list the identifiers of the potentially inefficient SQL programming constructs. These identifiers are taken from Table 2. For 
the constructs: JOINx , WHREx , and WHRHx we created classes that cover ranges of instances. The ranges are determined 
by the minimum and maximum values for x. For instance, in case of the WHRHx one of the classes that we created is 
WHRH5..10 which covers all instances of the WHRHx where x ranges from 5 until 10. By doing so we eliminated the large 
number of identifiers of constructs which occurrences were scarce; hence making the presentation of our table clearer. In 
the second column we provide the total numbers of Cobol modules in which the particular programming constructs were 
found. The following column, labeled % of DB2 modules, provides the percentage of the DB2 modules containing instances of 
the programming constructs with respect to all DB2 modules. In the column labeled Instances we give the total number of 
instances of the programming construct. And, in the last column we provide the percentage of the instances with respect to 
all instances of the potentially inefficient constructs. The counts and percentages relating to the instances are given only for 
information purpose. We did not utilize this information in our work. Rows of the table were sorted in a descending order 
according to the number of DB2-Cobol programs.

The primary observation that follows from Table 9 is that there is a large number of DB2-Cobol modules which contain 
the potentially expensive constructs in the embedded SQL code. We found approximately 68% (3874) of the DB2-Cobol 
programs with SQL statements in which at least one instance of the constructs listed in Table 2. In total we found 15,924 
instances of such constructs. The top most occurring construct is ORDER. It is present in 1952 modules (34.26% of all DB2 
programs). It tops the list both in terms of the total number of instances and modules it occupies. The high percentage of 
modules with the ORDER construct is somewhat alarming given that the corresponding SQL ORDER BY clause is known for 
increasing the probability of performing the CPU intensive operation such as sorting. From the MIPS-reduction project we 
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know that presence of this construct did trigger improvement actions. Of course, the high incidence of ORDER constructs 
does not necessarily mean that the mainframe environment suffers from a large unnecessary MSU consumption. We did 
not conduct an analysis which would enable us to confirm or rule out such a possibility. However, this construct should be 
used with care.

Another construct which is worth discussion, for its relatively high position in the ranking, is the COBF. Let us recall that 
this construct refers to redundant calls made to the database. We have seen that due to the presence of this construct one 
module was altered during the MIPS-reduction project. Since use of the COBF is starkly redundant we found it surprising 
that 369 instances of this construct occur in 276 DB2-Cobol modules. Despite the fact that 276 constitute roughly 1.2% of 
the Cobol files it still appears as an overuse of a bad programming practice.

In the bottom of the Table 9 we see several variations of WHREx constructs. These constructs occur in a relatively small 
number of DB2-Cobol programs but due to their nature, which is nearly pathological, they deserve special attention. The 
positive information derivable from the SQL analysis is that we find only 24 modules which exhibit presence of WHREx

constructs. Let us note that the given number is not the total of the numbers listed in the second column of Table 9
next to the WHREx identifiers. This derives from the fact that multiple variations of the construct may occur in a single 
module. Thus the actual reported total number of modules is lower than the total derivable from the table. Despite the low 
number of occurrences in the code these constructs are interesting from the perspective of CPU performance. In fact, in 
the MIPS-reduction project one module had a query with a WHRE3 construct decomposed into three queries. These three 
queries were later embedded in the Cobol code in such a way that their invocations were controlled through a sequence of 
Cobol’s IF statements.

From the analysis of the embedded SQL code we see a high incidence of potentially inefficient SQL programming con-
structs in the portfolio source code. The amount of modules, which on the grounds of presence of these constructs, speak 
for an in-depth analysis is huge. Such an amount constitutes a vast playground for SQL tuning experts. Of course, ana-
lyzing all the encountered cases and carrying out improvements, if necessary, is advisable from the software engineering 
perspective. The observations from the MIPS-reduction project show that presence of the constructs found in the portfolio 
poses a threat to efficient usage of the hardware resources. However, it is nearly infeasible for a portfolio of this size and 
such importance for the business to conduct such an overhaul of the source code. In fact, such a project also poses risks 
since code might become erroneous. Therefore, our advise is to carry out the impact analysis portfolio-wide, and mark the 
revealed code as such. Then if the code has to be changed anyway due to some business reason it is a good idea to combine 
this effort with code optimizations. By aggregating information about earlier code optimization efforts and their effects on 
the MSU consumption, this will become more and more routine and less risky. So we propose an evolutionary approach 
towards portfolio-wide control of CPU resource usage.

6.2. Major MIPS consumers

We now focus on a way to narrow down the search space for the modules with potentially inefficient SQL constructs. We 
propose to go after the low-hanging fruit and concentrate improvement efforts on the source code implementing the major 
MIPS consumers in the mainframe environment. Such an approach enables spending effort on those parts of the portfolio 
which provide for a relatively high savings potential. And, it also allows keeping improvements low risk for the business by 
limiting the extent of changes to the portfolio source code.

Accounting data In order to determine major MIPS consumers in a portfolio it is indispensable to have access to mainframe 
usage figures. Mainframe usage data, also known as the accounting data, are the essential input for fees calculation. The 
type of data which is required to conduct such calculations is collected by default. Apart from this essential data, z/OS also 
enables collection of all sorts of other data to provide detailed characteristics of particular aspects of the system or software 
products. Whether this is done or not depends on the demand for such data by the organization utilizing the mainframe. It 
is important to note that collection of the accounting data is a workload on its own, and also involves MSU consumption. 
This fact implies that careful selection must be made as to what is collected. For our analyses we had at our disposal weekly 
IMS transaction rankings of the top 100 most executed IMS transactions. This set of rankings was our primary source of 
data on the MSU consumption in the environment.

