
 1

MAP - Mining Architectures for Product Line Evaluations

Christoph Stoermer
Robert Bosch Corporation

Carnegie Mellon University
4500 Fifth Avenue

Pittsburgh, PA 15213 USA
+1 412 268 3949

cstoerme@sei.cmu.edu

Liam O’Brien
Software Engineering Institute

Carnegie Mellon University
4500 Fifth Avenue

Pittsburgh, PA 15213 USA
+1 412 268 7727
lob@sei.cmu.edu

ABSTRACT
Product lines evolve out of existing products. In order to
evaluate the potential of creating a product line from
existing products it is necessary to ‘mine’ their
architectures and analyze the commonalities and
variabilities across those architectures. To manage the
evaluation process in a disciplined way this paper
introduces the MAP (Mining Architectures for Product
lines) method. MAP outlines a bottom-up approach for
mining the architecture of the existing products, a top-down
approach to mapping architectural styles and attributes onto
the mined architectures and an approach to analyzing their
commonalities and variabilities. It combines well-known
architecture reconstruction and product line analysis
techniques. A case study is presented showing the
application of the method and its benefits are outlined.

Keywords
Architecture, Architecture Styles, Attributes, Architecture
Reconstruction , Components, Product Lines.

1 INTRODUCTION

Product lines are found as a remarkable benefit for
organizations [2]. They evolve out of existing products in a
specific market segment. Typically, several products are
delivered until a systematic migration takes place. To
manage the evolution in a disciplined way organizations
have to ‘mine’ existing assets for

• Architecture and

• Commonalities and Variabilities

Architectures are increasingly perceived as an arena where
commonalities and variabilities among different products
are supported and where tradeoffs are mediated. The
architecture is a potential place where different
stakeholders communicate about conflicting requirements
and goals. But how should architecture become a central
player in the development process when there is no or poor
documentation of existing products? Previous examples of
architectural reconstruction exist [8,10,11] to extract

architectural representations from existing systems.

As the architecture plays an important role in the product
line approach [2], architecture reconstruction of the existing
systems should be part of the overall product line
evaluation.

However, the decision to move towards product lines has to
be made on technical as well as non-technical issues.
Besides business and social there are also organizational
issues. The software is often developed by different
software departments, although the products share the same
market with similar requirements and functionalities. This
could be caused by several reasons, like different hardware
platforms with various memory and timing constraints, or
specific customer bindings. Frequently such organizations
are dealing with sensitive business issues and therefore
every major change, like a product line migration, has to be
considered carefully.

Despite this, organizations are confronted with a
competitive market - sometimes between the company’s
internal business units - and an accelerating market speed.
These result in cost and time to market pressure, which has
to be weighed with separate parallel development of similar
products.

To support organizations in making a decision from a
technical point of view the MAP (Mining Architectures for
Product lines) method was developed. The method focuses
on the architecture of the product line candidates, that is,
the components, their relations and their external visible
properties [3]. The method uses a bottom-up approach to
recover architectural representations of existing systems
and a top-down approach to map known architectural styles
and attributes onto the recovered architecture. The
reconstructed architectures of the product line candidates
are compared and evaluated. The method assumes that the
products to be investigated:

• Are in a similar market segment.

• Have a similar set of requirements and
functionalities.

Besides the architectural issues there are further technical

2

issues, such as various hardware constraints that have to be
considered in making a product line decision. These issues
are not covered in detail by this method.

To verify the method we performed a real case study on
several systems in the automotive industry to evaluate the
potential of moving those systems into a product line.

The rest of the paper is organized as follows. Section 2
gives a description of the MAP method. Section 3 outlines
the case study. Section 4 details related work. Section 5
outlines conclusions and future work.

2 METHOD DESCRIPTION

Product line architectures have two significant
characteristics: explicit identification of commonalities and
explicit identification of variabilities. Commonalities
remain stable or are improved over the lifetime of the
product line. Variabilities are exchangeable depending for
example on customer requirements, different hardware
platforms, or different communication protocols. A
common way to realize commonalities and variabilities in a
product line architecture is with the use of components.
Components with well-defined interfaces and properties
capture commonalities and variabilities of various products.

