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ABSTRACT 
Product lines evolve out of existing products. In order to 
evaluate the potential of creating a product line from 
existing products it is necessary to ‘mine’ their 
architectures and analyze the commonalities and 
variabilities across those architectures. To manage the 
evaluation process in a disciplined way this paper 
introduces the MAP (Mining Architectures for Product 
lines) method. MAP outlines a bottom-up approach for 
mining the architecture of the existing products, a top-down 
approach to mapping architectural styles and attributes onto 
the mined architectures and an approach to analyzing their 
commonalities and variabilities. It combines well-known 
architecture reconstruction and product line analysis 
techniques. A case study is presented showing the 
application of the method and its benefits are outlined. 

Keywords 
Architecture, Architecture Styles, Attributes, Architecture 
Reconstruction , Components, Product Lines. 

 

1 INTRODUCTION 
 

Product lines are found as a remarkable benefit for 
organizations [2]. They evolve out of existing products in a 
specific market segment. Typically, several products are 
delivered until a systematic migration takes place. To 
manage the evolution in a disciplined way organizations 
have to ‘mine’ existing assets for 

• Architecture and 

• Commonalities and Variabilities 

Architectures are increasingly perceived as an arena where 
commonalities and variabilities among different products 
are supported and where tradeoffs are mediated. The 
architecture is a potential place where different 
stakeholders communicate about conflicting requirements 
and goals. But how should architecture become a central 
player in the development process when there is no or poor 
documentation of existing products? Previous examples of 
architectural reconstruction exist [8,10,11] to extract 

architectural representations from existing systems. 

As the architecture plays an important role in the product 
line approach [2], architecture reconstruction of the existing 
systems should be part of the overall product line 
evaluation. 

However, the decision to move towards product lines has to 
be made on technical as well as non-technical issues. 
Besides business and social there are also organizational 
issues. The software is often developed by different 
software departments, although the products share the same 
market with similar requirements and functionalities. This 
could be caused by several reasons, like different hardware 
platforms with various memory and timing constraints, or 
specific customer bindings. Frequently such organizations 
are dealing with sensitive business issues and therefore 
every major change, like a product line migration, has to be 
considered carefully. 

Despite this, organizations are confronted with a 
competitive market - sometimes between the company’s 
internal business units - and an accelerating market speed. 
These result in cost and time to market pressure, which has 
to be weighed with separate parallel development of similar 
products. 

To support organizations in making a decision from a 
technical point of view the MAP (Mining Architectures for 
Product lines) method was developed. The method focuses 
on the architecture of the product line candidates, that is, 
the components, their relations and their external visible 
properties [3]. The method uses a bottom-up approach to 
recover architectural representations of existing systems 
and a top-down approach to map known architectural styles 
and attributes onto the recovered architecture. The 
reconstructed architectures of the product line candidates 
are compared and evaluated. The method assumes that the 
products to be investigated: 

• Are in a similar market segment. 

• Have a similar set of requirements and 
functionalities. 

Besides the architectural issues there are further technical 
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issues, such as various hardware constraints that have to be 
considered in making a product line decision. These issues 
are not covered in detail by this method. 

To verify the method we performed a real case study on 
several systems in the automotive industry to evaluate the 
potential of moving those systems into a product line. 

The rest of the paper is organized as follows. Section 2 
gives a description of the MAP method. Section 3 outlines 
the case study. Section 4 details related work. Section 5 
outlines conclusions and future work. 

2 METHOD DESCRIPTION 
 
Product line architectures have two significant 
characteristics: explicit identification of commonalities and 
explicit identification of variabilities. Commonalities 
remain stable or are improved over the lifetime of the 
product line. Variabilities are exchangeable depending for 
example on customer requirements, different hardware 
platforms, or different communication protocols. A 
common way to realize commonalities and variabilities in a 
product line architecture is with the use of components. 
Components with well-defined interfaces and properties 
capture commonalities and variabilities of various products. 

The term component is wide spread in the software 
community and has various interpretations. We use the 
term component in the sense of an aggregation item, which 
captures normally cohesive functionality or mechanisms 
with vague qualities. Therefore components could be 
collections of classes, files, processes, operating system 
threads or a middleware component, like a COM or EJB 
component. Potentially such components or group of 
components could be managed by a configuration 
management system in a future product line environment. 