Transactions volume We propose to use the IMS transactions volume ranking to steer reduction of the MSU consumption 
in the IT-portfolio. The argumentation behind this decision is two-fold. Firstly, the general tendency is that the transactions 
volume is on the rise. This phenomenon finds its justification, for instance, in the fact that organizations gradually process 
more data using their IT infrastructure. Besides that clients of the organizations also get more used to the typically offered 
web front-ends to the IT-systems and as a result more data gets processed by the computers. In our case study the top used 
IT services have been experiencing increased CPU resource consumption over a long time frame. Management’s attention 
has fallen mainly on five of those systems since more than 80% of MIPS were deemed to be used only there. Except for the 
increasing MIPS usage these systems are characterized by one other property. They are all interacting with the database. 
Nearly 57% of the transactions found in the top 100 IMS transactions were linked to those five systems. In a period of 
one year we have observed a 12.22% increase in the volume of transactions which involved these systems. We found no 
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Fig. 8. Relationship between the transactions position in the ranking and the MSU consumption.

indication that this increase was temporary. In fact the systems which we analyze are the core systems of the organization. 
The increase of 12,22% most likely is a result of doing more business.

The other argument behind relying on the transactions volume to steer reduction of the MSU consumption is its rela-
tionship with the actual major MIPS consumers. We carried out an analysis of the MSU usage associated with the top most 
executed transactions. It turns out that the position of a top-ranking IMS transaction is a reliable indicator of the level of 
participation in the MIPS related costs. For this analysis we considered data reported in a period of six months for the top 
100 most executed IMS transactions. For each transaction we calculated the totals for the number of transaction executions 
and the consumed MSUs in that period. We sorted the list of transactions in terms of the total number of executions in a 
descending order and plotted the associated MSU figures.

In Fig. 8 we present the observed relationship between the transactions position in the ranking and the associated total 
MSU usage in the period of six months. The horizontal axis is used to indicate the transactions position in the ranking. 
The values range from 1 until 100. The lower the value the higher the position in the ranking. A transaction with a higher 
transaction-volume obtains a higher ranking. The vertical axis is used to present the total number of MSUs consumed. From 
the plot it is visible that the observed MSU consumption tends to decrease along with the position in the ranking. Although 
we see several exceptions, this observation suggests that the transaction’s frequency of execution is key in the transaction’s 
contribution to the MIPS related costs.

The fact that MSU usage is positively related to the volume of executions is not surprising. Execution of each transaction 
is associated with some consumption of MSUs. The amount of consumed MSUs varies from transaction to transaction. Varied 
usage derives from the fact that CPU utilization depends on the actual number of instructions passed to the processor. This 
is ultimately determined by the logic embodied in the code of the executed programs implementing the transaction and 
data flow. The peaks in the ranking which are noticeable for several transactions in the plot in Fig. 8 are due to the varied 
MSU consumption. Nevertheless, we assume the ranking as a sufficiently good tool to locate major MIPS consumers in the 
IMS environment and rely on it in the process of pinpointing source code for the DB2 related improvements.

Based on our observations, from this and other case studies, a software portfolio typically contains only few applications 
which share some common property, e.g. play a major role in supporting business. This phenomena follows the well-known 
80-20 rule, or Pareto principle, which roughly translates into: 80% of the effects come from 20% of the causes [44]. Whereas 
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Table 10
Potentially inefficient programming constructs found in the Cobol sources which implement the top 100 IMS 
transactions.

Construct ID DB2 modules % of DB2 modules Instances % of Instances

ORDER 72 1.26 134 0.98
WHRH2 71 1.25 155 1.14
WHRH3 50 0.88 84 0.62
AGGF 43 0.75 136 1.00
WHRH4 24 0.42 36 0.26
NWHR 22 0.39 44 0.32
JOIN2 21 0.37 44 0.32
WHRH5..10 15 0.26 34 0.25
COBF 14 0.25 17 0.12
UNSEL 13 0.23 22 0.16
DIST 10 0.18 33 0.24
WHRE3 9 0.16 34 0.25
JOIN3 8 0.14 26 0.19
WHRE1 8 0.14 18 0.13
GROUP 5 0.09 7 0.05
JOIN4..max 5 0.09 17 0.12
UNION 4 0.07 5 0.04
WHRE4..10 2 0.04 2 0.01
WHRE2 1 0.02 1 0.01
WHRE11..max 1 0.02 6 0.04
WHRH11..20 1 0.02 6 0.04

there is no hard proof to support this claim this observation appears to hold true for most portfolios. For the case study 
used in this paper we found that the top 100 IMS transactions contain nearly 57% of transactions linked to IT-systems which 
are attributed to more than 80% of MIPS usage. Whereas the situation encountered is not exactly in line with the Pareto 
principle, application of the principle to the investigated problem is straightforward.