The term component is wide spread in the software
community and has various interpretations. We use the
term component in the sense of an aggregation item, which
captures normally cohesive functionality or mechanisms
with vague qualities. Therefore components could be
collections of classes, files, processes, operating system
threads or a middleware component, like a COM or EJB
component. Potentially such components or group of
components could be managed by a configuration
management system in a future product line environment.

Overview of MAP
The method is illustrated in Figure 1. MAP consists of six
steps: Preparation, Extraction, Composition, Qualification,
Evaluation, and Follow-on activities. Each of these steps
has certain inputs, actions, and outputs, which are described
in more detail later. The following section gives a brief
overview.

The first step is a preparation phase. All necessary
information is provided to ensure a successful MAP
method application. This includes basic aspects like a
common understanding of a product line, technical aspects
like the selection of the evaluation candidates, as well as
organizational aspects like availability of resources (people,
tools, etc.) for the duration of MAP application.

The reconstruction consists of three phases: extracting an
implementation model from existing source assets

(Extraction), abstracting that to an architecture model
(Composition), and map known architectural styles and
attributes onto the architectural model (Qualification).
Abstracting to an architecture model is done in a product
line context with special focus on the component view. The
components have to be fine-grained enough to identify
commonalities and variabilities. On the other hand they
have to be coarse-grained enough to hide detailed
implementation aspects. Typical reconstruction
environments try to minimize the number of components
and show a limited set of dependencies between them. This
is normally sufficient for conformance evaluations or
showing a system topology. But this is not sufficient for
product line evaluations. A commonality and variability
evaluation needs the right component level tuning. Setting
the right component granularity is therefore one of the
major steps in the reconstruction. This aspect is explicitly
captured in the composition step.

Figure 1: MAP steps

For each selected candidate product an extraction,
composition, and qualification step is applied.

An implementation model is elicited in the extraction step.
The implementation model consists of several source
views, which describe the relations between source
elements. Source elements are typically the constructs of
the implementation language, such as classes, functions and
variables. Relations describe how the source elements
relate to each other, such as call relations between functions
or read accesses by functions on variables. The relations
might contain static as well as dynamic information. The
resulting implementation model is the basis for the
composition and qualification step.

Composition establishes a component view. The view
consists of the components, their functionalities, interfaces,
and relations among them. Typically a technique for

3

component composition is aggregation of coherent
functionalities. Component composition is a key issue as
previously described. There might be information
uncovered by reconstructing further products during the
composition, which would lead to revisiting previous
component groupings.

Qualification involves analyzing the software with respect
to architecture styles and attributes. Architectural styles [4]
are the structural glue of the components. They show the
overall approach within the system and outline well-known
characteristics, advantages, and disadvantages. Quality
attributes show the various tradeoffs in the architecture [5].
They show the decisions where the architects had to
compromise between diverging behaviors.

The qualification step changes the view of the
reconstruction. Extraction and composition are focused on
a bottom -up approach whereas the qualification uses a top-
down approach to map known architectural knowledge
onto the system with its components.

After completing the extraction, composition, and
qualification steps the evaluation is carried out. The
architectures of the products are compared, that is their
components, views, styles, and attributes. A comparison on
a source level view is not convenient because the products
differ in naming and capturing of source level artifacts. A
comparison on an architecture level focuses on the system
structures. The structures are evaluated with a view to
potential product line use.

The evaluation results are the input for follow-on activities.
Typical follow on activities are an Architecture Based
Design (ABD [5]) and optionally an Architecture Tradeoff
Analysis (ATAM [6]).

The participants involved in applying MAP would ideally
consist of the system architect, developers and maintainers
familiar with the systems being evaluated and one or more
evaluators. An evaluator should be familiar with tools and
techniques for architecture reconstruction, architecture
styles and attributes and has knowledge of product lines.

The following subsections describe the necessary input,
output, and activities of each method step.

Preparation
This step is a pre-work step that precedes the reconstruction
phase and evaluation step. Organizational as well as
technical aspects are considered.

Input: Knowledge about product lines at the organization.

Output: Candidate products.

Activities: Presentation of the MAP method, setting
expectation levels, availability of resources (e.g.

developers), selecting candidate products.