 

Overview of MAP 
The method is illustrated in Figure 1. MAP consists of six 
steps: Preparation, Extraction, Composition, Qualification, 
Evaluation, and Follow-on activities. Each of these steps 
has certain inputs, actions, and outputs, which are described 
in more detail later. The following section gives a brief 
overview. 

The first step is a preparation phase. All necessary 
information is provided to ensure a successful MAP 
method application. This includes basic aspects like a 
common understanding of a product line, technical aspects 
like the selection of the evaluation candidates, as well as 
organizational aspects like availability of resources (people, 
tools, etc.) for the duration of MAP application. 

The reconstruction consists of three phases: extracting an 
implementation model from existing source assets 

(Extraction), abstracting that to an architecture model 
(Composition), and map known architectural styles and 
attributes onto the architectural model (Qualification). 
Abstracting to an architecture model is done in a product 
line context with special focus on the component view. The 
components have to be fine-grained enough to identify 
commonalities and variabilities. On the other hand they 
have to be coarse-grained enough to hide detailed 
implementation aspects. Typical reconstruction 
environments try to minimize the number of components 
and show a limited set of dependencies between them. This 
is normally sufficient for conformance evaluations or 
showing a system topology. But this is not sufficient for 
product line evaluations. A commonality and variability 
evaluation needs the right component level tuning. Setting 
the right component granularity is therefore one of the 
major steps in the reconstruction. This aspect is explicitly 
captured in the composition step. 

 

Figure 1: MAP steps 

For each selected candidate product an extraction, 
composition, and qualification step is applied. 

An implementation model is elicited in the extraction step. 
The implementation model consists of several source 
views, which describe the relations between source 
elements. Source elements are typically the constructs of 
the implementation language, such as classes, functions and 
variables. Relations describe how the source elements 
relate to each other, such as call relations between functions 
or read accesses by functions on variables. The relations 
might contain static as well as dynamic information. The 
resulting implementation model is the basis for the 
composition and qualification step. 

Composition establishes a component view. The view 
consists of the components, their functionalities, interfaces, 
and relations among them. Typically a technique for 
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component composition is aggregation of coherent 
functionalities. Component composition is a key issue as 
previously described. There might be information 
uncovered by reconstructing further products during the 
composition, which would lead to revisiting previous 
component groupings. 

Qualification involves analyzing the software with respect 
to architecture styles and attributes. Architectural styles [4] 
are the structural glue of the components. They show the 
overall approach within the system and outline well-known 
characteristics, advantages, and disadvantages. Quality 
attributes show the various tradeoffs in the architecture [5]. 
They show the decisions where the architects had to 
compromise between diverging behaviors. 

The qualification step changes the view of the 
reconstruction. Extraction and composition are focused on 
a bottom -up approach whereas the qualification uses a top-
down approach to map known architectural knowledge 
onto the system with its components. 

After completing the extraction, composition, and 
qualification steps the evaluation is carried out. The 
architectures of the products are compared, that is their 
components, views, styles, and attributes. A comparison on 
a source level view is not convenient because the products 
differ in naming and capturing of source level artifacts. A 
comparison on an architecture level focuses on the system 
structures. The structures are evaluated with a view to 
potential product line use. 

The evaluation results are the input for follow-on activities. 
Typical follow on activities are an Architecture Based 
Design (ABD [5]) and optionally an Architecture Tradeoff 
Analysis (ATAM [6]). 

The participants involved in applying MAP would ideally 
consist of the system architect, developers and maintainers 
familiar with the systems being evaluated and one or more 
evaluators. An evaluator should be familiar with tools and 
techniques for architecture reconstruction, architecture 
styles and attributes and has knowledge of product lines. 
  
The following subsections describe the necessary input, 
output, and activities of each method step. 
 
Preparation 
This step is a pre-work step that precedes the reconstruction 
phase and evaluation step. Organizational as well as 
technical aspects are considered.  

Input: Knowledge about product lines at the organization. 

Output: Candidate products. 