DB2 transaction Among all IMS transactions that we find in the top 100 ranking we concentrate, for obvious reasons, on 
those which interact with the database. We will refer to an IMS transaction as a DB2 transaction each time we find in its 
implementation code which is related to DB2. Given that we approach the IT-portfolio from the source code perspective to 
determine which IMS transactions are DB2 transactions we screen the content of source files. Namely, we first map the IMS 
transaction with source files that implement its functionality. Next, we scan the files and seek for the presence of particular 
programming constructs which are meant to implement interaction with the database. A typical DB2-client program written 
in Cobol contains embedded SQL code which is enclosed in EXEC SQL blocks. We use this fact to classify Cobol programs 
as DB2-clients. Finally, once at least one source module containing DB2 related code is found in the implementation of an 
IMS transaction it is marked as DB2 transaction.

Given that the set of DB2 transactions was chosen on the basis of static code analysis we allow in the set those IMS 
transactions which in runtime never establish any connection with the DB2. This situation derives from the fact that logic 
in the implementation of the transactions ultimately dictates when a DB2 related code is executed. This lack of accuracy 
is, however, unavoidable given the kind of analysis we deploy in our approach. Nevertheless, by distinguishing between 
DB2 and non-DB2 related IMS transactions we restrict the number of source modules to those that are relevant for further 
analysis.

6.3. Low-hanging fruit

Conducting DB2 related improvements inevitably boils down to reaching for the relevant part of the source code. So far 
we have explained that for the purpose of focusing improvement efforts we restrict ourselves to the top 100 IMS transac-
tions which we dubbed the major MIPS consumers. Having at our disposal the set of Cobol modules which implements the 
transactions we carried out analysis of the embedded DB2 code. We now present results of this analysis. As it turns out the 
code which is relevant from the perspective of improvements constitutes, in fact, a small portion in the portfolio.

Top executed DB2 code In an earlier part of this paper we presented results of the analysis of the SQL code which was 
spanned across all the Cobol modules found in the portfolio. In the context of this section we restrict our analysis only to 
those DB2 Cobol modules which are associated with the implementation of the top 100 IMS transactions. Let us recall, in 
total the implementation comprises 768 Cobol modules. Of these modules 258 contain DB2 related code.

In Table 10 we present results of the SQL code analysis from those DB2-Cobol sources which implement the top 100 
IMS transactions. In the first column we list the identifiers of the potentially expensive SQL programming constructs. These 
identifiers are taken from Table 2. Again, for the constructs: JOINx , WHREx , and WHRHx we created classes that cover ranges 
of instances. In the second column we provide the total numbers of Cobol modules in which the particular programming 
constructs were found. The following column, labeled % of DB2M, provides the percentage of the DB2 modules containing 
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Fig. 9. Bar plot of the monthly MSU consumption for each IMS transaction in the top 100 ranking.

instances of the programming constructs with respect to all DB2 modules. In the column labeled inst we give the total 
number of instances of the programming construct. And, in the last column we provide the percentage of the instances 
with respect to all instances of the potentially inefficient constructs. Rows of the table were sorted according to the number 
of DB2-Cobol programs.

In Table 9 the modules which contain the ORDER construct constitute over 34% of all DB2-Cobol modules whereas in 
Table 10 we see roughly over 1%. Table 10 exhibits similarity with Table 9 in terms of order of the programming constructs. 
Again, the ORDER construct tops the list, the variations of the WHRHx constructs occupy its upper part, the COBF resides 
around the middle. Also, majority of the positions in the bottom of the list is, again, occupied by the WHREx constructs. Of 
course, in Table 10 the proportions of the modules and instances are much lower but this is due to the fact that we look at 
a much smaller portion of the portfolio. What is particularly interesting are the modules labeled with WHREx . In the entire 
DB2-Cobol part of the sources we found 24 modules which contain instances of those constructs. This time we screened 
258 files and we see 21 modules with this property. Given that the WHREx constructs are pathological it is surprising to 
learn that 87.5% of source files implementing the top IMS transactions contain such code. Despite the presence of nearly a 
full array of SQL constructs deemed as potentially inefficient the overall number of DB2 modules with such constructs is 
rather low (180). It is fair to say that in the worst case scenario code improvements are restricted to at most 180 Cobol 
programs. Given the total number of Cobol modules in the analyzed portfolio (23,004) this constitutes approximately 0.78%.

The small portion Analysis of the mainframe applications’ SQL code revealed that there are plenty of opportunities to fine-
tune interaction with the database. As we have already explained when dealing with a business critical portfolio a preferred 
approach is to focus on achieving savings at low-risk. In general, the lower the amount of changes applied to the code the 
lower the risk of encountering defects in the applications. In case of changes to the DB2-related code, alterations are nor-
mally restricted only to a few lines of the embedded SQL code. These minor changes can be sufficiently tested without too 
much effort prior to migrating modules to the production environment; hence making them relatively low-risk alteration of 
the applications.

In Fig. 9 we present a plot of the monthly MSU consumption for each transaction in the top 100 ranking. The horizontal 
axis is used to provide the rank of an IMS transaction according to monthly transactions volume. The data presented in the 
plot were captured in a particular month. The vertical axis is used to present the observed consumption of MSUs by the 
transactions. In the bar plot we distinguish two types of transactions: those which interact with the database (gray) and 
those which do not (black). In the studied pool of IMS transactions 64% interacts with the database. Similarly as in Fig. 8 we 
see that the high-ranking IMS transactions tend to have higher MSU consumption. This is not a one-to-one correspondence. 
We see some deviations. What is interesting in this plot is that it is visible that the DB2 interacting IMS transactions have 
a distinctly higher MSU consumption than other IMS transactions.