MAP assumes some knowledge about product lines at the
organization. This includes the management as well as the
participating developers. Sometimes a product line
evaluation is forced by a new cross section group in the
organization, which is investigating common development
efforts. At best the participating development divisions are
highly motivated in the process. Under normal
circumstances the evaluator(s) has to be aware of potential
conflicts. The merging of two organizations with similar
products is a comparable situation. Therefore the
preparation phase emphasizes a common method
understanding and tries to buy-in as many stakeholders as
possible. In addition the developer resources have to be
made available for the evaluation. Although the effort is
small the experience shows that the right developers
(system architects) are difficult to get. These aspects are
often neglected but are essential for the success of the
method.

Besides the organizational aspects there has to be a
decision about the product candidates for the evaluation.
The candidate products should be representative of the
existing products, for example, in terms of different
customers, various hardware platforms, protocols, or
feature sets. A common number is 3-4 products. Frequently
one of these products is from a domain, which is also being
considered for inclusion within the same product line.

The selected products are the candidates. The Extraction,
Composition, and Qualification steps are applied on each of
these candidates.

Extraction
Extraction establishes an implementation model from
existing assets of the candidate system. It is the initial step
in the reconstruction environment.

Input: Candidate products.

Output: Implementation model.

Activities: Presentation of software for each candidate by
the architect, delivering of source assets to the evaluators,
determination of the elements and relations to be modeled,
collection of static and dynamic information, loading of the
reconstruction workbench.

At the beginning of the extraction step the architect should
present the candidate system, software, and development
environment such as the tools and compilers used. The
architect supplies the source code and available
documentation such as specifications, interface
descriptions, performance data, naming conventions or any
other relevant architectural descriptions. The availability of
these assets is highly dependent on the organization and on

4

the system. From the presentation and the assets the
evaluator(s) should be able to elicit an implementation
model. Later on the evaluator(s) can see the level and
terminology on which the developers described their
products.

The implementation model is a collection of relations
among source elements. Source elements are typically the
constructs of the implementation language like functions,
classes, files, and directories. Relations describe how the
source elements relate to each other, such as call relations
between functions or read accesses by methods on
attributes. Besides static aspects there are also dynamic
aspects like function execution time, or process relations.

The relations are typically generated by existing tools like
source code parsers or lexical analyzers. Dynamic
information is generated by profiling or code
instrumentation techniques. The static as well as dynamic
aspects are propagated to the Dali workbench [8] or a
similar tooling environment [9].

The implementation model is the major input for the
Composition and Qualification steps.

Composition
Composition establishes the component view of the system.
It is the key step for capturing structures for the
commonality and variability evaluation.

Input: Implementation model, component view from
previous product architecture reconstruction (if it exists).

Output: Component view.

Activities: Aggregation, component interfaces, component
refinement, architect and developer interviews.

The essential activity in Composition is the aggregation of
source elements into components. There exist several
aggregation techniques [10], which highly depend on the
existing system. A common technique is aggregation of
coherent functionality. Other techniques capture
independent branches in the calling graph or aggregate
functions attached to an execution process. There could be
low-level aggregation techniques like collection of all files
in a directory or extracting files and functions following
certain naming conventions. Sometimes component
interfaces are described or even an explicit component
model like COM or EJB is deployed.

However the aggregation is performed, the components
should capture the commonalities and variabilities of the
candidates. If the components hide too much functionality
then the variabilities could no longer be detected. If the
component segmentation is too fine then the commonalities
are not detectable and the evaluator(s) is confronted with

too detailed implementation aspects. A helpful technique is
to interview the architect and developers.

In any case the component segmentation level has to be
revised for every new candidate composition step. Our
experience has shown that the refinement is not too
expensive as long as the products share a similar domain.

The resulting component view consists of the components,
their functionality and relations among each other (like
calling relation, or information flow).

Qualification
Qualifying is the step of mapping architecture styles and
attributes to the system and its components and relations.

Input: Implementation model, component view.

Output: Architectural styles, attributes, design patterns,
views.

Activities: Interview architect and developers, capturing
patterns, architectural styles and attributes, establishing
further views.

Until now we have followed a bottom-up approach.
Starting with the source code we elicited a component
view. The qualification step changes the view to a top-
down approach and attaches well-known architectural
styles, attributes, and design patterns to the system.
Qualification involves

1. Mapping of existing knowledge in the software
community to the reconstructed system with its
components.

2. Characterizing the system with its components in terms
of architectural styles, attributes and design patterns.

Architectural styles define families of organizational
patterns, like repository or process control styles. The
complement of architectural styles is attributes, like
performance or safety. These styles and attributes put
constraints on the architecture and tradeoffs have to be
made.