Activities: Presentation of the MAP method, setting 
expectation levels, availability of resources (e.g. 

developers), selecting candidate products. 

MAP assumes some knowledge about product lines at the 
organization. This includes the management as well as the 
participating developers. Sometimes a product line 
evaluation is forced by a new cross section group in the 
organization, which is investigating common development 
efforts. At best the participating development divisions are 
highly motivated in the process. Under normal 
circumstances the evaluator(s) has to be aware of potential 
conflicts. The merging of two organizations with similar 
products is a comparable situation. Therefore the 
preparation phase emphasizes a common method 
understanding and tries to buy-in as many stakeholders as 
possible. In addition the developer resources have to be 
made available for the evaluation. Although the effort is 
small the experience shows that the right developers 
(system architects) are difficult to get. These aspects are 
often neglected but are essential for the success of the 
method. 

Besides the organizational aspects there has to be a 
decision about the product candidates for the evaluation. 
The candidate products should be representative of the 
existing products, for example, in terms of different 
customers, various hardware platforms, protocols, or 
feature sets. A common number is 3-4 products. Frequently 
one of these products is from a domain, which is also being 
considered for inclusion within the same product line. 

The selected products are the candidates. The Extraction, 
Composition, and Qualification steps are applied on each of 
these candidates. 

 

Extraction 
Extraction establishes an implementation model from 
existing assets of the candidate system. It is the initial step 
in the reconstruction environment. 

Input: Candidate products. 

Output: Implementation model. 

Activities: Presentation of software for each candidate by 
the architect, delivering of source assets to the evaluators, 
determination of the elements and relations to be modeled, 
collection of static and dynamic information, loading of the 
reconstruction workbench. 

At the beginning of the extraction step the architect should 
present the candidate system, software, and development 
environment such as the tools and compilers used. The 
architect supplies the source code and available 
documentation such as specifications, interface 
descriptions, performance data, naming conventions or any 
other relevant architectural descriptions. The availability of 
these assets is highly dependent on the organization and on 
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the system. From the presentation and the assets the 
evaluator(s) should be able to elicit an implementation 
model. Later on the evaluator(s) can see the level and 
terminology on which the developers described their 
products. 

The implementation model is a collection of relations 
among source elements. Source elements are typically the 
constructs of the implementation language like functions, 
classes, files, and directories. Relations describe how the 
source elements relate to each other, such as call relations 
between functions or read accesses by methods on 
attributes. Besides static aspects there are also dynamic 
aspects like function execution time, or process relations. 

The relations are typically generated by existing tools like 
source code parsers or lexical analyzers. Dynamic 
information is generated by profiling or code 
instrumentation techniques. The static as well as dynamic 
aspects are propagated to the Dali workbench [8] or a 
similar tooling environment [9]. 

The implementation model is the major input for the 
Composition and Qualification steps. 

 

Composition 
Composition establishes the component view of the system. 
It is the key step for capturing structures for the 
commonality and variability evaluation. 

Input: Implementation model, component view from 
previous product architecture reconstruction (if it exists). 

Output: Component view. 

Activities: Aggregation, component interfaces, component 
refinement, architect and developer interviews. 

The essential activity in Composition is the aggregation of 
source elements into components. There exist several 
aggregation techniques [10], which highly depend on the 
existing system. A common technique is aggregation of 
coherent functionality. Other techniques capture 
independent branches in the calling graph or aggregate 
functions attached to an execution process. There could be 
low-level aggregation techniques like collection of all files 
in a directory or extracting files and functions following 
certain naming conventions. Sometimes component 
interfaces are described or even an explicit component 
model like COM or EJB is deployed. 

However the aggregation is performed, the components 
should capture the commonalities and variabilities of the 
candidates. If the components hide too much functionality 
then the variabilities could no longer be detected. If the 
component segmentation is too fine then the commonalities 
are not detectable and the evaluator(s) is confronted with 

too detailed implementation aspects. A helpful technique is 
to interview the architect and developers. 

In any case the component segmentation level has to be 
revised for every new candidate composition step. Our 
experience has shown that the refinement is not too 
expensive as long as the products share a similar domain. 

The resulting component view consists of the components, 
their functionality and relations among each other (like 
calling relation, or information flow). 