We took the top 100 IMS transactions listed in Fig. 9 and analyzed them from the perspective of the amount of source 
modules present in their implementation. In the first step we mapped with each IMS transaction a set of modules used 
for their implementation. Each set was associated with a position number identical to the rank the corresponding IMS 
transaction occupied in the ranking. Then, for each position i we computed the cumulative number of distinct modules 
which exist in the implementations of transactions ranked 1 through i. This operation was accomplished by calculating the 
union of the corresponding sets. In addition, for each position we obtained cumulative counts of the DB2-Cobol modules and 
the DB2-modules with the potentially inefficient programming constructs. Eventually, we had at our disposal three vectors 
of data containing the cumulative counts.

In Fig. 10 we present the results of our analysis of the code implementing the top 100 used IMS transactions. The 
horizontal axis lists the IMS transaction rank in terms of execution volume and the vertical axis provides the Cobol modules 
cumulative counts. The counts of the modules implementing the transactions reflect: the total number of Cobol modules 
(solid line), the DB2 interacting modules (dashed line), and the DB2 interacting modules containing the potentially inefficient 
SQL code (dotted line).
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Fig. 10. Properties of the Cobol code implementing the top 100 IMS transactions.

What is observable from the plot is that a relatively large number of the major IMS transactions are implemented by 
a rather small number of Cobol programs (768). In the global portfolio view these modules represent approximately 3.2%. 
An even smaller number of code is responsible for interaction with the DB2 (258 modules, 1.07%). This follows from the 
fact that there exist many code interdependencies among the implementations of the IMS transactions. Finally, we see that 
among the DB2 modules implementing the top 100 IMS transactions, 180 (0.78%) contain the potentially inefficient SQL 
constructs. Bearing in mind the plot in Fig. 9 we see that in order to address the top MSUs consuming DB2-transactions 
it is sufficient to take into consideration a relatively small portion of the code. By taking into account different subsets of 
the IMS transactions it is possible to arrive at various configurations of Cobol modules which are worth inspection. These 
configurations will possibly differ in the numbers of modules, and what follows from it, the risk associated with optimizing 
them and migrating to the production environment. We will now show how we utilize the code extracted data in planning 
a MIPS-reduction project.

6.4. Improvement scenarios

We use the data gathered during the analysis of the code and show how to use it to plan source code improvement 
projects. We illustrate portfolio code improvements on the basis of two what-if scenarios. For each scenario we present 
estimations of the possible savings.

Estimation tools In order to be able to estimate the potential savings in MSU consumption resulting from carrying out a 
code improvement project we need some benchmark data. The only data that were at our disposal on that kind of projects 
came from the MIPS-reduction project evaluation report. We chose to rely on it in estimating the potential MSU savings 
for the similar future projects. Our analyses so far have been revolving around optimization of the MSU consumption by 
the IMS transactions through improvements to their implementation. Using the available data we drafted two formulas for 
estimating the percentage of the monthly MSUs saved for executing an IMS transaction given the number of modules that 
were altered in its implementation. One formula provided us with the average expected monthly percentage of savings, the 
other, with the maximum.

We considered savings calculations provided in the evaluation of the MIPS-reduction project by the expert team. We had 
at our disposal percentages of the MSUs saved and the average monthly numbers of MSUs consumed by the transactions. 
These were obtained from the historical yearly data. In order to associate this data with the code alterations, for each 
transaction we counted the number of modules changed in the implementation of the transaction during the MIPS-reduction 
project. The counts ranged from 0 up to 4 (0 applied to the one exception we reported earlier). We grouped the transactions 
according to the number of modules altered. We eliminated groups which contained less than one data point. Eventually, 
we arrived at 3 groups of transactions with 1, 2, or 3 modules improved. We characterized each group with two values: the 
average and the maximum percentage of MSUs reduced. For each group the average was calculated as the weighted average 
of the reported percentages with the historical average monthly MSU consumption as weights.

We chose to do extrapolation on these small sets of three points. Although, the linear relationship appears to be appro-
priate given the points we had we did not find it suitable. Whereas we expect the increase in MSU reduction as we improve 
more and more Cobol modules we do not expect this growth to be proportional. We decided to choose logarithms as the 
most appropriate family of functions to extrapolate. Logarithmic functions are increasing, if the base is larger than one, and 
their growth is very slow. This property stays in line with our intuition. Having assumed nonlinear behavior we used the 
available data points to extrapolate. We found the following relations.
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Table 11
Summary of the analyses of the scenarios.

Scenario Modules (#) Est. monthly savings (%)

Avg Max

Major overhaul 180 9.61% 16.83%
Minor changes 14 6.07% 9.56%
MIPS-reduction project 6 3.84% –

Ravg(m) = 0.010558 · ln
(
3561.230982 · (m + 1)

)
. (1)

Rmax(m) = 0.0512401577381 · ln
(
4.138711 · (m + 1)

)
. (2)

Formulas 1 and 2 provide the tools we used for estimating the expected MSU reduction in altered transactions. The Ravg
stands for the average expected percentage of reduction. And, the Rmax gives us the maximum expected. Both formulas use 
as input m which is the number of Cobol modules changed in a transaction’s implementation.