Both styles and attributes should differ as little as possible
among the candidates because they include various design
decisions.

The qualification step could generate further architectural
views, such as, concurrency view, execution view, and
deployment view. The composition and qualification steps
determine the software architecture.

Evaluation
The last step of MAP is the evaluation of the candidates
concerning product line potentials.

5

Input: Views, styles, attributes.

Output: Commonality and variability evaluation.

Activities: Comparison, structure evaluation, report,
presentation.

The first activity is the comparison of the candidates. There
are several levels where comparison is conceivable, like
analyzing code or functional levels. A product line
evaluation emphasizes the structure of the system.

The component level should capture the commonalities and
variabilities. If this is not possible then a product line
approach might not be appropriate. Of course the
commonalities and variabilities of the existing candidates
are not satisfactorily reached at the component level
otherwise an evaluation wouldn’t be necessary. On the
other hand some structural patterns have to be recognizable
even though the candidate systems were not designed for
product lines. This is especially valid for the architectural
styles and attributes level. Differences on that level have
major impact on the structure and should be considered
very carefully.

All levels beneath the component level are not suitable for
a comparison. An obvious reason is that the product
candidates are often developed by different teams and
therefore lack common naming conventions or common
component segmentations.

Evaluations on the architectural level could consider the
following

• Investigation of customer and system specific
features.

• Variation points in customer features, protocols,
operating system and hardware.

• Domain vocabulary. For example vocabularies for
requirements, design and implementation. An
analysis can show different abstraction levels.
Specialized vocabularies (e.g. remaining on
physical level, customer specific terminology) are
interesting evaluation points.

• Product evolution. For example this could show
the evolution of systems, e.g. from an autonomous
system to a network device. In the case study the
network change was considered from the customer
point of view as a further feature. From the
architecture point of view it was a major change
between two versions of a product.

• Various quality attributes. For example safety,
performance and timing constraints.

The list of items to be evaluated will greatly depend on the
candidate systems.

Follow-on
Finishing the evaluation with a report and a presentation
normally leads to some follow on activities.

Input: Commonality and variability evaluation.

Activities: Product line decision, ABD, ATAM.

The evaluation as well as further major aspects like
requirements elicitation and a product line probe [2] leads
to a proposal for a product line decision of the organization.

If the evaluation of the existing candidates is not
satisfactory from an architectural point of view then an
ATAM could be triggered. ATAM is a scenario-based
evaluation technique, which elicits various architecture
tradeoffs.

In the case where the organization decides to move to a
product line the evaluation results could be used for the
Architecture Based Design (ABD) method. The ABD
method is especially designed for product line contexts and
long-lived systems [6].

3 CASE STUDY

The MAP method was applied to several systems in the
automotive industry. The common domain across these
systems is a feedback process control environment, where
the rotation of a motor should move an object depending on
a desired object position (see Figure 2). A sensor provides
pulses as a feedback to the process control. This general
description fits to a lot of different devices in this domain.
The products are running in a small embedded system.

Figure 2: Feedback Process Control

In our description of the case study the names of the
components as well as the domain names are changed to
protect the business knowledge of the organization for
whom the case study was carried out.

Preparation
There were two similar domains (D1, D2) selected for the
evaluation. The organization decided to take two products
(P1, P2) from D1 and one product P3 from D2. P3 is a test
to probe whether or not the structure of P3 would also fit
inside a potential product line.

6

Extraction
This step involved obtaining the source code and any
architectural documentation for the candidate systems from
the organization that we were working with. It involved
arranging for architect and developer’s involvement during
the composition step when we needed expert knowledge
about the systems in order to identify the components.

In the extraction stage we determined the source elements
to be extracted and what relationships we would extract.
Table 1 gives the list of those that we chose.

All three products were implemented in the C programming
language. The Imagix tool [12] was used to parse the
source code and textual representations of the elements
were output to an ASCII file. Perl was used to extract the
information from the file in a format that allowed us to load
it into the Dali [8] workbench. Once it was in the right
format a database was populated and it was then possible to
apply the necessary queries to identify the components and
build the aggregations to obtain the architectural
representation.