 

Qualification 
Qualifying is the step of mapping architecture styles and 
attributes to the system and its components and relations. 

Input: Implementation model, component view. 

Output: Architectural styles, attributes, design patterns, 
views. 

Activities: Interview architect and developers, capturing 
patterns, architectural styles and attributes, establishing 
further views. 

Until now we have followed a bottom-up approach. 
Starting with the source code we elicited a component 
view. The qualification step changes the view to a top- 
down approach and attaches well-known architectural 
styles, attributes, and design patterns to the system. 
Qualification involves  

1. Mapping of existing knowledge in the software 
community to the reconstructed system with its 
components. 

2. Characterizing the system with its components in terms 
of architectural styles, attributes and design patterns. 

Architectural styles define families of organizational 
patterns, like repository or process control styles. The 
complement of architectural styles is attributes, like 
performance or safety. These styles and attributes put 
constraints on the architecture and tradeoffs have to be 
made. 

Both styles and attributes should differ as little as possible 
among the candidates because they include various design 
decisions. 

The qualification step could generate further architectural 
views, such as, concurrency view, execution view, and 
deployment view. The composition and qualification steps 
determine the software architecture. 

 

Evaluation 
The last step of MAP is the evaluation of the candidates 
concerning product line potentials. 
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Input: Views, styles, attributes. 

Output: Commonality and variability evaluation. 

Activities: Comparison, structure evaluation, report, 
presentation. 

The first activity is the comparison of the candidates. There 
are several levels where comparison is conceivable, like 
analyzing code or functional levels. A product line 
evaluation emphasizes the structure of the system. 

The component level should capture the commonalities and 
variabilities. If this is not possible then a product line 
approach might not be appropriate. Of course the 
commonalities and variabilities of the existing candidates 
are not satisfactorily reached at the component level 
otherwise an evaluation wouldn’t be necessary. On the 
other hand some structural patterns have to be recognizable 
even though the candidate systems were not designed for 
product lines. This is especially valid for the architectural 
styles and attributes level. Differences on that level have 
major impact on the structure and should be considered 
very carefully. 

All levels beneath the component level are not suitable for 
a comparison. An obvious reason is that the product 
candidates are often developed by different teams and 
therefore lack common naming conventions or common 
component segmentations. 

Evaluations on the architectural level could consider the 
following 

• Investigation of customer and system specific 
features. 

• Variation points in customer features, protocols, 
operating system and hardware. 

• Domain vocabulary. For example vocabularies for 
requirements, design and implementation. An 
analysis can show different abstraction levels. 
Specialized vocabularies (e.g. remaining on 
physical level, customer specific terminology) are 
interesting evaluation points. 

• Product evolution. For example this could show 
the evolution of systems, e.g. from an autonomous 
system to a network device. In the case study the 
network change was considered from the customer 
point of view as a further feature. From the 
architecture point of view it was a major change 
between two versions of a product. 

• Various quality attributes. For example safety, 
performance and timing constraints. 

The list of items to be evaluated will greatly depend on the 
candidate systems. 

 

Follow-on 
Finishing the evaluation with a report and a presentation 
normally leads to some follow on activities. 

Input: Commonality and variability evaluation. 

Activities: Product line decision, ABD, ATAM. 

The evaluation as well as further major aspects like 
requirements elicitation and a product line probe [2] leads 
to a proposal for a product line decision of the organization. 

If the evaluation of the existing candidates is not 
satisfactory from an architectural point of view then an 
ATAM could be triggered. ATAM is a scenario-based 
evaluation technique, which elicits various architecture 
tradeoffs. 

In the case where the organization decides to move to a 
product line the evaluation results could be used for the 
Architecture Based Design (ABD) method. The ABD 
method is especially designed for product line contexts and 
long-lived systems [6]. 

3 CASE STUDY 
 
The MAP method was applied to several systems in the 
automotive industry. The common domain across these 
systems is a feedback process control environment, where 
the rotation of a motor should move an object depending on 
a desired object position (see Figure 2). A sensor provides 
pulses as a feedback to the process control. This general 
description fits to a lot of different devices in this domain. 
The products are running in a small embedded system.  