In our approach to estimating savings we rely on the fact that source code is altered. We size the extent of code 
alterations with the number of modules changed. We do not take into account the actual scope of changes, for instance, 
the number of SQL statements improved within a particular module. This is obviously a simplification. As an alternative one 
might consider counting the number of changed lines of code. However, such approach bears its own drawbacks and given 
the small number of data points does not guarantee achieving any better estimates. In our case by relying on limited data 
we were able to equip ourselves with tools which enable us to make estimations based on the past experience. Let us note 
that the formulas were derived from characteristics of a specific production environment and therefore it is possible that 
for other environments one must consider devising their own using different data. Nevertheless, in the face of having no 
approximation tools we came up with formulas that we use as rules of thumb for estimating the size of savings obtainable 
from DB2-related code improvements.

What-if scenarios Naturally, there exist various scenarios in which it is possible to achieve reduction in MSU consumption 
through code improvements. Each scenario is characterized with a level of potential savings and a scope with which the 
applications’ source code is affected. The first element has obvious financial consequences. The latter relates to IT risk. Two 
scenarios for code improvement in the implementations of the major IMS transactions were analyzed. To estimate savings 
we used the formulas (1) and (2). For the sake of analysis we assumed that the basic improved code unit is a DB2 Cobol 
module. The costs relating to code improvements are assumed to be low compared to potential savings. The following are 
the analyzed scenarios:

Major overhaul We focus on the top 100 IMS transactions. All DB2 modules bearing the potentially inefficient SQL con-
structs found in code analysis are improved. The emphasis in this scenario is on code quality improvement. Savings 
in MSU consumption are expected to follow as a consequence of improvements to the code.

Minor changes The number of DB2 modules dispatched for improvements is kept low yet the impact of the alterations 
made to these modules allows embracing IMS transactions which offer potential for high savings. Selection of 
modules for this scenario was based on facts such as presence of potentially inefficient SQL constructs and code 
interdependencies among implementations of the IMS transactions. The emphasis in this scenario is on achieving 
significant savings in MSU consumption through relatively small number of alterations in the applications’ code.

In Table 11 we present a summary of the scenarios from the perspective of the total potential savings and the amount of 
source code which is affected. In the first column we list the scenarios. In the second we provide the number of Cobol source 
modules which undergo improvements. In columns 3 and 4 we present the estimated savings. The savings are expressed as 
the percentage of the average monthly MSU consumption by the top 100 IMS transactions. The scenarios are summarized 
on the basis of calculations obtained from formulas 1 and 2. The columns contain labels Avg and Max to distinguish figures 
obtained with the two formulas. In the last row of Table 11 a summary of the MIPS-reduction project is provided. The 
figures given are the actuals and therefore cells in columns labeled with Max do not contain any value.

It is clear from Table 11 that in all scenarios MSU consumption savings are to be expected. In principle, the more changes 
to the code the higher the projected yields. The highest expected savings are generated in the Major overhaul scenario. These 
savings come for the price of in-depth analysis and alterations to a large number of modules. An interesting result is revealed 
through the Minor changes scenario in which only 14 modules are considered yet the expected savings are substantial. In 
the last row estimates regarding changes to the same Cobol modules that were changed in the MIPS-reduction project are 
presented. Let us note that the value is expressed as the percentage of the average monthly MSU consumption by all the 
top 100 IMS transactions.

Which scenario is the best to depart from depends on a number of factors. For instance, on the desired level of savings, 
the risk tolerance, or the degree to which the source code is to be improved. Nevertheless, the analyses presented here 
allow for rational decision making based on facts.

The fact that the savings in the MIPS-reduction project were lower than those we estimated for the two analyzed sce-
narios is primarily due to differences in the scope of the portfolio source code involved. Our approach is unlike the expert 
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team. We departed from screening the code which implements the top 100 IMS transactions and marked the potentially 
inefficient code. The MIPS-reduction project team was constrained by the business domain which commissioned the project. 
What follows from it is that they focused on a particular subset of the IMS transactions. From there they made the selection 
of the code to be improved. Taking the IT-portfolio management point of view, we would recommend not to constrain code 
improvements by the business views, such as the business domains. In a mainframe portfolio of applications serving multi-
ple business domains the source code constitutes a uniform space for searching improvement opportunities. The mainframe 
usage reports are already a reliable guide which points to the major cost components. There is no need, from the technology 
perspective, to impose artificial constraints when the goal is to lower the operational IT costs.

7. Practical issues

In order to control CPU resource consumption and generate savings, the control efforts must be embedded within the or-
ganization and in the ongoing software process. We already alluded to that by proposing an evolutionary approach towards 
MSU consumption reductions: monitoring, marking and changing in combination with other work on the code. Since there 
will be new modules and enhancements, there will also be new venues for reductions in CPU resource usage, and we find 
those during monitoring. It would be good to analyze new code upfront for this to preventively solve the problem before it 
occurs. Of course, in order to take advantage of all those opportunities there must exist a clearly defined software process.

Within the software process two phases should be distinguished. The first phase involves code improvements to the ex-
isting implementations of the MIPS consumers. The second phase involves ongoing monitoring of changes in the production 
environment MSU consumption, and also, monitoring of the quality of the code in the pre-production stage.