Source Relation Target Description

File Includes File A C preprocessor #include of
one file by another

File Contains Function A definition of a function in a file

File Defines_var Variable A definition of a variable in a file

Function Calls Function A static function call

Function Access_read Variable A read access on a variable

Function Access_write Variable A write access on a variable

Table 1: shows elements and relationships extracted

Composition
Through analyzing the code, documentation and
interviewing the architects and developers of the system,
we were able to identify several components within the
system. Through investigating the source elements and the
relations between them we were able to aggregate the files
into components. We examined the functions contained and
the variables defined within the files and aggregated these
to a file level. We further aggregated these to a component
level. We identified the components MAIN, CONTROL,
POSITION as well as several others. Certain utility and
system files were identified and were discarded as they
contained common functionality and did not add to the
architecture of the system. Figure 13 shows the components
that were identified and the call relation (functions within
one component call functions in the other) between these
components.

Figure 3: shows the call relationships in P1

Through analysis of the data within the system we
identified that state and information flow variables were
heavily used. Data is not exchanged directly between
functions though passing of parameters in a call.
Information flow mostly occurs indirectly when one
component may set a state and assign some value to a
variable. At a later point in the system execution another
component checks the value of the state and uses the value
stored in the variable. Execution can occur either directly
where one component directly calls another or can be done
at a higher level.

We grouped the source files containing the definition of
these variables into the BLACKBOARD component and
then generated a visualization showing the components that
interact with it. Figure 4 shows the connections that we
identified and it shows that all components access the state
variables.

Figure 4: shows the data relationships

7

Qualification
The dominant architectural style used in the products is a
feedback process style, as illustrated in Figure 2. Feedback
process control styles are used in reactive systems. Such
systems are mostly confronted with disparate, discrete
events that require them to switch between different
behavior modes (e.g. between controlling motions and
adjusting the base position).

The styles and attributes used in all three products are
illustrated in Figure 5.

Figure 5: Styles and Attributes of P1, P2, P3

The architecture style and attribute map of the three
products were reconstructed by analyzing the execution,
control and data exchange behavior. The control behavior
as well as additional views with further styles and attributes
is not outlined in this paper.

Execution View

To establish the execution view the following example
questions had to be answered: In which sequence are tasks
executed? Are critical and less critical operations
distinguished?

Referring to the calling relations of the component view we
saw that the component MAIN calls all other components.
By analyzing the call graph it is obvious that a cyclic
executive style is realized in the MAIN component.

“The cyclic executive executes an application, which is
divided into a sequence of non-preemptible tasks, invoking
each task in a fixed order throughout the history of the
program” [13].

The cyclic executive investigation identified three
execution levels, which are common for P1, P2, and P3:

• Interrupt level

• Critical events level

• Less critical level

Figure 6: Execution levels of P1, P2, P3

The execution levels are illustrated in Figure 6. The first
level contains the interrupt routines. In a pure sense there is
no interrupt routine necessary in a cyclic executive
environment since no function/task will process the
information until its activation. Therefore the functions
could synchronously poll after the condition. In the P1 and
P2 case the interrupt routine counts the motor pulses for the
position calculation. In practice it is difficult to record this
information synchronously.

The second level handles critical events. Functionality on
that level deals with system safety, like the detection of a
blocked motor. The term safety is used when a lack of
proper functionality may produce system damage (like a
damaged motor).

The third level contains the less critical functions, like
system supervision, interaction, temperature or power
controlling.

Referring back to the questions for the execution view we
summarize as follows. The execution sequence is
determined by the cyclic executive. The cyclic executive
considers the attributes safety and performance in such a
way that critical functionality is preferably executed.

Data Flow

The variables access relation in the implementation model
showed the central position of BLACKBOARD in the
component view (see Figure 4).

“A blackboard architecture is a knowledge-based form of
repository appropriate in applications requiring cooperative
problem solving” [16].

Knowledge-based and cooperative means that there are
different computation pieces that together solve a problem.

8

In a blackboard environment there are typically no direct
algorithmic solutions to a problem. The problem has to be
divided into several computational steps. Each of these
computational steps is a knowledge source, which together
form, by a set of rules, the solution. A further characteristic
is the variety of options. After each computation several
reactions are possible. For further information about the
Blackboard style see [4, 15].