 

Figure 2: Feedback Process Control 

In our description of the case study the names of the 
components as well as the domain names are changed to 
protect the business knowledge of the organization for 
whom the case study was carried out. 

 

Preparation 
There were two similar domains (D1, D2) selected for the 
evaluation. The organization decided to take two products 
(P1, P2) from D1 and one product P3 from D2. P3 is a test 
to probe whether or not the structure of P3 would also fit 
inside a potential product line. 
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Extraction 
This step involved obtaining the source code and any 
architectural documentation for the candidate systems from 
the organization that we were working with. It involved 
arranging for architect and developer’s involvement during 
the composition step when we needed expert knowledge 
about the systems in order to identify the components. 

In the extraction stage we determined the source elements 
to be extracted and what relationships we would extract. 
Table 1 gives the list of those that we chose. 

All three products were implemented in the C programming 
language. The Imagix tool [12] was used to parse the 
source code and textual representations of the elements 
were output to an ASCII file. Perl was used to extract the 
information from the file in a format that allowed us to load 
it into the Dali [8] workbench. Once it was in the right 
format a database was populated and it was then possible to 
apply the necessary queries to identify the components and 
build the aggregations to obtain the architectural 
representation. 

Source Relation Target Description 

File Includes File A C preprocessor #include of 
one file by another 

File Contains Function A definition of a function in a file

File Defines_var Variable A definition of a variable in a file

Function Calls Function A static function call 

Function Access_read Variable A read access on a variable 

Function Access_write Variable A write access on a variable 

Table 1: shows elements and relationships extracted 

 

Composition 
Through analyzing the code, documentation and 
interviewing the architects and developers of the system, 
we were able to identify several components within the 
system. Through investigating the source elements and the 
relations between them we were able to aggregate the files 
into components. We examined the functions contained and 
the variables defined within the files and aggregated these 
to a file level. We further aggregated these to a component 
level. We identified the components MAIN, CONTROL, 
POSITION as well as several others. Certain utility and 
system files were identified and were discarded as they 
contained common functionality and did not add to the 
architecture of the system. Figure 13 shows the components 
that were identified and the call relation (functions within 
one component call functions in the other) between these 
components. 

 

Figure 3: shows the call relationships in P1 

Through analysis of the data within the system we 
identified that state and information flow variables were 
heavily used. Data is not exchanged directly between 
functions though passing of parameters in a call. 
Information flow mostly occurs indirectly when one 
component may set a state and assign some value to a 
variable. At a later point in the system execution another 
component checks the value of the state and uses the value 
stored in the variable. Execution can occur either directly 
where one component directly calls another or can be done 
at a higher level. 

We grouped the source files containing the definition of 
these variables into the BLACKBOARD component and 
then generated a visualization showing the components that 
interact with it. Figure 4 shows the connections that we 
identified and it shows that all components access the state 
variables. 

 

Figure 4: shows the data relationships 
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Qualification 
The dominant architectural style used in the products is a 
feedback process style, as illustrated in Figure 2. Feedback 
process control styles are used in reactive systems. Such 
systems are mostly confronted with disparate, discrete 
events that require them to switch between different 
behavior modes (e.g. between controlling motions and 
adjusting the base position). 

The styles and attributes used in all three products are 
illustrated in Figure 5. 

 

Figure 5: Styles and Attributes of P1, P2, P3 

The architecture style and attribute map of the three 
products were reconstructed by analyzing the execution, 
control and data exchange behavior. The control behavior 
as well as additional views with further styles and attributes 
is not outlined in this paper. 

Execution View 

To establish the execution view the following example 
questions had to be answered: In which sequence are tasks 
executed? Are critical and less critical operations 
distinguished? 

Referring to the calling relations of the component view we 
saw that the component MAIN calls all other components. 
By analyzing the call graph it is obvious that a cyclic 
executive style is realized in the MAIN component. 

“The cyclic executive executes an application, which is 
divided into a sequence of non-preemptible tasks, invoking 
each task in a fixed order throughout the history of the 
program” [13]. 