7.1. Code improvements

As the MIPS-reduction project has shown, code improvements yield significant savings. The MIPS-reduction project was 
restricted to a particular group of IMS transactions. We have demonstrated that by carrying out code improvements on 
a portfolio scale it is possible to achieve higher reduction in the MIPS related costs. These facts speak for themselves in 
managerial terms. In addition, what follows from the code improvements is also the increase in the quality of the source 
code. For an organization this aspect translates, for instance, into prolonged longevity of the portfolio, better response time 
of the applications, or better control of the IT-assets. In order to commence with the CPU resource usage control the current 
condition of IT must undergo screening.

Implementation of this phase could take form of one of the source code improvement scenarios analyzed in this paper. 
Of course, for a particular mainframe environment there needs to be data available which would allow regeneration of the 
results used to construct the improvement scenarios presented in here. Implementation of a portfolio-wide code improve-
ment project should take into account lessons learned from analysis of the entire Cobol written portfolio, the MIPS-reduction 
project, or recommendations from the portfolio experts.

To facilitate analysis of the Cobol portfolio we developed a number of tools which allow for extraction of the relevant 
data from the source code. These tools are capable of delivering an analysis each time changes to the portfolio take place. 
In fact, these tools are suited for analysis of many Cobol sources. Minor modifications might be necessary. Of course, except 
for the collection of the code related data it is also necessary to have at your disposal the mainframe usage data. This data, 
however, is usually available for all mainframe environments. If not their collection needs to be enabled.

7.2. Ongoing monitoring

There is a clear need to monitor CPU resource usage on an ongoing basis. It has been observed that source code in 
IT-portfolios evolves. According to [51] each year Fortune 100 companies add 10% of code through enhancements and 
updates. In the Cobol environments alone, which are estimated to process approximately 75% of all production transactions, 
the growth is also omnipresent [4]. In 2005 experts at Ovum, an IT advisory company, estimated that there were over 200 
billion lines of Cobol deployed in production [5]. They claimed this number was to continue to grow by between 3% and 5%
a year. There is no sign that the Cobol’s growth has stopped. Our own study revealed that in the production environment 
we investigated in a single year the number of Cobol modules grew by 2.9%.

Apart from changes to code there are also changes relating to the systems usage patterns. For instance, the MIPS capacity 
attributed to the one system in the studied portfolio has increased nearly 5 times in just 3 years time. For this particular 
system it was observed in time that many IMS transactions, which were linked to the system, entered the ranking of the 
top 100 executed IMS transactions.

The following are major elements involved in the ongoing monitoring of CPU resource usage with respect to DB2 linked 
IMS transactions:

– Enforcement of the verification of the SQL code in the testing phase to eliminate the inefficient code from entering the 
production environment.

– Utilization of the mainframe usage data for identification of changes in the IMS transactions usage patterns.
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– Deployment of a mechanism which enables measuring MSU consumption or CPU time spent on execution of particular 
SQL statements by the IMS transactions.

There are multiple possibilities to realize those elements. For instance, the verification of the SQL code prior to its 
entry to the production environment can be accomplished by conducting checks of the embedded SQL code as it has 
been proposed in this paper. Our list of potentially inefficient programming constructs was derived based on the DB2 
experts recommendations and the real-world examples taken from the MIPS-reduction project. The content of this list has 
been likely not exhausted. In fact, we would recommend an evolutionary approach here. Each time any kind of project 
which involves alterations to the mainframe applications code is carried out some increment to the knowledge on the 
inefficient code constructs could be made. For particular mainframe environments the insights based on organization’s 
internal experience provide the most accurate information on the actual bottlenecks in the source code.

To enable analysis of the IMS transactions usage patterns it is important to assure that relevant mainframe usage data are 
collected. This is typically done by enabling adequate mechanisms on the z/OS. In case of the organization which provided 
us with the case study the collection of the accounting data was well established. Partly due to the regulatory framework 
in which the business operates. Nevertheless, having the data available is not sufficient to take advantage of it. There must 
be clearly defined paths which allow exploitation of its abundance. For instance, ongoing measurement of the average MSU 
consumption by the transactions in the IMS environment would set up a foundation for enabling automated reporting of 
the deviations from the historical means.

Being able to capture the performance of execution of particular statements is somewhat more involving. It boils down to 
deployment of monitoring techniques which rely on the feedback from the operating system. z/OS provides facilities which 
enable capturing all sorts of detailed data bits through the so-called IFCID (Instrumentation Facility Counter ID) record 
blocks. For instance, IFCID 316 captures metrics with respect to SQL statements executed in DB2. Among these metrics we 
find information on the CPU time [38]. By capturing and storing the IFCID 316 data it is possible to deploy a mechanism 
to measure CPU usage by the particular SQL statements. Later on it is possible to use this data for performance analysis, 
and eventually planning improvements. Of course, all sorts of monitoring deployments must be carefully arranged with the 
mainframe experts to make sure that such mechanisms alone will not result in undesired CPU resource leaks.

8. Discussion

In this section we consider the source code based control of CPU resource usage in a broader spectrum of IT-management 
issues. First, we position our approach in the context of vendor management. In particular, we discuss how this domain of 
IT-management can benefit from the work presented in this paper. Second, we discuss mainframe utilization from the 
perspective of potential redundancies. We focus on the usage of various environments within mainframes and discuss how 
to address the potential inefficiencies.