The blackboards of P1, P2, and P3 are a shared data space,
spawned by files, which define the global variables. The
data in the blackboards, as illustrated in Figure 7, have two
different characteristics:

1. Synchronization behavior

2. Categorization of variables

Figure 7: Blackboard of P1,P2,P3

The first characteristic describes the synchronization
behavior. Data shared with interrupt routines have to be
protected. They build a critical region with a simple
enable/disable synchronization mechanism. Non-critical
data (not shared with an interrupt handler) don’t have to be
protected (cyclic executive!).

The second characteristic distinguishes between state
related and information flow related variables. Especially
state related information like states, events, transitions, and
activities are key issues to describe the various options
after each computational step. This is done in the control
behavior analysis, which is not outlined in this paper.

Evaluation
The evaluation compares the different reconstructed
architectures and evaluates them with a view to a product
line migration.

Component View

The component views of P2 and P3 are shown in Figures 8
and 9. The data flow with the BLACKBOARD component

is identical for each product and therefore is not mentioned
further.

A comparison of the component topology shows that the
products are very similar from a structural point of view.
For further evaluation we have to be precise what an arrow
in the call relation means. An arrow represents a call of a
function f1 inside component c1 to function f2 of
component c2. The syntax as well as the semantics of the
participating functions at the same arrow don’t have to be
identical over the diagrams.

At this step we have to investigate the component
interfaces. The component interfaces as well as the call
relations between the public functions of the components
could be graphically presented with the dot tool [14]. An
analysis showed that the interface syntax and semantics
between components of P1 and P2 are similar. The syntax
and semantics between P1 and P2 compared with P3 show
significant differences.

Figure 8: shows the call relationships in P2

Figure 9: shows the call relationships in P3

9

This results in the following observations:

P1/components approximates to P2/components

P1/components differs from P3/components

P2/components differs from P3/components

P1/topology approximates to P2/topology

P1/topology approximates to P3/topology

P2/topology approximates to P3/topology

Architectural Styles and Attributes

The styles and attributes of P1 and P2 are identical. P3 uses
a different timing approach in the cyclic executive.

This results in the following observations:

 P1/StylesAttribs equal to P2/StylesAttribs

P1/StylesAttribs approximates to P3/StylesAttribs

P2/StylesAttribs approximates to P3/StylesAttribs

Examining the variable names yielded:

1. The terminology remains at a physical level (e.g.
port_123 for speed).

2. Concrete user activities are hard wired to a
specific feature (e.g. button_500ms_pressed for
calibrate position).

Both aspects are disadvantageous for product lines. The
first aspect expresses the homogeneous usage of a physical
terminology throughout the system. In contrast to a domain
vocabulary, which distinguishes between a physical and a
domain view. The physical terminology expresses the
specific physical environment of the software. The domain
terminology expresses the essential domain items, which
for example is independent of a specific physical
incarnation but inherently needs a logical representation.

The second aspect is a consequence of the first. Concrete
user activities are wired to concrete features. This is
especially disadvantageous in multi-customer environments
where it is difficult to decouple certain customer
requirements from system features.

Working on both aspects (decoupling logical and physical
level) as well as introducing indirections for customer
features is essential for product lines. The ABD method
explicitly handles such situations. Furthermore it increases
the probability that the domains D1 and D2 could be
handled in a common product line.

Follow-on
Based upon the results of the evaluation, some of which
were not presented in this paper, a possible proposal could
be:

1. A migration towards a product line for products in
D1 makes sense from an architecture point of
view. There should be a serious ABD effort at the
organization to transfer further products into a
product line.

2. A prototype effort based on the ABD method
should investigate a common product line for
products in domains D1 and D2.

4 RELATED WORK

Several efforts already exist in architecture analysis,
architecture recovery and product line analysis. However
none of these techniques looks at analyzing existing
systems/products with a view to evaluating the potential of
creating a product line. Bowman, et al., and Harris, et al.,
outline techniques for architecture reconstruction. The
SEI’s Product Line Framework [2] offers several practice
areas, like domain analysis or feature models for product
line conversion.

Bowman, et al., [1] outline a method for extracting
architectural documentation from the code of an
implemented system. They analyzed source code using cfx
to obtain symbol information from the code and generated
a set of relations between those symbols. They manually
created a tree-structured decomposition of the system into
subsystems and assigned the source files to these
subsystems. Then they used the grok tool to determine
relations between those subsystems. and the ledit
visualization tool to visualize the extracted system
structure. Refinement of the resultant structure was carried
out by moving source files between subsystems.