The cyclic executive investigation identified three 
execution levels, which are common for P1, P2, and P3: 

• Interrupt level 

• Critical events level 

• Less critical level 

 

Figure 6: Execution levels of P1, P2, P3 

The execution levels are illustrated in Figure 6. The first 
level contains the interrupt routines. In a pure sense there is 
no interrupt routine necessary in a cyclic executive 
environment since no function/task will process the 
information until its activation. Therefore the functions 
could synchronously poll after the condition. In the P1 and 
P2 case the interrupt routine counts the motor pulses for the 
position calculation. In practice it is difficult to record this 
information synchronously. 

The second level handles critical events. Functionality on 
that level deals with system safety, like the detection of a 
blocked motor. The term safety is used when a lack of 
proper functionality may produce system damage (like a 
damaged motor). 

The third level contains the less critical functions, like 
system supervision, interaction, temperature or power 
controlling. 

Referring back to the questions for the execution view we 
summarize as follows. The execution sequence is 
determined by the cyclic executive. The cyclic executive 
considers the attributes safety and performance in such a 
way that critical functionality is preferably executed. 

Data Flow 

The variables access relation in the implementation model 
showed the central position of BLACKBOARD in the 
component view (see Figure 4). 

“A blackboard architecture is a knowledge-based form of 
repository appropriate in applications requiring cooperative 
problem solving” [16]. 

Knowledge-based and cooperative means that there are 
different computation pieces that together solve a problem. 
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In a blackboard environment there are typically no direct 
algorithmic solutions to a problem. The problem has to be 
divided into several computational steps. Each of these 
computational steps is a knowledge source, which together 
form, by a set of rules, the solution. A further characteristic 
is the variety of options. After each computation several 
reactions are possible. For further information about the 
Blackboard style see [4, 15]. 

The blackboards of P1, P2, and P3 are a shared data space, 
spawned by files, which define the global variables. The 
data in the blackboards, as illustrated in Figure 7, have two 
different characteristics: 

1. Synchronization behavior 

2. Categorization of variables 

 

Figure 7: Blackboard of P1,P2,P3 

The first characteristic describes the synchronization 
behavior. Data shared with interrupt routines have to be 
protected. They build a critical region with a simple 
enable/disable synchronization mechanism. Non-critical 
data (not shared with an interrupt handler) don’t have to be 
protected (cyclic executive!). 

The second characteristic distinguishes between state 
related and information flow related variables. Especially 
state related information like states, events, transitions, and 
activities are key issues to describe the various options 
after each computational step. This is done in the control 
behavior analysis, which is not outlined in this paper. 
 

Evaluation 
The evaluation compares the different reconstructed 
architectures and evaluates them with a view to a product 
line migration. 

Component View 

The component views of P2 and P3 are shown in Figures 8 
and 9. The data flow with the BLACKBOARD component 

is identical for each product and therefore is not mentioned 
further. 

A comparison of the component topology shows that the 
products are very similar from a structural point of view. 
For further evaluation we have to be precise what an arrow 
in the call relation means. An arrow represents a call of a 
function f1 inside component c1 to function f2 of 
component c2. The syntax as well as the semantics of the 
participating functions at the same arrow don’t have to be 
identical over the diagrams. 

At this step we have to investigate the component 
interfaces. The component interfaces as well as the call 
relations between the public functions of the components 
could be graphically presented with the dot tool [14]. An 
analysis showed that the interface syntax and semantics 
between components of P1 and P2 are similar. The syntax 
and semantics between P1 and P2 compared with P3 show 
significant differences. 

 

Figure 8: shows the call relationships in P2 

 

Figure 9: shows the call relationships in P3 
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This results in the following observations:  

P1/components approximates to P2/components 

P1/components differs from P3/components 

P2/components differs from P3/components 

P1/topology approximates to P2/topology 

P1/topology approximates to P3/topology 

P2/topology approximates to P3/topology 

Architectural Styles and Attributes 

The styles and attributes of P1 and P2 are identical. P3 uses 
a different timing approach in the cyclic executive. 