8.1. Vendor management

Trust is the foundation of any business venture. However, when the stakes are high additional means must be considered 
to assure success. For business, which is critically dependent on IT, software assets are priceless. Therefore, organizations 
which outsource IT activities to external parties must keep track of what happens. Lax or no control over outsourced IT is 
likely to lead to loss of transparency over its condition. It is possible to base evaluation of IT deliverables on data provided 
by the outsourcing vendor. However, such data is at clear risk of being distorted and not present a true picture. The bottom 
line is that it is in the best interest of the business management and shareholders to possess reliable means to control the 
state of IT.

Source code represents the nuts and bolts of the software assets. Maintaining its high quality is paramount since it 
has impact on numerous IT aspects. For instance, in our work we enabled the reduction of IT operational costs through 
improvements in the source code. We relied on the fact that inefficient code, or in other words, low quality code hampers 
the usage of hardware resource. Outsourcing IT frequently means outsourcing the alterations done to the source code. Of 
course, no CIO is expecting to degrade quality of the code by outsourcing it. In order to prevent from such distortions to 
happen organizations must equip themselves with adequate quality assurance mechanisms.

Source code quality assurance at the level of vendor management typically boils down to two aspects: provisions in the 
service level agreements (SLAs) and methods for compliance verification. Provisions of an outsourcing SLA must stipulate 
in what condition the source code is expected to be delivered by the vendor. In order to make these conditions verifiable 
they better be expressed in source code terms. What we mean by that is a clear outline of the kind of code metrics, set 
of statements, or language dialects, to name a few, the delivered code should adhere to. This way it is possible to devise 
means to verify that the conditions of the SLA have been met.

Verification process can take two routes. The organization outsourcing its IT relies on the compliance assurances made 
by the vendor, or it chooses to verify the compliance on its own. We would recommend the latter. Having the source 
code quality conditions expressed in the source code terms makes it possible to deploy source code analysis techniques 
for verification. Such approach provides for the highest level of transparency on the source code. If the source code quality 
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Table 12
Breakdown of the MSUs usage of the top 100 transactions into 4 IMS environments.

Month PROD Environment

TEST1 TEST2 TEST3

1 87.90% 10.82% 0.43% 0.85%
2 84.34% 14.52% 0.63% 0.51%
3 92.26% 6.02% 0.97% 0.74%
4 87.82% 10.62% 0.65% 0.90%
5 91.86% 6.35% 0.66% 1.13%
6 95.44% 3.03% 0.73% 0.80%

Monthly average 89.94% 8.56% 0.68% 0.82%

criteria are specified in such a way that lexical analysis of the code is sufficient than verification process is implementable 
in an inexpensive manner.

In our approach to reducing CPU resource usage we used the lexical code analysis to mark the potentially inefficient 
code in the Cobol files. In our case we focused only on the use of SQL. Of course, it is possible to check other aspects of the 
code following this very approach. The tooling we used for our purposes can be naturally deployed to verify SQL code in 
the process of controlling the outsourcing vendors.

A real-world example In the portfolio we study in this paper we encountered a number of DB2-Cobol modules with in-
stances of the WHREx construct. We inspected all the modules which contain this construct in order to learn about the 
origins of the construct. We looked for the common properties these files shared. Since the number of modules was small 
it was feasible to analyze them manually. First, we analyzed the queries labeled with WHREx . As it turned out two thirds 
of the modules containing the queries originated from the implementation of the same system. We checked the queries for 
duplicates, which would suggest a copy-paste approach to programming, but out of 102 instances of the WHREx we found 
only 1 case of a verbatim copy. This simple experiment suggests that the undesired WHREx constructs did not propagate 
into the code through code duplications. Second, we scrutinized comments embedded in the 24 modules to track the his-
tory of changes. For 21 modules we found dates and identifiers of the programmers who were indicated as authors of those 
modules. We found 9 different authors among whom one was associated with as many as 13 modules. As it turned out 
the name of the author pointed to a company to which projects involving source code modifications were outsourced. It 
appeared as if the programmer (or programmers), who labeled these 13 modules with the name of the company, smug-
gled this coding malpractice into the portfolio. Presence of the WHREx instances in the code and the comments embedded 
version history details expose interesting information. Of course, they neither prove that the WHREx constructs were in 
the modules since their inception into the portfolio nor guarantee that the outsourcing company put them there. However, 
these observations provide basis to raise questions as to the quality of work delivered by the vendor.

8.2. CPU resource leaks

Large organizations use mainframes to accommodate business processes with heavy workloads. There is a whole array 
of tasks that a typical mainframe accomplishes. Hosting of data warehouses to facilitate data mining, offering web-enabled 
services, processing batch-jobs, handling IMS transactions, storing data, to name a few. Each such task contributes in some 
degree to the overall mainframe usage bill. Within the production environment we distinguish two types of workloads: 
business critical and non-business critical jobs. The first type relates to applications which require the high-performance and 
high-availability provided by a mainframe. The second type refers to all other jobs which are not critical for the business 
or do not necessarily require the reliability a mainframe provides. The second type refers to all other tasks which are 
executed on the mainframe but are not critical for the business processes or not necessarily require the top-notch execution 
performance. The second type of tasks constitutes the area with potential redundancies in MSU consumption. In other 
words, an area where CPU resources leak. Identification of such areas yields a way to further reduce mainframe utilization, 
and what follows, the related costs.