Harris, et al., [11] outline a framework for architectural
recovery using both a bottom-up and a top-down approach.
The framework consists of three components: the
architecture representation, the source code recognition
engine and supporting library of recognition queries and a
“Bird’s Eye” program overview capability. In a bottom-up
approach analysts use the bird’s eye view to display file
structure and file components of a system. Information is
then reorganized into more meaningful clusters. In a top-
down approach analysts use a particular architectural style,
which defines components that should be found in the
software. Recognition queries are used to determine if these
components do exist.

10

Previous use of the Dali workbench [8] has been to
reconstruct the architecture of a system and to check
conformance against some reference architectural
description. The work outlined in this paper extends the
Dali method by mapping architectural styles and attributes
onto the reconstructed architectures and carrying out an
analysis of their commonalities and variabilities.

5 CONCLUSIONS

Architecture mining techniques are useful for product line
migrations. MAP organizes the mining and analysis over
several products in a disciplined way. The method results
are one aspect in the organization’s decision to move
towards a product line. The major benefits of MAP are:

• Mining existing assets on an architectural level.
The insights gained provide useful information for
applying the architecture based design method.

• Documentation of the “as implemented”
architecture is produced as a result of applying the
method.

• Increased architecture awareness within the
organization.

• Rational arguments for product line migration
from an architecture point of view are generated.

Our experience in carrying out the case study was that the
reconstruction, composition and qualification required a lot
of manual effort. What is needed is a more formal
description of the types of architectures within a domain of
interest. From this formal definition of architectural styles
it should be easier to carry out the Qualification. A more
formal description may also lead to more automated
support for architecture recovery and may lead to
improvements in the Extraction, where we may be able to
identify other elements or relations that would help
improve MAP.

REFERENCES
1. T. Bowman, R. C. Holt and N. V. Brewster, Linux as a

Case Study: Its Extracted Software Architecture.
International Conference on Software Engineering,
Los Angeles, May 1999.

2. P. Clements, L. Northrop, A Framework for Product
Line Practice. Version 2.0, August 1999,
http://www.sei.cmu.edu/plp/frameworkv2.7.pdf.

3. L. Bass, P. Clements, R. Kazman, Software
Architecture in Practice, Addison-Wesley, 1998.

4. M. Shaw,D.Garlan, Software Architecture: Perspective

of an Emerging Discipline, Prentice Hall, 1996.

5. M. Klein, R. Kazman et al., Attribute Based
Architecture Styles. Software Architecture,
Proceedings of the First Working IFIP Conference on
Software Architecture (WICSA1), 1999.

6. L.Bass F.Bachmann et al., The Architecture Based
Design Method, CMU/SEI-2000-TR-001.

7. R.Kazman, M.Klein et al., Experience with Performing
Architecture Tradeoff Analysis, Proceedings of the
21st International Conference on Software
Engineering (ICSE 21), 1999.

8. R. Kazman, S. Jeromy Carrière, Playing Detective:
Reconstructing Software Architecture from Available
Evidence, Journal of Automated Software Engineering,
pp.107-138, April 1999.

9. P.J.Finnigan et al., The Software Bookshelf. IBM
Systems Journal, 1997, Software Release v2.0, 01/98.

10. D. R. Harris, H. B. Reubenstein, A. S. Yeh,
Recognizers for Extracting Architectural Features from
Source Code. Proceedings of the 2nd Working
Conference on Reverse Engineering, 1995.

11. R. Harris and H. B. Reubenstein and A. S. Yeh,
Reverse Engineering to the Architectural Level.
International Conference on Software Engineering
(ICSE), pp 186-195, April 1995.

12. Imagix corporation, http://www.imagix.com

13. C. Douglass Locke, Cyclic Executive vs. Fixed
Priority Executives. The International Journal of Time-
Critical Computing Systems, Volume 4, No.1, 1992.

14. E. Koutsofios and S. North, Drawing graphs with dot.
Technical Report, AT&T Bell Laboratories, Murray
Hill NJ, 1992.

15. J. Peters, W. Pedrycz, Software Engineering. An
Engineering Approach. Wiley, 2000.

16. B. Hayes-Roth, A Blackboard Architecture for
Control, Artificial Intelligence 26(3) pp 251-321, 1985.