This results in the following observations: 

 P1/StylesAttribs equal to P2/StylesAttribs 

P1/StylesAttribs approximates to P3/StylesAttribs 

P2/StylesAttribs approximates to P3/StylesAttribs 

 

Examining the variable names yielded: 

1. The terminology remains at a physical level (e.g. 
port_123 for speed). 

2. Concrete user activities are hard wired to a 
specific feature (e.g. button_500ms_pressed for 
calibrate position). 

Both aspects are disadvantageous for product lines. The 
first aspect expresses the homogeneous usage of a physical 
terminology throughout the system. In contrast to a domain 
vocabulary, which distinguishes between a physical and a 
domain view. The physical terminology expresses the 
specific physical environment of the software. The domain 
terminology expresses the essential domain items, which 
for example is independent of a specific physical 
incarnation but inherently needs a logical representation. 

The second aspect is a consequence of the first. Concrete 
user activities are wired to concrete features. This is 
especially disadvantageous in multi-customer environments 
where it is difficult to decouple certain customer 
requirements from system features. 

Working on both aspects (decoupling logical and physical 
level) as well as introducing indirections for customer 
features is essential for product lines. The ABD method 
explicitly handles such situations. Furthermore it increases 
the probability that the domains D1 and D2 could be 
handled in a common product line. 

 

Follow-on 
Based upon the results of the evaluation, some of which 
were not presented in this paper, a possible proposal could 
be: 

1. A migration towards a product line for products in 
D1 makes sense from an architecture point of 
view. There should be a serious ABD effort at the 
organization to transfer further products into a 
product line. 

2. A prototype effort based on the ABD method 
should investigate a common product line for 
products in domains D1 and D2. 

 

 

4 RELATED WORK 
 

Several efforts already exist in architecture analysis, 
architecture recovery and product line analysis. However 
none of these techniques looks at analyzing existing 
systems/products with a view to evaluating the potential of 
creating a product line. Bowman, et al., and Harris, et al., 
outline techniques for architecture reconstruction. The 
SEI’s Product Line Framework [2] offers several practice 
areas, like domain analysis or feature models for product 
line conversion. 

Bowman, et al., [1] outline a method for extracting 
architectural documentation from the code of an 
implemented system. They analyzed source code using cfx 
to obtain symbol information from the code and generated 
a set of relations between those symbols. They manually 
created a tree-structured decomposition of the system into 
subsystems and assigned the source files to these 
subsystems. Then they used the grok tool to determine 
relations between those subsystems. and the ledit 
visualization tool to visualize the extracted system 
structure. Refinement of the resultant structure was carried 
out by moving source files between subsystems. 

Harris, et al., [11] outline a framework for architectural 
recovery using both a bottom-up and a top-down approach. 
The framework consists of three components: the 
architecture representation, the source code recognition 
engine and supporting library of recognition queries and a 
“Bird’s Eye” program overview capability. In a bottom-up 
approach analysts use the bird’s eye view to display file 
structure and file components of a system. Information is 
then reorganized into more meaningful clusters. In a top-
down approach analysts use a particular architectural style, 
which defines components that should be found in the 
software. Recognition queries are used to determine if these 
components do exist. 
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Previous use of the Dali workbench [8] has been to 
reconstruct the architecture of a system and to check 
conformance against some reference architectural 
description. The work outlined in this paper extends the 
Dali method by mapping architectural styles and attributes 
onto the reconstructed architectures and carrying out an 
analysis of their commonalities and variabilities. 

 

5 CONCLUSIONS 
 

Architecture mining techniques are useful for product line 
migrations. MAP organizes the mining and analysis over 
several products in a disciplined way. The method results 
are one aspect in the organization’s decision to move 
towards a product line. The major benefits of MAP are: 

• Mining existing assets on an architectural level. 
The insights gained provide useful information for 
applying the architecture based design method. 

• Documentation of the “as implemented” 
architecture is produced as a result of applying the 
method. 

• Increased architecture awareness within the 
organization. 

• Rational arguments for product line migration 
from an architecture point of view are generated. 

Our experience in carrying out the case study was that the 
reconstruction, composition and qualification required a lot 
of manual effort. What is needed is a more formal 
description of the types of architectures within a domain of 
interest. From this formal definition of architectural styles 
it should be easier to carry out the Qualification. A more 
formal description may also lead to more automated 
support for architecture recovery and may lead to 
improvements in the Extraction, where we may be able to 
identify other elements or relations that would help 
improve MAP. 
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