In this paper we concentrated our analysis on the source code of IMS transactions executed in the production environ-
ment. All of them were highly critical for the business and without any doubt they had to be executed on the mainframe. 
On the mainframe the organization also developed and tested software which later ended up in production. Let us now 
illustrate the distribution of the MSU consumption among the environments designated for IMS. The MSUs were reported 
for four IMS transaction environments: PRODUCTION, TEST1, TEST2, and TEST3.

Table 12 shows the breakdown of the MSUs usage of the top 100 transactions into 4 IMS environments. In the first 
column we indicated the month number. In the remaining columns we provide percentages of the total monthly MSUs 
consumed in each IMS environment. In the last row the arithmetic average for each listed environment is provided to 
indicate an average monthly percentage of MSU consumption in the entire period.

Not surprisingly, the largest portion of the MSU consumption is associated with the production environment. On the 
average it accounts for nearly 90% of all MSUs consumed. All the remaining environments consume roughly 10% with 
the TEST1 environment consuming the majority of approximately 8%. We implicitly assumed that the workloads on the 
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production environment are critical and cannot be removed. The workloads assigned to the test environments do not serve 
business processes in a direct way yet they take up approximately 10% of the IMS environments MSUs. These MSUs loom 
as an easy to eliminate target. An obvious approach would involve moving the test workloads onto environments which do 
not incur MSU related charges, such as PCs. It has been a reality in many IT shops since shortly after the invention of the 
PC to migrate from MSU consuming environments. Compilers, language parsers, test data generators, testing environments 
and source code libraries have all been available on PCs and servers for years. Many have syntax specifically geared to the 
IBM mainframe environment. In case of this portfolio migration of testing was complicated. So that this solution was not 
possible for this organization to implement. Nonetheless, insight like the one presented here certainly provides food for 
thought for mainframe cost reduction strategists.

9. Conclusions

Costs relating to mainframe usage are substantial. Despite this fact the CPU resource consumption is not managed in a 
granular fashion. We departed from the fact that the usage charges are directly dependent on the applications’ code and 
leveraged the code level aspects up to the executive level of operational costs. In this paper, we presented an approach to 
managing MIPS related costs in organizations which run their applications on mainframes.

Our approach relies on source code improvements relating to interaction between the applications and the database. 
Its distinct feature is that it does not require instrumentation of the mainframe running the applications, what allows 
eliminating risks that can jeopardize continuity of operations. Also, it allows obtaining the insight into the mainframe 
environment and conduct planning of code optimization projects without the actual need to access the mainframe. One of 
our assumptions was to be pragmatic so that facilitation of our approach in an industrial setting is feasible. We achieved it 
by relying on the type of data that a typical mainframe operating organization possesses: source code and the mainframe 
usage information. We showed that our approach is adequate to incorporate management of CPU resource usage at the 
portfolio level.

We investigated a production environment running 246 Cobol applications consisting of 23,004 Cobol programs and 
totaling to 19.7 million of physical lines of code. Approximately 25% of all the Cobol programs interacted with DB2. Our 
investigations were focused on the IMS-DB2 production environment. In particular, we studied the MSU consumption figures 
relating to the top 100 most executed IMS transactions. One of the characteristics of the IMS environment was that on a 
weekly basis between 72%–80% of all the major IMS transaction invocations involved database usage. As it turned out the 
MSU consumption for those transactions was on average higher by more than a half compared to the consumption reported 
for the non-database related invocations.

An earlier small scale MIPS-reduction project triggered our full-scale portfolio analysis. As the project showed, through 
SQL tunning it was possible to save approximately 9.8% of the annual cost linked to executing the optimized portion of the 
portfolio. Our approach enabled us to effectively constrain the search space for inefficient SQL code in a large set of source 
files. To achieve this we bridged the source code dimension with the financial dimension. We related the mainframe usage 
data to the source code implementing the IMS transactions.

The combination of SQL programing knowledge, findings from the MIPS-reduction project, and input from the experts 
gave us a set of syntactic rules which enable filtering out the potentially inefficient SQL constructs from the portfolio 
sources. We showed how to use those rules along with the code interdependencies information to narrow down the number 
of source files potentially worth optimization. With our approach we could identify as little as 0.78% of all modules as 
candidates for actual improvements. We presented our tooling in detail so that others can use our approach in their own 
context. As we showed the tooling is simple to implement.

We demonstrated two code improvement scenarios and calculated the potential reductions in MSU consumption. We 
showed that by selecting as little as 14 Cobol-DB2 modules there exists a possibility of cutting approximately 6.1% of the 
average monthly MSU consumption in the studied environment. By carrying out a more extensive code improvement project 
involving a potential 180 modules the savings can reach as much as 16.8%.

Our work presented here provides organizations with the following. First, it outlines a framework for incorporation 
of a structured approach to CPU resource management on the mainframe. Second, it provides for improvement of code 
quality through enforcement of usage of the SQL coding guidelines derived from a substantial real-world portfolio. Finally, it 
demonstrates how to use information obtained from source code analysis and mainframe usage data to plan projects aimed 
at reducing MSU consumption.

To conclude, identifying the few most promising Cobol modules that give opportunity to significantly reduce CPU re-
source consumption is a viable option for reducing operational IT costs. We provided an approach, tooling and an example 
to implement this. Our approach leads to fact-based CPU resource management. We hope that it will become a trigger for 
the IT executives to increase operational IT efficiency.
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